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Supplementary Note S1 
 

Measurement of Chlorophyll Fluorescence.  Yields of chlorophyll fluorescence were 
measured with a pulse-amplitude-modulation (PAM) fluorometer (Heinz Walz GmbH, Effeltrich, 
Germany) as described previously.1-4  For measurements, concentrated cells (20 μg of Chl) were 
diluted into 50 mM MES-NaOH, 25 mM CaCl2, 10 mM NaCl, pH 6.5) at 22°C.  For measurements 
of charge recombination between QA

•− and oxidized donors in PSII, cells were incubated in 
darkness with 0.3 mM p-benzoquinone and 1 mM potassium ferricyanide for 1 min to oxidize 
QB

•−.  DCMU was then added to a concentration of 40 μM (the final concentration of ethanol 
was 2%) and the fluorometer’s weak measuring flashes were switched on.  In response to these 
flashes, the fluorescence yield rose from an initial level of F0 to a steady-state level denoted 
“Feq”.1  Actinic illumination (a single flash or 5 s of illumination) was applied approximately 
2 min later, after a stable Feq level had been achieved.  To measure the total yield of variable 
chlorophyll fluorescence (Fmax - F0), samples were incubated in darkness with 0.3 mM p-
benzoquinone and 1 mM potassium ferricyanide for 5 min to ensure full oxidation of QB

•−.  
DCMU was then added to a concentration of 40 μM, followed 1 min later by hydroxylamine to a 
concentration of 20 mM (fresh a fresh solution of 0.5 M hydroxylamine hydrochloride adjusted 
to pH 6.5 with NaOH).  The fluorometer’s weak measuring flashes were switched on 20 s after 
the addition of hydroxylamine.  This was followed 0.5 s later by ten saturating xenon flashes, 
followed by 5 s of continuous illumination.  The difference between the maximum chlorophyll 
fluorescence yield produced by the continuous illumination (Fmax) and the initial chlorophyll 
fluorescence produced by the measuring flashes (F0) provides a relative measure of PSII 
content.1 

Oxygen Evolution and PSII Contents of Cells.  The light-saturated O2-evolution rates of 
wild-type and D1-S169A cells were 790 ± 60 and 610 ± 30 μmol O2 (mg of Chl)-1 h-1, respectively.  
Consequently, D1-S169A cells evolved O2 at 77 ± 7 % the rate of wild-type cells (Table S1).  The 
maximum fluorescence yields (Fmax -F0) of these wild-type, D1-N87A, and D1-N87D cells were 
1.32 ± 0.04 and 1.46 ± 0.05, respectively, corresponding to a PSII content of 111 ± 5 % for D1-
S169A cells compared to wild-type cells (Figure S1, Table S1).     

Charge recombination between QA
•− and PSII electron donors.  The charge 

recombination kinetics of wild-type and D1-S169A cells in response to a single flash are 
compared in the left panels of Figure S2.  The kinetics were fit with three exponentially-
decaying components (fewer components yielded non-random residuals).  The amplitudes and 
rates of these components are presented in Table S1.  In wild-type cells, the kinetics correspond 
to charge recombination between QA

•− and the S2 state of the Mn4CaO5 cluster.  In D1-S169A 
cells, the kinetics were slowed slightly compared to wild-type cells, with the amplitudes of the 
two slower components increasing at the expense of the fastest component (from 36% and 
27 % in wild-type to 48% and 31% in D1-S169A, respectively) and the time constant of the 
slowest component increasing 2.6-fold.  The slowing of the kinetics implies a decrease in the 
S2/S1 midpoint potential.   

An assay for PSII reaction centers lacking Mn4CaO5 clusters is provided by the kinetics of 
charge recombination measured after a brief period of actinic illumination in the presence of 
DCMU.1-4  The basis for this assay is that both cytochrome b-559 and YD reduce P680

•+ with low 
quantum yields.5  During continuous illumination in the presence of DCMU, the states 
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S2QA
•−and YZ

•QA
•− form and recombine repeatedly until the stable states cytoxQA

•− and 
YD

•QA
•−photoaccumulate.  The subsequent oxidation of QA

•− is a slow process (t > 20 s).  The 
rates of electron transfer from cytochrome b-559 and YD to P680

•+ are determined by the 
equilibrium concentration of P680

•+.  Consequently, cytoxQA
•− and YD

•QA
•−photoaccumulate much 

more rapidly in PSII centers lacking Mn4CaO5 clusters than in PSII centers containing Mn4CaO5 
clusters.1-3  The charge recombination kinetics of wild-type and D1-S169A cells in response to 
5 s of continuous illumination are compared in the right panels of Figure S2.  The kinetics were 
fit with three exponentially-decaying components (fewer components yielded non-random 
residuals).  The amplitudes and rates of these components are presented in Table S1.  The two 
faster components correlate approximately with the two slower components of charge 
recombination measured after a single flash.  In wild-type cells, the slowest component, 6.6 ± 
0.2 % of the total, exhibited a decay rate of 24 ± 6 s, a percentage comparable that those found 
in previous measurements of wild-type cells.1-4  In earlier measurements, the slowest 
component in a mutant that assembles no Mn4CaO5 clusters (D1-D170A) was 72 ± 6%.1  In D1-
S169A cells, the slowest component was 14.5 ± 1 % of the total decay (Figure S2, Table S1).  We 
conclude that 6.6 ± 0.2 % of wild-type and 14.5 ± 1 % of D1-S169A PSII reaction centers 
photoaccumulate QA

•− during 5 s of illumination.  On the basis of comparing these percentages 
with the extents of QA

•−photoaccumulated during 5 s of illumination in numerous mutant 
strains examined previously,1-3 we estimate that 10-14% of PSII reaction centers in D1-S169A 
cells lack Mn4CaO5 clusters in vivo. 

 
  



 S4 

 
Table S1.   Characteristics of wild-type and mutant cells 

 
Strain O2 

evolutiona 

(% of wt) 

PSII 
contentb 

(% of wt) 

Kinetics of QA
•− oxidationc 

 

   after a single flash after 5 s of illumination 

   (%) k-1 (s) (%) k-1 (s) 

Wild-type 100 100 37±2 

36±2 

27±4 

0.11±0.02 

0.69±0.14 

2.2±0.3 

51±4 

42±4 

6.6±0.2 

0.22±0.01 

1.55±0.05 

24±6 

       

D1-S169A 77±7 111±5 21±2 

48±2 

31±4 

0.07±0.01 

0.71±0.12 

5.8±0.4 

52±1 

34±1 

14.5±1 

0.60±0.03 

4.1±0.2 

40±9 

 

aWild-type cells exhibited 790 ± 60 μmol O2 (mg of Chl)-1 h-1. 
bEstimated from the total yield of variable chlorophyll fluorescence (Fmax-F0). 
cMeasured in the presence of DCMU and analyzed assuming three exponentially decaying 
components.  For each component, the relative amplitude (%) and the inverse of the rate 
constant are reported. 
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Figure S1.  Formation of QA

•− in response to 10 saturating flashes (arrows) given at 800 ms 
intervals in the presence of DCMU and hydroxylamine to wild-type or D1-S169A cells, followed 
by continuous illumination.  Continuous illumination (applied to obtain Fmax) was applied 1.1 s 
after the 10th flash (arrow).  The initial fluorescence yields produced by the weak measuring 
flashes (F0) are indicated.   
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Figure S2.  Formation and decay of QA
•− in response to a saturating flash (left panels) or 5 s of 

continuous illumination (right panels) given to wild-type or D1-S169A cells in the presence of 
DCMU, as measured by changes in the yield of chlorophyll fluorescence.  In the left panels, the 
wild-type and D1-S169A traces represent the averages of 4 and 12 traces, respectively.  In the 
right panels, arrows denote the onset and termination of illumination.  For a definition of Feq, 
see Supplementary Note S1. Note the difference in time scales between the left and right 
panels.   
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Figure S3. Comparison of the EPR spectra of the S2 state in wild-type (green), and D1-S169A PSII 
core complexes (red). The dark spectra are marked in black.  
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