Supporting Information # D1-S169A Substitution of Photosystem II Perturbs Water Oxidation Ipsita Ghosh^{1,†}, Gourab Banerjee^{1,†}, Christopher J. Kim²,Krystle Reiss¹, Victor S. Batista^{1,*}, Richard J. Debus^{2,*} and Gary W. Brudvig^{1,*} ### *Corresponding Authors: Gary W. Brudvig, E-mail: gary.brudvig@yale.edu; Telephone: (203) 432-5202; Fax: (203) 432-6144. Victor S. Batista, E-mail: victor.batista@yale.edu; Telephone: (203) 432-6672; Fax: (203) 432 6144. Richard J. Debus, E-mail: richard.debus@ucr.edu; Telephone: (951) 827-3483; Fax: (951) 827-4294. ¹Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA. ²Department of Biochemistry, University of California, Riverside, California 92521, USA. [†]These authors contributed equally. #### **Supplementary Note S1** Measurement of Chlorophyll Fluorescence. Yields of chlorophyll fluorescence were measured with a pulse-amplitude-modulation (PAM) fluorometer (Heinz Walz GmbH, Effeltrich, Germany) as described previously. 1-4 For measurements, concentrated cells (20 µg of Chl) were diluted into 50 mM MES-NaOH, 25 mM CaCl₂, 10 mM NaCl, pH 6.5) at 22°C. For measurements of charge recombination between Q_A•- and oxidized donors in PSII, cells were incubated in darkness with 0.3 mM p-benzoquinone and 1 mM potassium ferricyanide for 1 min to oxidize Q_B*-. DCMU was then added to a concentration of 40 μM (the final concentration of ethanol was 2%) and the fluorometer's weak measuring flashes were switched on. In response to these flashes, the fluorescence yield rose from an initial level of F₀ to a steady-state level denoted "F_{eq}". Actinic illumination (a single flash or 5 s of illumination) was applied approximately 2 min later, after a stable F_{eq} level had been achieved. To measure the total yield of variable chlorophyll fluorescence (F_{max} - F₀), samples were incubated in darkness with 0.3 mM pbenzoquinone and 1 mM potassium ferricyanide for 5 min to ensure full oxidation of Q_B*-. DCMU was then added to a concentration of 40 µM, followed 1 min later by hydroxylamine to a concentration of 20 mM (fresh a fresh solution of 0.5 M hydroxylamine hydrochloride adjusted to pH 6.5 with NaOH). The fluorometer's weak measuring flashes were switched on 20 s after the addition of hydroxylamine. This was followed 0.5 s later by ten saturating xenon flashes, followed by 5 s of continuous illumination. The difference between the maximum chlorophyll fluorescence yield produced by the continuous illumination (F_{max}) and the initial chlorophyll fluorescence produced by the measuring flashes (F₀) provides a relative measure of PSII content.1 Oxygen Evolution and PSII Contents of Cells. The light-saturated O_2 -evolution rates of wild-type and D1-S169A cells were 790 ± 60 and 610 ± 30 µmol O_2 (mg of Chl)⁻¹ h⁻¹, respectively. Consequently, D1-S169A cells evolved O_2 at 77 ± 7 % the rate of wild-type cells (Table S1). The maximum fluorescence yields (F_{max} - F_0) of these wild-type, D1-N87A, and D1-N87D cells were 1.32 \pm 0.04 and 1.46 \pm 0.05, respectively, corresponding to a PSII content of 111 \pm 5 % for D1-S169A cells compared to wild-type cells (Figure S1, Table S1). Charge recombination between $Q_A^{\bullet-}$ and PSII electron donors. The charge recombination kinetics of wild-type and D1-S169A cells in response to a single flash are compared in the left panels of Figure S2. The kinetics were fit with three exponentially-decaying components (fewer components yielded non-random residuals). The amplitudes and rates of these components are presented in Table S1. In wild-type cells, the kinetics correspond to charge recombination between $Q_A^{\bullet-}$ and the S_2 state of the Mn₄CaO₅ cluster. In D1-S169A cells, the kinetics were slowed slightly compared to wild-type cells, with the amplitudes of the two slower components increasing at the expense of the fastest component (from 36% and 27% in wild-type to 48% and 31% in D1-S169A, respectively) and the time constant of the slowest component increasing 2.6-fold. The slowing of the kinetics implies a decrease in the S_2/S_1 midpoint potential. An assay for PSII reaction centers lacking Mn_4CaO_5 clusters is provided by the kinetics of charge recombination measured after a brief period of actinic illumination in the presence of DCMU.¹⁻⁴ The basis for this assay is that both cytochrome b-559 and Y_D reduce P_{680} with low quantum yields.⁵ During continuous illumination in the presence of DCMU, the states S₂Q_A*-and Y_z*Q_A*- form and recombine repeatedly until the stable states cyt^{ox}Q_A*- and $Y_D^{\bullet}Q_A^{\bullet-}$ photoaccumulate. The subsequent oxidation of $Q_A^{\bullet-}$ is a slow process (t > 20 s). The rates of electron transfer from cytochrome b-559 and Y_D to P₆₈₀*+ are determined by the equilibrium concentration of P₆₈₀*+. Consequently, cyt^{ox}Q_A*- and Y_D*Q_A*-photoaccumulate much more rapidly in PSII centers lacking Mn₄CaO₅ clusters than in PSII centers containing Mn₄CaO₅ clusters. 1-3 The charge recombination kinetics of wild-type and D1-S169A cells in response to 5 s of continuous illumination are compared in the right panels of Figure S2. The kinetics were fit with three exponentially-decaying components (fewer components yielded non-random residuals). The amplitudes and rates of these components are presented in Table S1. The two faster components correlate approximately with the two slower components of charge recombination measured after a single flash. In wild-type cells, the slowest component, 6.6 ± 0.2 % of the total, exhibited a decay rate of 24 ± 6 s, a percentage comparable that those found in previous measurements of wild-type cells. 1-4 In earlier measurements, the slowest component in a mutant that assembles no Mn₄CaO₅ clusters (D1-D170A) was 72 ± 6%. In D1-S169A cells, the slowest component was 14.5 ± 1 % of the total decay (Figure S2, Table S1). We conclude that 6.6 ± 0.2 % of wild-type and 14.5 ± 1 % of D1-S169A PSII reaction centers photoaccumulate Q_A•- during 5 s of illumination. On the basis of comparing these percentages with the extents of Q_A*-photoaccumulated during 5 s of illumination in numerous mutant strains examined previously, 1-3 we estimate that 10-14% of PSII reaction centers in D1-S169A cells lack Mn₄CaO₅ clusters in vivo. Table S1. Characteristics of wild-type and mutant cells | Strain | O ₂
evolution ^a
(% of wt) | PSII
content ^b
(% of wt) | Kinetics of Q _A •¯ oxidation ^c | | | | |-----------|---|---|--|---------------------|---------------------------|---------------------| | | | | after a single flash | | after 5 s of illumination | | | | | | (%) | k ⁻¹ (s) | (%) | k ⁻¹ (s) | | Wild-type | 100 | 100 | 37±2 | 0.11±0.02 | 51±4 | 0.22±0.01 | | | | | 36±2 | 0.69±0.14 | 42±4 | 1.55±0.05 | | | | | 27±4 | 2.2±0.3 | 6.6±0.2 | 24±6 | | | | | | | | | | D1-S169A | 77±7 | 111±5 | 21±2 | 0.07±0.01 | 52±1 | 0.60±0.03 | | | | | 48±2 | 0.71±0.12 | 34±1 | 4.1±0.2 | | | | | 31±4 | 5.8±0.4 | 14.5±1 | 40±9 | ^aWild-type cells exhibited 790 \pm 60 μ mol O₂ (mg of Chl)⁻¹ h⁻¹. ^bEstimated from the total yield of variable chlorophyll fluorescence (F_{max} - F_0). ^cMeasured in the presence of DCMU and analyzed assuming three exponentially decaying components. For each component, the relative amplitude (%) and the inverse of the rate constant are reported. **Figure S1.** Formation of $Q_A^{\bullet-}$ in response to 10 saturating flashes (arrows) given at 800 ms intervals in the presence of DCMU and hydroxylamine to wild-type or D1-S169A cells, followed by continuous illumination. Continuous illumination (applied to obtain F_{max}) was applied 1.1 s after the 10th flash (arrow). The initial fluorescence yields produced by the weak measuring flashes (F_0) are indicated. **Figure S2.** Formation and decay of $Q_A^{\bullet-}$ in response to a saturating flash (left panels) or 5 s of continuous illumination (right panels) given to wild-type or D1-S169A cells in the presence of DCMU, as measured by changes in the yield of chlorophyll fluorescence. In the left panels, the wild-type and D1-S169A traces represent the averages of 4 and 12 traces, respectively. In the right panels, arrows denote the onset and termination of illumination. For a definition of F_{eq} , see Supplementary Note S1. Note the difference in time scales between the left and right panels. Figure S3. Comparison of the EPR spectra of the S_2 state in wild-type (green), and D1-S169A PSII core complexes (red). The dark spectra are marked in black. #### **REFERENCES** - (1) Chu, H.-A.; Nguyen, A. P.; and Debus, R. J., Site-directed photosystem II mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. *Biochemistry* **1994**, *33*, 6137-6149. - (2) Chu, H.-A.; Nguyen, A. P.; and Debus, R. J., Amino acid residues that influence the binding of manganese or calcium to photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. *Biochemistry* **1995**, *34*, 5839-5858. - (3) Chu, H.-A.; Nguyen, A. P.; and Debus, R. J., Amino acid residues that influence the binding of manganese or calcium to photosystem II. 2. The carboxy-terminal domain of the D1 polypeptide. *Biochemistry* **1995**, *34*, 5859-5882. - (4) Banerjee, G.; Ghosh, I.; Kim, C. J.; Debus, R. J.; and Brudvig, G. W., Substitution of the D1-N87 site in photosystem II of cyanobacteria mimics the chloride-binding characteristics of spinach photosystem II. *J. Biol. Chem.* **2017**, *293*, 2487-2497. - (5) Buser, C. A.; Thompson, L. K.; Diner, B. A.; and Brudvig, G. W., Electron-transfer reactions in manganese-depleted photosystem II. *Biochemistry* **1990**, *29*, 8977-8985.