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ABSTRACT: We introduce the “tensor-train split-operator Fourier transform”
(TT-SOFT) method for simulations of multidimensional nonadiabatic quantum
dynamics. TT-SOFT is essentially the grid-based SOFT method implemented
in dynamically adaptive tensor-train representations. In the same spirit of all
matrix product states, the tensor-train format enables the representation,
propagation, and computation of observables of multidimensional wave
functions in terms of the grid-based wavepacket tensor components, bypassing
the need of actually computing the wave function in its full-rank tensor product
grid space. We demonstrate the accuracy and efficiency of the TT-SOFT
method as applied to propagation of 24-dimensional wave packets, describing
the S1/S2 interconversion dynamics of pyrazine after UV photoexcitation to the
S2 state. Our results show that the TT-SOFT method is a powerful
computational approach for simulations of quantum dynamics of polyatomic
systems since it avoids the exponential scaling problem of full-rank grid-based
representations.

1. INTRODUCTION

A wide range of dynamical processes in chemistry and biology
are critically dependent on nonadiabatic quantum effects,
including light absorption and photoconversion, electron
transfer, and photocatalytic reactions.1−7 Consequently, there
is great interest in the development of first-principles methods
to describe nonadiabatic quantum dynamics in systems with
many degrees of freedom (DOFs). Here, we introduce the
tensor-train split-operator Fourier transform (TT-SOFT)
method for efficient, rigorous simulations of nonadiabatic
quantum dynamics in polyatomic systems.
The split-operator Fourier transform (SOFT) method is one

of the earliest methods developed for numerically exact wave
packet propagation.8−10 While rigorous, the SOFT approach is
limited to systems with very few DOFs (i.e., molecular systems
with less than 4 or 6 atoms),11,12 since it requires storage space
and computational effort that scale exponentially with the
number of coupled DOFs. The exponential scaling challenge
has motivated the development of a variety of alternative
propagation methods. For example, short iterative Lanczos
(SIL) propagation13 involves projecting the basis into a
subspace which facilitates diagonalization algorithms. The
Chebyshev polynomial expansion method involves performing
a series expansion of the time-evolution operator in a basis of
Chebyshev polynomials.12,14,15 These approaches enable some
improvements in efficiency, but the size of the underlying basis
nevertheless scales exponentially with the dimensionality of the
system. Other methods implement semiclassical approxima-
tions.16−19

A variety of methods have been developed to address the
exponential scaling issue by truncating the basis set. Many of
these methods use Gaussian basis states, including the method
of coupled coherent states,20,21 the matching-pursuit algo-
rithm,22 and multiple-spawning.23,24 The Multi-configurational
time-dependent Hartree (MCTDH) method groups DOFs into
“particles” and represents them in a DVR basis.11,25−29 The use
of a small number of basis functions per particle and multilayer
implementations have made the MCTDH method computa-
tionally efficient.30,31 MCTDH has been used to treat various
systems with many DOFs, including the 24-dimensional wave
packet describing the S1/S2 interconversion dynamics of
pyrazine after UV photoexcitation.32

For most of these methods, however, determining exactly
how to truncate the basis for general purpose applications is
difficult and requires system-specific analyses, iterative methods,
or ad hoc approximations. For example, multiple-spawning
methods use classical trajectories to determine the location of
newly spawned basis functions.24 In MCTDH, the choice of
how DOFs should be grouped into particles involves ad hoc
user input and should be based on which DOFs are most
strongly coupled. Therefore, the truncation scheme can be
difficult to determine a priori.29 Furthermore, the differential
equations of motion used to evolve the single-particle basis
functions in MCTDH are strongly coupled, and their solution
therefore requires special integration techniques.29
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A more systematic approach for propagating multidimen-
sional wave packets in a truncated basis has been introduced
with the development of the “matching pursuit split-operator
Fourier transform” (MP-SOFT) method.33−35 The MP-SOFT
methodology is based on the recursive application of the time
evolution operator, as given by the Trotter expansion to second
order accuracy, using a dynamically adaptive coherent-state
representation generated by the matching-pursuit algorithm.36

An advantage of this approach is the systematic approach to
dynamically adapting the representation, namely, by minimizing
the residual amplitude after each propagation step subject to
the constraint of a desired accuracy. The main disadvantage of
MP-SOFT is the computational expense involved in regenerat-
ing the matching pursuit coherent-state expansion after each
propagation step.
The TT-SOFT method is inspired by MP-SOFT. However,

rather than representing the time-evolving wave packet in terms
of a matching pursuit coherent state expansion, TT-SOFT
represents the wave packet in an adaptive tensor-train format
generated by sequential singular value decompositions.37 Like
MP-SOFT, the TT-SOFT approach does not rely on ad hoc or
user decisions other than a single accuracy parameter. An
advantage of TT-SOFT when compared to MP-SOFT is that it
minimizes the residual amplitude after each propagation step
very efficiently through a series of QR decompositions38

followed by rank truncation based on sequential singular value
decomposition. This approach provides a systematic procedure
to adapt the representation as the wave function evolves in
time. It is worth noting that the tensor-train format is a special
case of the hierarchical Tucker format employed in the
multilayer implementation of MCTDH.30 However, the key
distinction between TT-SOFT and MCTDH, apart from the
integration scheme, is the adaptability of the size of the basis in
TT-SOFT.
In the same spirit of all matrix product states, the tensor-train

format enables the representation, propagation, and computa-
tion of observables of multidimensional wave functions by
operating only with the core tensor components, bypassing the
need of computing the wave function in its exponentially large
full-rank tensor product grid space. TT-SOFT thus enables the
implementation of the SOFT propagation scheme in full-
dimensionality, subject to the constraint of a specified accuracy,
while retaining the advantages of a grid-based representation
method (e.g., the ease of representing any arbitrary potential or
wave function and the lack of ad hoc approximations in the
construction of the basis).
We illustrate the TT-SOFT method as applied to simulations

of nonadiabatic quantum dynamics for a system with many
nuclear DOFs evolving on two electronically coupled states.
We focus on the S1/S2 interconversion of pyrazine, which is an
ideal model system since it allows for direct comparisons with
previous theoretical studies20,29,39−44 and experimental
work.45−49 Pyrazine is characterized by a conical intersection
between the S1 and the S2 states and strong vibronic couplings
that enable ultrafast intersystem crossing, giving rise to a broad
photoabsorption spectrum with vibronic features. Due to the
nonadiabaticity of the dynamics, pyrazine can prove difficult to
study with quantum dynamics simulations and, therefore, serves
as a rigorous test of the accuracy and capabilities of propagation
methods.29

2. METHODS

2.1. TT-SOFT Method. In TT-SOFT, the time-evolved
wave function,

∫τΨ + = ′⟨ | | ′⟩Ψ ′τ− ̂ ℏt tx x x x x( , ) d e ( , )iH
0

/
0 (1)

is calculated by representing Ψ(x′, t0) as described in Section
2.3.1, as a tensor train,37 and applying the short-time
approximation of the time-evolution operator given by the
Trotter expansion:

τ= +τ τ τ τ− ̂ ℏ − ̂ ℏ − ̂ ℏ − ̂ ℏe e e e ( )iH iT iV iT/ /2 / /2 3
(2)

Here, the Hamiltonian is

̂ = ̂ + ̂H T V (3)

where ̂ = ̂ · · ̂−T p m p1
2

1 is the kinetic energy operator, p̂ is the

momentum operator, m is the diagonal matrix of masses, and V̂
is the potential energy operator, which is assumed to be time-
independent during the propagation time step τ.
Substituting the Trotter expansion, introduced by eq 2, into

eq 1 and inserting the closure relations, 1 = ∫ dp|p⟩⟨p|, 1 =
∫ dx″|x″⟩⟨x″|, and 1 = ∫ dp′|p′⟩⟨p′|, yields
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where ⟨x|p⟩ = (2πℏ)−d/2eip·x/ℏ, with d the number of DOFs.
Because the integrals in eq 4 are Fourier transform (FT) or
inverse Fourier transform (IFT), the propagation can be
summarized, as follows:

τΨ +

=

× Ψ ′

τ τ τ− · · ℏ − ̂ ″ ℏ − · · ℏ− −

t

t
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x

( , )
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FT[ ( , )]]]]

i iV ip m p x p m p

0

/4 ( ) / /4

0

1 1

(5)

Propagation over a time interval τ is thus accomplished by first
Fourier transforming the initial wave function, represented in
position space, using the fast Fourier transform (FFT)
algorithm.38 The resulting momentum-space wave function is
then multiplied by the free-particle propagator. The result is

then inverse Fourier-transformed and multiplied by e−iV(x″)τ/ℏ.
Finally, this position−space wave function is Fourier trans-
formed and multiplied by the free-particle propagator. The
inverse Fourier transform completes a propagation step. The
wave function at time t = t0 + Nτ is obtained by repeating this
procedure N times.

2.2. Two-Level Multidimensional Vibronic Model. The
TT-SOFT method can be implemented to simulate non-
adiabatic quantum dynamics for a d-dimensional vibronic
system evolving on an arbitrarily large number of coupled
electronic states. For simplicity, here, we illustrate its
implementation as applied to the description of pyrazine
evolving on 2-coupled electronic states, described by the
Hamiltonian introduced by eq 3 with the kinetic energy
operator,
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where d is the number of nuclear coordinates xj (i.e., normal
modes) with effective masses mj and momenta pĵ. The states |1⟩
and |2⟩ are the two coupled electronic states. V̂, introduced by
eq 3, is the sum of diabatic and coupling potential energy
operators,

̂ = ̂ + ̂V V Vd c (7)

where V̂d = V̂1 + V̂2 is the sum of the vibronic multimode
expansions describing the potential energy surfaces for each
electronic state, parametrized as follows for pyrazine:29
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Ek represents the energy of the system in state |k⟩ for all xj = 0.
The frequencies ωj and normal mode eigenvectors are those for
the system in a reference electronic state (in this case, the
ground state). The remaining parameters (ai

k and aij
k)

correspond to linear and bilinear couplings. Finally, the V̂c
operator accounts for vibronic couplings between electronic
states, as follows:

∑ ∑ ∑̂ = + | ⟩⟨ | + | ⟩⟨ |
= = =

V c x c x x( )( 1 2 2 2 )c
i

d
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d
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With these definitions, the total Hamiltonian matrix is

= +H T V (10)

where δ= ∑′ ′ =

̂
Tkk kk j

d p
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j

j

2
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d

∑j=1
d cijxixj, when k ≠ k′. Each of these matrix elements are d-

dimensional tensor-trains, constructed as described in Section
2.4.
The propagator is obtained as a function of the nuclear

coordinates x through its truncated power series expansion:

∑ τ= − ℏ
!

τ− ℏ

=

iV
n

e
( / )iV

n

N n
/

0 (11)

where N is chosen to be sufficiently large (N = 10 in this study)
to ensure convergence of the power series. The series on the
r.h.s. of eq 11 involves powers of matrices of d-dimensional
tensor-trains. Further discussion of the numerical procedures
used to calculate this power series can be found in Section
2.3.3.
According to eq 5, the time-evolving wave function Ψ(x, t) is

represented in coordinate space as a column vector of tensor
trains corresponding to nuclear wave functions for each
electronic state, as follows:

ψ

ψ
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ψ(1)(x, t) and ψ(2)(x, t) are Fourier transformed to generate
tensor trains in momentum space ψ̃(i)(p, t). These are each

multiplied by the free particle propagator e−ip·m
−1·pτ/4ℏ, in the

form of a rank-1 tensor train in momentum space, to obtain
ψ̃′(i)(p, t). The inverse Fourier transform of ψ̃′(i)(p, t) yields the
wave functions ψ′(i)(x, t) which are then operated upon by
e−iVτ/ℏ:
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(13)

which involves matrix multiplication (i.e., multiplication and
addition of tensor trains) as in eq 11. The Fourier transforms of
ψ″(1)(x, t) and ψ″(2)(x, t) yield ψ̃″(1)(p, t) and ψ̃″(2)(p, t) which
can be used to complete the propagation step by first

multiplying them by e−ip·m
−1·pτ/4ℏ to obtain ψ̃(i)(p, t + τ) and

then performing an inverse Fourier transform.
2.3. Tensor-Train Implementation. 2.3.1. TT Format.

The tensor-train (TT) representation of any d-dimensional
tensor A is defined, as follows:37

∑ ∑ ∑ α α α

α

= ···
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(14)

where the indices i = (i1, i2, ..., id) label the physical dimensions.
The tensors Ak are called cores, each of which is associated with
only one physical dimension. The auxiliary indices αk connect
the cores by matrix multiplication, forming a train (i.e., a linear
chain of tensors). The maximum value of the kth physical index
will be denoted nk, and the maximum value of the kth auxiliary
index (i.e., the kth rank) is denoted rk. Equation 14 can be
expressed alternatively as a product of matrices:

= ···A i i i A i A i A i( , , ..., ) ( ) ( ) ( )d d d1 2 1 1 2 2 (15)

where Ak(ik) is an rk−1 × rk matrix. The conditions r0 = rd = 1
are imposed, as A(i1, i2, ..., id) represents a scalar. Equation 15
clearly shows that the tensor-train format is a generalized form
of factorization of the d-dimensional tensor as a matrix-product
state, where each matrix depends on a single dimension.
An example is the TT representation of the d-dimensional

wave packet ψ(l)(x, t) with physical coordinate indices, x = (x1,
x2, ..., xd):

∑
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Another example is the TT representation of the free particle

propagator U(p) = e−ip·m
−1·pτ/2ℏ, with physical indices in

momentum space, p = (p1, p2, ..., pd):
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2.3.2. Tensor Kronecker Products: Initial State and Free
Particle Propagator. The nuclear wave packet of pyrazine is
initialized in the optically active S2 state as a product of 1-
dimensional wave functions, each of which is the harmonic
oscillator ground state wave function for a normal mode of the
molecule in its ground electronic state:
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where ψ =
π

−( )x t e( ; )j j
x(2)

0
1 1/4 1/2 j

2
and d is the number of

nuclear DOFs (i.e., d = 4 for the reduced-mode benchmark
calculation and d = 24 for the full-dimensional calculation).
Since the d-dimensional wave function ψ(2)(x;t0) is a product of
1-dimensional wave functions, its TT representation is the
tensor Kronecker product,50
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which is a rank-1 tensor train. Each core ψj
(2) in eq 19 consists

of an array (i.e., column vector) corresponding to the jth 1-
dimensional component of the wave function introduced by eq
18. The TT representation of ψ(1)(x; t0) is also rank-1, with
column vectors of zeros.
The free particle propagator is also a product of 1-

dimensional functions, in momentum space:

∏=τ τ− · · ℏ

=

− ℏ−
e ei

j

d
ip mp m p /2

1

/2i i
1 2

(20)

and therefore is constructed analogously, in TT format, as a
tensor Kronecker product.
2.3.3. Propagation: Elementwise Multiplication and

Addition. The TT-SOFT propagation method, introduced in
Section 2.1, requires multiplication of tensor trains associated
with the time-evolving wave packet, the free particle propagator

e−ip·m
−1·pτ/2ℏ, and the matrix elements of e−iV(x)τ/ℏ introduced by

eq 11. The multiplication of tensor trains A and B involves
taking the elementwise product (i.e., Hadamard product)50 of
the two tensors, as follows:

=D i i i A i i i B i i i( , , ..., ) ( , , ..., ) ( , , ..., )d d d1 2 1 2 1 2 (21)

where A and B must have the same dimensions. In matrix
format, the TT cores of their Hadamard product are given as
follows:37

= ⊗D i A i B i( ) ( ) ( )k k k k k k (22)

where ⊗ denotes the matrix Kronecker product of Ak(ik) and
Bk(ik).

50 If the dimensions of the cores Ak and Bk are rk−1
(a) × nk ×
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(b) × nk × rk
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resulting core Dk are (rk−1
(a) rk−1

(b) ) × nk × (rk
(a) rk

(b)).
Tensor trains must be added in order to perform the matrix

multiplication in eqs 11 and 13. The sum of two tensors A and
B with the same dimensions is defined analogously to the
elementwise product, as follows:

= +E i i i A i i i B i i i( , , ..., ) ( , , ..., ) ( , , ..., )d d d1 2 1 2 1 2 (23)

The TT cores of E are given in matrix format in terms of the
cores of A and B, as follows:37
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Thus, the ranks of E are equal to the sums of the ranks of A and
B.
The propagator is calculated by elementwise multiplication

and addition, implementing the scaling and squaring method,51

as follows: e−iVτ/ℏ = (e−iVτ/2
sℏ)2

s

with s an integer scaling
parameter that ensures rapid convergence of the Taylor series

of e−iVτ/2
sℏ. Upon convergence, the series is squared s times to

obtain the propagator. The construction of the d-dimensional
tensor trains corresponding to the matrix elements of V
(introduced by eq 10) is discussed in Section 2.4. Each of these
tensor trains is then multiplied by a constant, c = (−iτ/ℏ),
which simply involves multiplying the elements of one of the
cores by c. Subsequently, the matrix (−iVτ/ℏ) is divided by 2s,
with the scaling parameter s chosen to ensure that none of the
elements of the tensor-train components of the matrix (−iVτ/
2sℏ) has a magnitude greater than 0.5. The exponential of this
scaled matrix is then computed using a Taylor series, with as
many terms as is needed to ensure convergence of the series to
within an accuracy indicated by the parameter ε (eq 31).

2.3.4. Truncation: Rounding. The multiplications and
additions required by TT-SOFT propagation increase the
ranks of the TT representation, as described in Section 2.3.3.
Therefore, we implement a rounding algorithm to reduce the
ranks after each propagation step.37 First, a QR decomposition
is applied to the first core A1 of the TT representation, giving

∑α α α α= ′ ′
α ′=

′

A i Q i R( , ) ( , ) ( , )
r

1 1 1
1

1 1 1 1 1 1

1

1

(27)

where the matrix A1 is expressed as a product of matrices Q1
and R1, with Q1 a matrix of orthonormal column vectors and R1
an upper triangular matrix. The elements of the matrix R1 are
divided by the norm of R1 (i.e., the sum of the squares of its
elements), denoted f 2, to yield a normalized matrix R1′.
The second core of the TT tensor to be rounded, A2, is then

unfolded into a matrix A2′ of size (r1) × (n2r2), as follows:
50

α α α′ =A j A i( , ) ( , , )2 1 1 2 2 (28)

where

α= + −j i r( 1)2 2 2 (29)

Tensor unfolding and, analogously, matrix refolding can be
efficiently performed, for example, using the reshape
subroutine of MATLAB. A2′ is then left-multiplied by the
matrix R1′. A QR decomposition is performed on the resulting
matrix to yield matrices Q2 and R2′. This process is repeated
iteratively until the last core, Ad, is left-multiplied by the
normalized matrix Rd−1′ , to yield matrix Qd, with dimensions
rd−1′ × nd.
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Following this series of QR decompositions, a series of
singular value decompositions (SVDs) is applied to the
resulting matrices Qi. SVD is a generalization of matrix
diagonalization to nonsquare matrices. The first SVD is
performed to express Qd as a product of matrices U, S, and
V, as follows:

∑α α α α α
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′ = ′ ″ ″ ″
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d d d
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d d d d

d d

1
1

1 1 1 1
T

1

d

d

1

1

(30)

or in matrix form, Qd = USVT, where S is a diagonal matrix of
singular values, and the matrices U and V are unitary. The
matrix VT defines the last core of the tensor train, associated
with the physical dimension d. Then, Qd−1 is reshaped into a
matrix with dimensions (rd−2′ nd−1) × (rd−1′ ) and is right-
multiplied by the matrix product US. The resulting matrix is
reshaped with dimensions (rd−2′ ) × (nd−1 rd−1″ ), and an SVD is
applied. These steps are repeated until the matrix product US
obtained from Q2 is left-multiplied by Q1. This core is divided
by its norm, f1, and each of the cores are then multiplied by the
geometric mean of the norms f1, f 2, ..., fd to yield the TT
representation.
The SVD is a key aspect of the TT-SOFT method since it

allows the tensor train to be truncated by zeroing the singular
values S(αk, αk) ≤ δ, with δ defined in terms of the user-
specified accuracy parameter ε, as follows:37

δ ε=
−d 1 (31)

Thus, the accuracy parameter determines the ranks rk of the
rounded TT representation, the size of which typically scales
subexponentially with the number of degrees of freedom.
2.3.5. Fourier Transform of Tensor Trains. The Fourier

transform of the d-dimensional tensor train ψ(l)(x; t) is defined,
as follows:
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where, for notational simplicity, the discrete indices xi are
treated as continuous variables. Since each core ψi

(l) depends on
only one index xi, the above integral can be factorized as a
product of 1-dimensional integrals, as follows:
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These integrals comprise the cores of the Fourier transformed
TT representation:

∑
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Thus, the Fourier transform of ψ̃(l)(x; t) can be obtained by
unfolding each of its cores ψk

(l) into a (nk) × (rk rk+1) matrix and
then Fourier transforming each of the column vectors of the
resulting matrices by using the FFT algorithm.

2.3.6. Survival Amplitude: Dot Product Tensor-Train
Contraction. The photoabsorption spectrum of pyrazine is
calculated as the Fourier transform of the time-dependent
survival amplitude:29

− = ⟨Ψ Ψ ⟩C t t t t( ) ( ) ( )0 0 (35)

which is calculated as the dot product of the initial wave
function corresponding to the S2 electronic state, ψ(2)(x; t0),
and the propagated wave function ψ(2)(x; t), since initially there
is no population in the S1 state.
The dot product of tensor trains A and B is defined, as

follows:
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When A and B are represented in TT format, the dot product is
obtained by first calculating A1

†B1, which is a matrix with size r1
(a)

× r1
(b). A1

† denotes the complex transpose of core A1. The core
B2 is refolded into a matrix of size (r1

(b)) × (n2r2
(b)) and left-

multiplied by A1
† B1 to yield a matrix of size (r1

(a)) × (n2r2
(b)).

This resulting matrix is refolded and transposed to give a matrix
of size (r2

(b)) × (r1
(a)n2). This is right-multiplied by the core A2*

refolded into a matrix of size (r1
(a)n2) × (r2

(a)). The transpose of
this result is a matrix of size r2

(a) × r2
(b). This algorithm is

repeated iteratively until multiplication by the dth cores of A
and B yields a scalar, which is the desired dot product.37

2.3.7. Parallelization. The multiplication, addition, and
Fourier transform operations of tensors in TT format involve
manipulating single cores or pairs of cores. Therefore, many TT
operations are particularly conducive to trivial parallelization.
The cores of the TT representation of a wave function can be
stored separately in computer memory, which facilitates the
application of distributed computing frameworks to TT
operations. In this study, we utilized the MATLAB Parallel
Computing Toolbox to perform distributed calculations.

2.4. Potential Energy Surfaces of Pyrazine. The
Hamiltonian of pyrazine is defined according to eqs 8 and 9,
parametrized as previously reported at the complete active
space self-consistent field (CASSCF) level of theory.32 The
potential energy surfaces are shifted by 4.18 and 2.47 eV in the
4- and 24-dimensional calculations, respectively, consistently
with the energy of the excited states of pyrazine relative to the
ground state. The terms of eqs 8 and 9 that involve only one
nuclear coordinate, xi, are obtained as d-dimensional tensor
Kronecker products. The elements of the ith core correspond
to the values of xi multiplied by the appropriate potential
parameter, and the elements of the other cores are all ones. TT
representations of potential terms that contain products of two
nuclear coordinates, xixj, are constructed analogously as tensor
Kronecker products, with the ith and jth cores representing
values of xi and xj, respectively. The elements of the remaining
cores are ones, and the entire tensor train is multiplied by the
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potential parameter. The appropriate tensor trains are added to
yield d-dimensional TT representations of V̂1(x), V̂2(x), and
V̂c(x). Numerical tests suggested that ordering the coordinates
such that more strongly coupled DOFs are closer to each other
in the TT representation generally improved the algorithm’s
efficiency.
2.5. Photoabsorption Spectrum. The photoabsorption

spectrum, I(ω), is calculated from the Fourier transform of the
complex-valued survival amplitude C(t), introduced by eq 35,
as follows:29,32

∫ω ω∝ ω

−∞

∞
I tC t e( ) d ( ) i t

(37)

To facilitate the comparison with the experimental spectrum,
we damp C(t) exponentially with a phenomenological
dephasing time τh, as follows:

29,32

= τ−| |h t e( ) t / h (38)

which is equivalent to the convolution of the calculated
spectrum with a Lorentzian to account for homogeneous
broadening. The value of τh = 150 fs is used for 24-dimensional
calculations, and τh = 30 fs is used for 4-dimensional
calculations.32,52 Additionally, C(t) is multiplied by the
following function:

π= ⎜ ⎟
⎛
⎝

⎞
⎠g t

t
T

( ) cos
2 (39)

where T is the total simulation time (165 fs in this study), to
avoid artificial ripple effects associated with the Fourier
transform introduced by eq 37 (i.e., the Gibbs phenomenon).32

All spectra are scaled to have a maximum intensity equal to 1.

3. RESULTS

We have assessed the accuracy and efficiency of the TT-SOFT
method with respect to the value of the accuracy parameter, ε,
as applied to benchmark 4-dimensional wavepacket propaga-
tion at the S1/S2 conical intersection of pyrazine and direct
comparisons to SOFT calculations based on the standard full-
rank grid-based implementation (Figure 1). In both TT-SOFT
and SOFT calculations, the wave function and propagators are
represented with the same grid basis set, with 16 grid-points per
dimension.
Figure 1 shows that the TT-SOFT calculations with ε < 0.02

are in excellent agreement with benchmark SOFT calculations
and almost completely converged with ε = 0.02. In fact, the
spectrum calculated with ε = 0.02 exhibits only slight deviations
at wavelengths of 260−265 nm, also reflected in the survival
amplitudes.
Figure 2 shows that TT-SOFT simulations are significantly

more efficient than SOFT calculations, as shown for example by
the memory requirement as a function of time determined by
the total numbers of tensor elements in the TT representations
(i.e., the “sizes” of the tensor trains) of the nuclear wave
functions corresponding to the S1 and S2 electronic states for 4-
dimensional TT-SOFT simulations. The numbers of elements
in all of these wave functions are significantly less (by at least an
order of magnitude) than in the full-rank SOFT representation
with 164 = 65536 elements. We also note that the couplings
among nuclear and electronic degrees of freedom generally
increase the ranks of the time evolving wavepackets and,
therefore, the sizes of the wave functions as they evolve in time,

thereby, illustrating the dynamically adaptive nature of the TT-
SOFT representation.
Figure 3 shows the experimental45 photoabsorption spec-

trum of pyrazine as compared to the calculated spectrum based
on TT-SOFT simulations of nonadiabatic dynamics for the 24-
dimensional wavepacket evolving at the S1/S2 conical
intersection. Spectra calculated with ε = 0.007 and ε = 0.006
exhibited close agreement with each other, differing at most by
0.029 in normalized intensity units.
The agreement is also reflected in the comparison of

autocorrelation functions, shown in Figure 4. These results
suggest that using an accuracy parameter of ε = 0.007 in TT-
SOFT calculations yields sufficiently converged results for this
system. Furthermore, both spectra exhibited agreement with
the measured spectrum, as obtained with a modest number of
tensor elements (e.g., 301 648 elements in the 24-dimensional

Figure 1. Comparison of TT-SOFT and SOFT (solid black line)
calculations of photoabsorption spectra for pyrazine (a) and the real
and imaginary parts of the survival amplitudes in (b) and (c),
respectively, according to benchmark simulations based on the 4-D
model Hamiltonian. TT-SOFT simulations are labeled with the values
of their corresponding accuracy parameters, either ε = 0.02 (gray line)
or ε = 0.01 (dashed black line).
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TT representation of the S2 wavepacket after the final
propagation step, compared to 7.92 × 1028 elements in what
would be the corresponding full-rank representation with the
same grid). The 24-dimensional TT-SOFT simulation finished
in less than 4 h, thus demonstrating the efficiency with which
multidimensional wave functions can be manipulated in the TT
format.

4. CONCLUSIONS
We have introduced the TT-SOFT method for nonadiabatic
quantum dynamics simulations of multidimensional wave-
packets. We have demonstrated its accuracy and capabilities
as applied to the simulation of the S1/S2 intersystem crossing in
pyrazine. The TT-SOFT approach represents the 24-dimen-
sional wavepacket of pyrazine on a grid and propagates it with
the Trotter expansion of the time-evolution operator, just like
in the standard SOFT method. However, it avoids the
exponential scaling by keeping the time-evolving wavepacket
in the tensor-train format. The size of the representation is
dynamically adapted, as updated after each propagation step by
a series of SVDs truncated with a single (user-specified)
accuracy parameter.
We have evaluated the accuracy and efficiency of TT-SOFT

through calculation of the photoabsorption spectrum of
pyrazine. The calculations involved propagation of the 24-
dimensional nuclear wave functions evolving on the two
coupled electronic surfaces, as described by a vibronic

Hamiltonian. The reported simulations based on the
propagation of the 24-dimensional wavepackets and benchmark
calculations for a 4-dimensional model Hamiltonian demon-
strated that the TT-SOFT method is a rigorous and powerful
approach for simulations of multidimensional nonadiabatic
quantum dynamics.
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