Synergistic Metal-Support Interactions in Au/GaN Catalysts for Photoelectrochemical Nitrate Reduction to Ammonia

Wan Jae Dong, Jan Paul Menzel, Zhengwei Ye, Zhuoran Long, Ishtiaque Ahmed Navid, Victor S. Batista,* and Zetian Mi*

Metal-support interactions are crucial in the electrochemical synthesis of ammonia (NH₃) from nitrate (NO₃⁻) reduction reaction, enabling efficient NH₃ production under mild conditions. However, the complexity of the reaction pathways often limits efficiency. Here, a photoelectrochemical system composed of gold (Au) nanoclusters supported on gallium nitride (GaN) nanowires is introduced, grown on a n⁺-p Si wafer, for selective reduction of NO₃⁻ to NH₃ under solar illumination. NO₃⁻ ions are preferentially adsorbed and reduced to nitrite (NO₂⁻) on the GaN nanowires, which then transfer to adjacent Au nanoclusters to complete the NH3 synthesis. This mechanism is confirmed by both experimental data and theoretical calculations. Optimizing the surface coverage and size of Au nanoclusters on the GaN nanowires significantly enhanced catalytic activity compared to that on planar n+-p Si photoelectrodes, achieving a faradaic efficiency of 91.8% at -0.4 V_{RHE} and a high NH₃ production rate of 131.1 μ mol cm⁻² h⁻¹ at -0.8 V_{RHF}. These findings highlight the synergetic effect between metal co-catalysts and semiconductor supports in designing photoelectrodes for multi-step NO₃⁻ reduction.

W. J. Dong, Z. Ye, I. A. Navid, Z. Mi Department of Electrical Engineering and Computer Science University of Michigan 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA E-mail: ztmi@umich.edu W.J. Dong Department of Integrative Energy Engineering Graduate School of Energy and Environment (KU-KIST Green School) College of Engineering Korea University Seoul 02841, Republic of Korea J. P. Menzel, Z. Long, V. S. Batista Department of Chemistry Yale University New Haven, Connecticut 06520–8107, USA E-mail: victor.batista@yale.edu

The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/smll.202412089

© 2025 The Author(s). Small published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

DOI: 10.1002/smll.202412089

1. Introduction

Ammonia (NH₃) is a critical feedstock for fertilizers and a promising carbon-free hydrogen carrier, easily stored in liquid form.^[1,2] Currently, industrial NH₃ production relies on the energy-intensive and carbon-emissive Harber-Bosch process, which operates under high temperatures and pressure.^[3,4] As a clear alternative, the electrochemical nitrogen (N2) reduction reaction in aqueous electrolytes allows for NH₃ synthesis under milder conditions.^[5–7] However, the high dissociation energy of the N \equiv N bond (941 kJ mol⁻¹) limits both the selectivity and efficiency. In contrast, the electrochemical nitrate reduction reaction (NO₃-RR) is more feasible due to the significantly lower dissociation energy of the N=O bond (204 kJ mol⁻¹) and the much higher solubility of NO₃⁻ in aqueous electrolytes-≈40000 times greater than that of N_2 .^[8,9] Furthermore, the abundance of NO_3^{-} in wastewater makes its reduction a sustainable approach to

NH₃ synthesis, while also providing an effective solution for mitigating environmental pollution through runoff purification.

The NO₃⁻RR to NH₃ is a complex eight-electron process (NO₃⁻ + 9H⁺ + 8e⁻ \rightarrow NH₃ + 3H₂O) involving 9 protons (H⁺) for deoxygenation and hydrogenation steps.^[10] Previous studies have explored various metal-based catalysts, including Cu-PTCDA,^[11] strained Ru nanoclusters,^[12] Fe single-atom catalysts,^[13,14] and strained Bi,^[15] to enhance the faradaic efficiency for NH₃ (FE_{NH3}) and reduce the overpotential. While several catalysts have demonstrated success for NO₃⁻RR, detailed mechanistic studies remain limited.

Recently, binary metal compound catalysts such as CuNi,^[16] CuCoSP,^[17] Rh@Cu,^[18] and NiCo₂O₄^[19] have shown improved NH₃ production compared over their single-metal counterparts, due to metal-support interactions and the transfer of reaction intermediates between multiple active phases. These heterogeneous catalysts enhance reaction kinetics and lower thermodynamic barriers by modulating the binding energy of adsorbates on the catalytic surface. For example, Rh clusters on Cu surfaces provide sufficient hydrogen, activating the hydrogenation process and promoting selective NH₃ production.^[18] Similarly, Co(OH)₂ aids in the hydrogenation of adsorbed NO₃⁻ in the CoP/Co(OH)₂ catalytic system.^[20]

In microorganisms, NH₃ synthesis from NO₃⁻RR occurs through two tandem reactions: 1) NO₃⁻ reduction to NO₂⁻ by nitrate reductase, and 2) NO₂⁻ conversion to NH₃ by nitrite reductase or nitrogenase.^[21-23] This tandem process has been artificially replicated using CuCoSP, where Cu/CuO_x phases reduce NO₃⁻ to NO₂⁻, and the NO₂⁻ intermediate is transferred and converted to NH₃ on Co/CoO phases.^[17] The design strategy of combining dual active sites for tandem reactions can also be applied to metal-semiconductor systems. Successfully designing such systems could leverage photon-to-electron conversion in semiconductors to further reduce the overpotential required for NO₃⁻RR, as demonstrated in previous energy-efficient photoelectrochemical reactions.^[24–31]

In this study, we investigated the synergistic metal-support interactions between Au nanoclusters (NCs) and GaN nanowires (NWs) grown on an n⁺-p Si wafer for photoelectrochemical (PEC) NO₃⁻RR to NH₃ under simulated solar light. By optimizing the surface coverage and size of Au NCs on GaN NWs, we achieved rapid adsorption and reduction of NO₃⁻ to NO₂- on the GaN NWs, followed by efficient NH₃ generation on the Au NCs. This optimization led to a significant increase in the Faradaic efficiency for NH₃ (FE_{NH3}) reaching 91.8% at -0.4 V vs reversible hydrogen electrode (V_{RHE}). Density functional theory (DFT) calculations corroborated the experimental findings, showing that $\mathrm{NO_3^-}$ is reduced to $\mathrm{NO_2^-}$ on the GaN surface and displaced by the remaining NO_3^- , while NO_2^- is further reduced to NH_3 on the Au NCs. The sequential reduction reactions occurring on the adjacent Au and GaN surfaces resulted in a high production rate of NH₃ (Y_{NH3}) of 131.1 µmol cm⁻² h⁻¹ at -0.8 V_{RHE} with selective NH₃ generation ($FE_{NH3} > 90\%$) sustained for 8 h at $-0.4 V_{RHF}$. This work offers valuable insights for designing metal/semiconductor systems to achieve high-efficiency PEC NO₃⁻RR to NH₃ under solar illumination.

2. Results And Discussion

Au/GaN/Si photoelectrodes were fabricated using plasmaassisted molecular beam epitaxy to grow GaN NWs on an n⁺-p Si wafer, followed by photodeposition of Au NCs as described in the experimental section. Scanning electron microscopy (SEM) studies confirmed the vertical growth of GaN NWs on the planar n⁺-p Si wafer (Figure 1a). The GaN NWs measured \approx 450 nm in length and 50 nm in diameter. Three variations of Au/GaN/Si photoelectrodes were prepared by adjusting the volume of 0.4 м HAuCl₄ precursor solution used during photodeposition, denoted as Au#/GaN/Si, where # indicates the precursor solution volume. As the precursor volume increased from 1 to 100 µL, the size of Au NCs increased, particularly in the upper region of the GaN NWs (Figure S1, Supporting Information). The microstructure of GaN NWs and Au NCs was further examined using a high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) (Figure 1b; Figure S2, Supporting Information). Due to the significant atomic number difference between Au (79) and Ga (31), Z-contrast imaging revealed locally aggregated Au NCs on both the top and sidewalls of the GaN NWs. Elemental mapping by energy-dispersive X-ray spectroscopy (EDS) showed a uniform distribution of Ga (blue), and N (green) across the GaN NWs, while Au NCs (pink), ranging from 2 to 20 nm in size, were sparsely distributed on the GaN surface, indicating a non-uniform decoration of Au NCs on the GaN NWs. The non-uniform distribution of Au NCs can be attributed to preferential photodeposition at the tips of GaN NWs, where enhanced light absorption and higher photo-excited electron density promote localized growth. In future work, fine-tuning the photodeposition parameters, such as light wavelength and deposition time, will be pursued to achieve the formation of more uniformly distributed Au NC.

www.small-journal.com

X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of the photoelectrodes. The Ga 2p_{3/2} XPS spectrum was deconvoluted into a dominant Ga-N bond peak at 1116.8 eV and a minor Ga-O bond peak at 1118.0 eV (Figure 1c).^[32] As the amount of Au NCs increased, the intensity of the Ga 2p_{3/2} signal diminished due to the screening effect of the Au NCs, which blocked photoelectrons emitted from the GaN surface. Similarly, the N 1s XPS spectrum (Figure 1d) was split into a major N-Ga bond at 396.7 eV and a minor N-O bond at 398.1 eV,^[33] both of which showed decreasing intensity with increasing Au NC loading. The Au NCs exhibited the metallic Au⁰ phase, with binding energies at 83.4 and 87.1 eV, alongside a trace amount of Au⁺ at 84 and 87.7 eV (Figure 1e). As the Au loading increased, the intensity of the Au 4f peaks increased and the Au 4f peak shifted toward a higher binding energy, approaching the reference value of 84 eV for bulk Au 4f_{7/2}^{0.[34]} This indicates that smaller Au NCs have weaker electron binding compared to bulk Au, primarily due to electron transfer from GaN NWs to Au NCs at the interface. This interfacial charge transfer is particularly pronounced for smaller Au NCs, as shown by the shifts of Ga and N peaks to higher binding energies and Au peaks to lower binding energies in the XPS spectra. As the size of the Au NCs increases, thicker Au layers gradually screen the interfacial charge transfer effect, leading to bulk-like electronic properties.

The surface atomic ratios of Au with respect to Ga and N, calculated from the XPS data, were 0.09, 1.06, and 8.91 for Au1/GaN, Au10/GaN, and Au100/GaN, respectively (Figure 1f).

X-ray diffraction (XRD) pattern of GaN/Si revealed a distinct GaN (002) peak [JCPDS #02-1078], confirming GaN NWs were single crystals (Figure 1g). The Au (111) peak was only detected in the Au100/GaN/Si sample, indicating that the crystallite size of the Au NCs was sufficiently large for XRD detection [JCPDS #04-0784]. In contrast, smaller Au NCs such as Au1 and Au10 samples, likely had a higher proportion of surface-exposed Au atoms, particularly at terrace sites, compared to bulk crystal facets. This increased surface exposure, especially on high-index crystal planes, can enhance catalytic properties by providing a greater number of active sites, potentially enhancing the reactivity.

PEC NO₃⁻RR was performed in an H-type cell using simulated AM1.5G 1-sun solar light, with the light sources positioned perpendicular to the planar n⁺-p Si photoelectrodes. Linear sweep voltammetry (LSV) curves were recorded in 0.1 M K₂SO₄ with varying KNO₃ concentrations (0, 0.02, 0.1, 0.5, and 1 M). As the NO₃⁻ concentration increased from 0 to 1 M, the onset potential (V_{onset}) at -1.0 mA cm⁻² for GaN/Si shifted significantly from -0.63 to -0.21 V_{RHE} (Figure 2a), indicating that GaN/Si exhibits higher catalytically activity for NO₃⁻RR compared to the hydrogen evolution reaction (HER). However, as the loading of Au NCs increased, the difference in V_{onset} between electrolytes with different NO₃⁻ concentrations diminished (Figure S3, Supporting

ADVANCED SCIENCE NEWS _____

Figure 1. a) 45°-tilt-view SEM image of Au10/GaN/Si. b) STEM image and EDS elemental maps of Au/GaN. Ga (blue) and N (green) from GaN NWs were uniformly distributed while Au (pink) from Au NCs was aggregated on the upper region of GaN NWs. XPS spectra of c) Ga $2p_{2/3}$, d) N 1s, e) Au 4f for GaN/Si, Au1/GaN/Si, Au10/GaN/Si, and Au100/GaN/Si. f) Au/Ga+N ratio calculated from XPS analysis. g) XRD patterns of photoelectrodes.

Information). Eventually, Au100/GaN/Si showed minimal variation in LSV curves regardless of NO₃⁻ concentration, with V_{onset} ranging between -0.17 to -0.21 V_{RHE} (Figure 2b,c). These results suggest competitive behavior between NO3-RR and HER on the Au 100 co-catalyst. Additionally, the saturated photocurrent density ($J_{saturation}$) at $-2 V_{RHE}$ decreased from -41.0 to -16.8 mA cm⁻² as the Au NCs loading increased, likely due to the Au NCs blocking incident light and reducing light absorption by the underlying n⁺-p Si photoelectrode (Figure 2d).^[35] Under dark conditions, all photoelectrodes exhibited a current density close to zero, attributed to the absence of photon-induced charge carrier generation. This indicates that the reduction reactions on the photoelectrodes are entirely reliant on photo-generated charge carriers. To further investigate photovoltage generation by photoelectrode, we fabricated an electrochemical reaction electrode by growing GaN NWs on an electrically conductive n-type silicon substrate (n-Si) and loading it with Au NCs. LSV curves measured in 0.1 м K₂SO₄ with 0.1 м KNO₃ electrolyte revealed that the onset potential for the Au/GaN/n-Si electrode under dark conditions was

≈0.5 V more negative compared to the Au/GaN/n⁺-p Si photoelectrode under illuminated conditions (Figure S4, Supporting Information). This difference highlights the role of underlying n⁺-p Si in reducing the voltage requirement by effectively harnessing solar energy.

Faradaic efficiencies (FEs) for GaN/Si, Au1/GaN/Si, Au10/GaN/Si, and Au100/GaN/Si were assessed in electrolytes with varying NO₃⁻ concentrations at $-0.4 V_{RHE}$ (Figure 2e,f). Concentrations of NH₃, NO₂⁻, and N₂H₄ products were determined via spectrocolorimetric analysis (Figure S5, Supporting Information). In 0.1 $\mbox{M} K_2SO_4$ (without NO₃⁻), all photoelectrodes exhibited selective HER with FE_{H2} > 95% (Figure S6, Supporting Information). Upon introducing 0.02 $\mbox{M} KNO_3$, the production of NH₃, NO₂⁻, and N₂H₄ was observed, with Au10/GaN/Si achieving the highest FE_{NH3} of 59.5% (Figure 2e). Notably, GaN/Si effectively suppressed HER (FE_{H2} < 3%) and selectively converted NO₃⁻ into NO₂⁻ (FE_{NO2} > 80%), even with 0.02 $\mbox{M} NO_3^-$ (Figure 2f; Figure S7, Supporting Information). However, H₂ production remained significant on Au/GaN/Si,

SCIENCE NEWS _____ www.advancedsciencenews.com

Figure 2. LSV curves of a) GaN/Si and b) Au100/GaN/Si measured in 0.1 $\mbox{M} K_2SO_4$ with KNO₃ concentrations of 0, 0.02, 0.1, 0.5, and 1 \mbox{M} . The measurement was conducted under 1-sun-light illumination. Under dark conditions, the photoelectrodes were tested in 0.1 $\mbox{M} K_2SO_4$ electrolyte. Plots of c) V_{onset} at -1.0 mA cm⁻² and d) J_{saturation} at -2 V_{RHE} with KNO₃ concentration. Faradaic efficiency of e) NH₃ and (f) NO₂⁻ for GaN/Si, Au1/GaN/Si, Au1/GaN/Si, and 10/GaN/Si measured in 0.1 $\mbox{M} K_2SO_4$ with different KNO₃ concentration at -0.4 V_{RHE}. Au10/GaN/Si represented the highest FE_{NH3} (91.8%) among the tested samples.

with the highest FE_{H2} of 41.6% observed for Au100/GaN/Si (Figure S6, Supporting Information). As NO₃⁻ concentration increased, the FE_{NH3} for Au/GaN/Si gradually rose (Figures S8–S10, Supporting Information). Au10/GaN/Si demonstrated the optimal balance of Au coverage, achieving a maximum FE_{NH3} of 91.8% at 0.5 \mbox{m} NO₃⁻, highlighting the importance of fine-tuning Au/GaN metal-support interactions to maximize catalytic performance.

To further investigate metal-support interactions, we fabricated planar n⁺-p Si and Au-coated n⁺-p Si (Au10/Si) photoelectrodes. The LSV curve of Au10/Si exhibited a more positive V_{onset} = -0.41 V_{RHE} compared to Si (-0.81 V_{RHE}) in 0.1 M K₂SO₄ with 0.5 M KNO₃ (Figure 3a). However, both remained more negative than those of GaN/Si or Au/GaN/Si, highlighting GaN NWs as promising platforms for loading Au co-catalysts in NO₃⁻RR. Additionally, the J_{saturation} of GaN/Si was \approx 1.5 times higher than planar Si, attributed to the antireflective properties of GaN NWs.^[36]

The influence of the applied potential on FE and production rates was evaluated for Si (Figure S11, Supporting Information), Au/Si (Figure S12, Supporting Information), GaN/Si (Figure S13, Supporting Information), Au10/GaN/Si (Figure S14, Supporting Information), and Au100/GaN/Si (Figure S15, Supporting Information), with a summary of FE_{NH3} shown in Figure 3b. Planar Si achieved a FE_{NH3} of 36.3% at -0.8 V_{RHE}, while Au deposition on Si (Au/Si) marginally increased the NH₃ selectivity (FE_{NH3} = 47.2% at -0.8 V_{RHE}). In contrast, GaN/Si predominantly produced NO₂⁻ (FE_{NO2} > 90% at potential < -0.3 V_{RHE}), with low NH₃ (FE_{NH3} < 16%) and N₂H₄ (FE_{N2H4} < 3%) selectivities. GaN NWs effectively reduce NO₃⁻ to NO₂⁻, which was desorbed from the photoelectrode surface before further

www.advancedsciencenews.com

SCIENCE NEWS

Figure 3. LSV curves of Si, Au10/Si, GaN/Si, Au10/GaN/Si, and Au100/GaN/Si measured in 0.1 M K_2SO_4 with 0.5 M KNO₃. b) Faradaic efficiency and c) production rate of NH₃ plotted as a function of cathodic potentials from -0.2 to -0.8 V_{RHE}. NH₃ production was measured three times, and the mean values along with their standard deviations are represented as error bars. Au10/GaN/Si had the widest potential window (-0.4 to -0.8 V_{RHE}) for high FE_{NH3} > 90% and achieved the best Y_{NH3} = 131.1 µmol cm⁻² h⁻¹ at -0.8 V_{RHE}. d) FE_{NH3} and Y_{NH3} for 8 cycles of reaction. Each cycle was performed for 1 h at -0.4 V_{RHE}. e) Schematic illustrations of adsorption of NO₃⁻ and NO₃⁻ reduction reaction on (i) GaN/Si, (ii) Au10/GaN/Si, and (iii) Au10/GaN/Si. The dashed line represents the adsorption of molecules and the arrow line indicates the reduction reaction.

reduction. Au10/GaN/Si demonstrated a broad potential window (-0.4 to -0.8 V_{RHE}) for selective NH₃ production (FE_{NH3} > 90%). As a result, Au10/GaN/Si exhibited the highest FE_{NH3} among the tested photoelectrodes, achieving NH₃ production rates (Y_{NH3}) of 110 µmol cm⁻² h⁻¹ at -0.4 V_{RHE} and 131.1 µmol cm⁻² h⁻¹ at -0.8 V_{RHE} (Figure 3c). The FE_{NH3} and Y_{NH3} values for Au10/GaN/Si

outperformed recent photoelectrodes and were comparable to state-of-the-art electrocatalysts (Table S1, Supporting Information).

We assessed the stability of Au10/GaN/Si over 8 cycles in 0.1 m K_2SO_4 with 0.5 m KNO₃ (Figures 3d). Each cycle was run for 1 h at a constant potential of $-0.4 V_{RHE}$, with fresh electrolytes

www.small-journal.com

introduced for every cycle. Chronoamperometric curve (Figure S16a, Supporting Information) revealed an initial high photocurrent density, which gradually decreased over 1 h of reaction. This behavior was likely due to the depletion of NO₃⁻ concentration near the surface as the reaction progresses, and the accumulation of by-products that poisoned the surface. Upon replacing the electrolyte with a fresh solution, the photocurrent density was restored to its initial high level, confirming that the observed decrease was primarily due to changes in the reaction environment rather than irreversible degradation of the photoelectrode. Throughout the 8 cycles, a high NH₃ faradaic efficiency (FE_{NH3} > 90%) was consistently maintained (Figure S16b, Supporting Information). The NH₃ production rate (Y_{NH3}) increased to 100.1 μ mol cm⁻² h⁻¹ during the first 3 cycles but gradually declined to 69.3 $\mu mol\ cm^{-2}\ h^{-1}$ over the last 5 cycles (Figure S16c, Supporting Information). This reduction in Y_{NH3} was attributed to the detachment of Au NCs from the GaN NWs (Figure S17, Supporting Information). Although Au NCs remained on the surface of GaN NWs after 8 cycles, the Au/Ga+N ratio dropped from 1.06 to 0.47, indicating a loss of Au NCs. To address this issue, incorporating protective layers,^[37,38] or applying pre- or post-treatments^[30] could be explored to enhance the interfacial binding between Au NCs and GaN NWs, thereby improving the long-term stability of the photoelectrode. Despite this challenge, Au10/GaN/Si remained a promising photoelectrode for selective and sustained NH₃ production with extended stability. Additionally, isotope labeling experiments confirmed that NH₃ originated from NO₃⁻ rather than from the nitrogen of GaN, demonstrating that GaN NWs remained chemically stable during the PEC NO₃-RR (Figure S18, Supporting Information).

Our findings highlight that initial NO₃⁻ adsorption is critical for selective NH₃ production. On the GaN surface, NO₃⁻ primarily adsorbs and is converted to NO₂⁻, which desorbs without further reduction, leading to a high FE_{NO2} > 80% (Figure 3e). However, when a moderate amount of small Au NCs was deposited on the GaN surface (Au10/GaN/Si), the NO₂⁻ produced on GaN migrates to nearby Au sites where further reduction to NH₃ occurs via deoxygenation and hydrogenation with H⁺, resulting in high FE_{NH3} > 90% (Figure S19a, Supporting Information). In contrast, larger Au crystallites with higher surface coverage on GaN (Au100/GaN/Si) impaired NO₃⁻ adsorption (Figure S19b, Supporting Information) and reduced the number of Au-GaN active sites. This led to competition between NO₃⁻ RR and the hydrogen evolution reaction (HER), causing a drop in FE_{NH3} to below 70%.

The mechanistic insights from DFT calculations support these observations (see free energies of reactants, products, and intermediates in Tables S2 and S3, Supporting Information). Previous research on photoelectrochemical NO₃⁻ reduction on GaN nanowires has demonstrated that NO₂⁻ is the primary product.^[39] This is because the reduction of NO₃⁻ to NO₂⁻ is thermodynamically favorable, requiring only one endergonic electron transfer step with an energy of +0.29 eV (as reported in ref. [39]), which is easily provided by the photo-excited electrons. In contrast, the reduction of NO₂⁻ to NO to form the first intermediate toward reduction to NH₃ requires significantly more energy (+0.65 eV) (**Figure 4**a). Additionally, GaN shows a stronger affinity for NO₃⁻ over NO₂⁻, with the binding free energy of NO₃⁻ being more favorable by \approx -0.09 eV. This preferential binding of NO₃⁻ leads to the displacement of NO₂⁻, which explains why

 NO_2^- is the main product of NO_3^- reduction. Thus, the combination of lower energy requirements for NO_3^- reduction and the stronger binding affinity of NO_3^- over NO_2^- results in NO_2^- being expelled as the main product during NO_3^- reduction.

On the Au surface (Figure S20, Supporting Information), the binding preference between NO₃⁻ and NO₂⁻ is reversed: we find that NO₂⁻ exhibits a more negative binding free energy than NO₃⁻ by \approx -0.30 eV on the Au (211) surface (Figure S21, Supporting Information). This suggests that once NO₂⁻ has been formed, it preferentially binds to Au making the initial adsorption of NO₃⁻ on Au (211) more difficult. Additionally, the reduction of NO₃⁻ to NO₂⁻ on Au involves an endergonic step of +0.30 eV during the conversion of *NO₂ to *NO₂⁻ (Figure S22, Supporting Information), indicating that NO₃⁻ reduction to NO₂⁻ on Au is relatively slow and easily outcompeted by GaN. It is also worth noting that while both NO₂⁻ and NO₃⁻ chemisorption on the inert Au surface is entropically disfavored in a vacuum, the chemisorption of NO₂⁻ is more favorable than that of NO₃⁻.

In contrast, the further reduction of NO₂⁻ is strongly favored on Au (Figure 4b). This process involves a transition in the binding mode from *ONO^{-*} (where NO₂⁻ binds via its two oxygen atoms to the Au step) to the *NO₂⁻ (where nitrogen binds to the Au step, with one of the oxygen atoms pointing down and adsorbing onto the lower terrace) (Figure S23, Supporting Information). This switch from oxygen to nitrogen binding is crucial for the dissociation of the second N=O bond and has been extensively investigated in other metal systems.^[40] Here, a minimal free energy of 0.01 eV –easily surmountable thermally– enables irreversible bond dissociation to *NO and *OH intermediates on the surface. The subsequent removal of *OH through protonation, coupled with the reduction of the oxidized Au surface, is highly exergonic.

Further reduction steps to *NHO, *NHOH, *NH, and *NH₂, culminating in the release of NH₃ are also exergonic, leading to complete reduction to NH₃ once NO₂⁻ dissociates. These computational findings align well with experimental observations, explaining why Au NCs without GaN show low NH₃ production yield–since little NO₂⁻ is formed and made available for further reduction – and why GaN alone exhibits high faradaic efficiency toward NO₂⁻ rather than to NH₃. High and selective production of NH₃ is observed only when GaN and Au are used together, with GaN reducing NO₃⁻ to NO₂⁻, which desorbs and undergoes further reduction on Au, ultimately forming NH₃.

3. Conclusions

In conclusion, we have demonstrated the unique metal-support interactions between Au NCs and GaN NWs, which act as synergetic catalytic sites for PEC NO₃⁻RR to NH₃. In this binary system, NO₃⁻ is preferentially reduced to NO₂⁻ on GaN NWs, while NO₂⁻ is subsequently converted to NH₃ on adjacent Au NCs. The sequential reduction of NO₃⁻ and NH₃ synthesis occurs across two adjacent Au/GaN phases, making the optimization of Au NCs coverage on GaN NWs crucial for achieving selective NH₃ production. As a result, the designed Au/GaN/Si photoelectrode exhibited excellent performance, with faraday efficiency (FE_{NH3}) of 91.8% at -0.4 V_{RHE} and a high production rate (Y_{NH3}) of 131.1 µmol cm⁻² h⁻¹ at -0.8 V_{RHE}, with no significant degradation over 8 h. A deeper understanding and precise design of the electronic and catalytic properties at the metal-semiconductor

www.advancedsciencenews.com

ADVANCED SCIENCE NEWS

Figure 4. a) Relative free energies of NO_3^- reduction to NO_2^- on GaN surfaces, with values taken from ref. [39]. After reduction to NO_2^- , the reduction to NO (and then further to NH₃) shown in blue requires high reductive potentials, while expulsion of the NO_2^- by incoming NO_3^- is favorable (red), making NO_2^- the main product in PEC NO_3^- reduction on GaN. b) Relative free energies of NO_2^- reduction on Au (211) surface. Expulsion of the NO_2^- by NO_3^- (red) is unfavorable, meaning NO_2^- can be fully reduced toward NH_3 .

NANO . MICRO

www.small-journal.com

www.advancedsciencenews.com

CIENCE NEWS

interface will likely enable more efficient solar-driven $\rm NO_3^-RR$ to $\rm NH_3.$

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

W.J.D. and J.P.M. contributed equally to this work. This work was supported by the United States Army Research Office Award W911NF2110337.

Conflict of Interest

Some IP related to this work was licensed to NS Nanotech, Inc. and NX Fuels, Inc., which were co-founded by Z. Mi. The University of Michigan and MI have a financial interest in the company.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords

ammonia, Au, GaN, metal-support interaction, nitrate reduction

Received: December 12, 2024 Revised: January 21, 2025 Published online:

- [1] A. Good, Science 2018, 359, 869.
- [2] D. R. MacFarlane, P. V. Cherepanov, J. Choi, B. H. Suryanto, R. Y. Hodgetts, J. M. Bakker, F. M. F. Vallana, A. N. Simonov, *Joule* 2020, 4, 1186.
- [3] G. Soloveichik, Nat. Catal. 2019, 2, 377.
- [4] P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, P. Chen, Nat. Chem. 2017, 9, 64.
- [5] S. L. Foster, S. I. P. Bakovic, R. D. Duda, S. Maheshwari, R. D. Milton, S. D. Minteer, M. J. Janik, J. N. Renner, L. F. Greenlee, *Nat. Catal.* 2018, 1, 490.
- [6] J. Deng, J. A. Iñiguez, C. Liu, Joule 2018, 2, 846.
- [7] G. F. Chen, S. Ren, L. Zhang, H. Cheng, Y. Luo, K. Zhu, L. X. Ding, H. Wang, Small Methods 2019, 3, 1800337.
- [8] P. H. van Langevelde, I. Katsounaros, M. T. Koper, Joule 2021, 5, 290.
- [9] D. Hao, Z.-g. Chen, M. Figiela, I. Stepniak, W. Wei, B.-J. Ni, J. Mater. Sci. Technol. 2021, 77, 163.
- [10] Y. Zeng, C. Priest, G. Wang, G. Wu, Small Methods 2020, 4, 2000672.

- [11] G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu, H. Wang, *Nat. Energy* **2020**, *5*, 605.
- [12] J. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. Chan, J. Am. Chem. Soc. 2020, 142, 7036.
- [13] Z.-Y. Wu, M. Karamad, X. Yong, Q. Huang, D. A. Cullen, P. Zhu, C. Xia, Q. Xiao, M. Shakouri, F.-Y. Chen, *Nat. Commun.* **2021**, *12*, 2506.
- [14] P. Li, Z. Jin, Z. Fang, G. Yu, Energy Environ. Sci. 2021, 14, 3522.
- [15] N. Zhang, J. Shang, X. Deng, L. Cai, R. Long, Y. Xiong, Y. Chai, ACS Nano 2022, 16, 4795.
- [16] Y. Wang, A. Xu, Z. Wang, L. Huang, J. Li, F. Li, J. Wicks, M. Luo, D.-H. Nam, C.-S. Tan, J. Am. Chem. Soc. 2020, 142, 5702.
- [17] W. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. Junqueira, W. Schuhmann, *Nat. Commun.* 2022, 13, 1.
- [18] H. Liu, X. Lang, C. Zhu, J. Timoshenko, M. Rüscher, L. Bai, N. Guijarro, H. Yin, Y. Peng, J. Li, Angew. Chem. 2022, 61, 202202556.
- [19] Q. Liu, L. Xie, J. Liang, Y. Ren, Y. Wang, L. Zhang, L. Yue, T. Li, Y. Luo, N. Li, Small 2022, 18, 2106961.
- [20] S. Ye, Z. Chen, G. Zhang, W. Chen, C. Peng, X. Yang, L. Zheng, Y. Li, X. Ren, H. Cao, *Energy Environ. Sci.* **2022**, *15*, 760.
- [21] C. L. Ford, Y. J. Park, E. M. Matson, Z. Gordon, A. R. Fout, Science 2016, 354, 741.
- [22] M. Duca, J. R. Weeks, J. G. Fedor, J. H. Weiner, K. A. Vincent, Chem-ElectroChem 2015, 2, 1086.
- [23] R. D. Milton, S. D. Minteer, ChemPlusChem 2017, 82, 513.
- Y. Xiao, S. Vanka, T. A. Pham, W. J. Dong, Y. Sun, X. Liu, I. A. Navid, J.
 B. Varley, H. Hajibabaei, T. W. Hamann, *Nano Lett.* **2022**, *22*, 2236.
- [25] W. J. Dong, P. Zhou, Y. Xiao, I. A. Navid, J.-L. Lee, Z. Mi, ACS Catal. 2022, 12, 2671.
- [26] S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, Z. Mi, *Nano Lett.* 2018, 18, 6530.
- [27] H. E. Kim, J. Kim, E. C. Ra, H. Zhang, Y. J. Jang, J. S. Lee, Angew. Chem., Int. Ed. 2022, 61, 202204117.
- [28] W. J. Dong, K. W. Lim, H. W. Cho, C. J. Yoo, J. Ham, W. S. Cho, J. Y. Park, J.-L. Lee, ACS Appl. Energy Mater. 2024, 7, 6569.
- [29] W. J. Dong, Y. Xiao, K. R. Yang, Z. Ye, P. Zhou, I. A. Navid, V. S. Batista, Z. Mi, Nat. Commun. 2023, 14, 179.
- [30] W. J. Dong, Z. Ye, S. Tang, I. A. Navid, Y. Xiao, B. Zhang, Y. Pan, Z. Mi, Adv. Sci. 2024, 11, 2309548.
- [31] Y. Xiao, X. Kong, S. Vanka, W. J. Dong, G. Zeng, Z. Ye, K. Sun, I. A. Navid, B. Zhou, F. M. Toma, *Nat. Commun.* **2023**, *14*, 2047.
- [32] S. Wolter, B. Luther, D. Waltemyer, C. Önneby, S. E. Mohney, R. Molnar, *Appl. Phys. Lett.* **1997**, *70*, 2156.
- [33] T. Duan, J. Pan, D. S. Ang, Appl. Phys. Lett. 2013, 102, 201604.
- [34] Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu, W. Huang, J. Phys. Chem. C 2007, 111, 12434.
- [35] W. J. Dong, I. A. Navid, Y. Xiao, T. H. Lee, J. W. Lim, D. Lee, H. W. Jang, J.-L. Lee, Z. Mi, J. Mater. Chem. A 2022, 10, 7869.
- [36] W. J. Dong, I. A. Navid, Y. Xiao, J. W. Lim, J.-L. Lee, Z. Mi, J. Am. Chem. Soc. 2021, 143, 10099.
- [37] S. Vanka, B. Zhou, R. A. Awni, Z. Song, F. A. Chowdhury, X. Liu, H. Hajibabaei, W. Shi, Y. Xiao, I. A. Navid, ACS Energy Lett. 2020, 5, 3741.
- [38] J. Tan, B. Kang, K. Kim, D. Kang, H. Lee, S. Ma, G. Jang, H. Lee, J. Moon, *Nat. Energy* **2022**, *7*, 537.
- [39] W. J. Dong, J. P. Menzel, Z. Ye, I. A. Navid, P. Zhou, K. R. Yang, V. S. Batista, Z. Mi, ACS Catal. 2024, 14, 2588.
- [40] W. J. Dong, J. P. Menzel, K. Li, Z. Ye, Z. Long, I. A. Navid, K. R. Yang, Y. Xiao, V. S. Batista, Z. Mi, *Nat. Commun.*

SMQI www.small-journal.com