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ABSTRACT: Understanding the heterogeneity of molecular
environments within cells is an outstanding challenge of great
fundamental and technological interest. Cells are organized into
specialized compartments, each with distinct functions. These
compartments exhibit dynamic heterogeneity under high-resolution
microscopy, which reflects fluctuations in molecular populations,
concentrations, and spatial distributions. To enhance our
comprehension of the spatial relationships among molecules within
cells, it is crucial to analyze images of high-resolution microscopy by
clustering individual pixels according to their visible spatial
properties and their temporal evolution. Here, we evaluate the
effectiveness of similarity metrics based on their ability to facilitate
fast and accurate data analysis in time and space. We discuss the
capability of these metrics to differentiate subcellular localization, kinetics, and structures of protein-RNA interactions in Forster
resonance energy transfer (FRET) microscopy videos, illustrated by a practical example from recent literature. Our results suggest
that using the correlation similarity metric to cluster pixels of high-resolution microscopy data should improve the analysis of high-
dimensional microscopy data in a wide range of applications.

■ INTRODUCTION
Recent advances in instrumentation, alongside enhanced
computational power and more affordable data storage
solutions, have transformed the field of microscopy.1 These
developments have facilitated the acquisition of extensive and
intricate multidimensional data sets, particularly in the context
of time series data.2 To gain a deeper understanding of complex
chemical and biological interactions, new imaging techniques
are being developed to investigate phenomena with both
temporal and spatial resolution.3−6 Despite the exciting
prospects of collecting times-resolved images, a significant
challenge accompanies them: the effective analysis and
extraction of meaningful insights from the abundant information
available.7,8

Manymicroscopy video analysis approaches focus on iterative
image processing that treats each frame independently, whether
for object tracking, interaction analysis, or monitoring
morphology changes.9−11 Fewer analysis approaches consider
the relationship between frames in the time-series data, although
there has been progress in similar multidimensional imaging
fields.12−14 Time-series analysis is ordered and, in the case of
microscopy data, regularly sampled data over a continuous
event.15 To fully resolve an event, it is often necessary to
consider the entire time series rather than analyzing specific
frames individually.

Clustering methods are particularly valuable, as they allow for
unsupervised classification of large data sets. While deep
learning and Kernel-based methods have shown great promise
in microscopy image analysis, they require the use of labels or
significant tuning of hyperparameters as compared to
unsupervised methods which can be applied without a labeled
data set.16−18 When applied to time-resolved microscopy,
clustering pixels with high similarity distinguishes regions
where the pixels exhibit more similarity among themselves
than with other pixels in the image.19−23 By effectively handling
the large and complex data sets generated by microscopy, time-
series clustering approaches advance our ability to analyze
molecular composition and behavior at the microscopic level,
paving the way for advancements in fields ranging from
biomedical research to materials science. While many of the
methods presented have been available for a while, our goal is to
provide general guidelines for selecting and implementing
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clustering approaches and to demonstrate their application in
the context of time-resolved Forster resonance energy transfer
(FRET) microscopy videos.
Challenges of Clustering Multidimensional Data.

Multidimensional data, such as time-series videos, can pose
challenges for clustering methods when organized into
manageable groups. The three main problems are noise in the
sample, high dimensionality, and the ordered nature of the data.
How to Deal With Noise? Noise in data poses a significant

challenge for time-series clustering, because it can distort and
obscure underlying patterns within temporal sequences.
Clustering algorithms aim to group similar time series, but
noise disrupts this process by introducing spurious similarities
and causing dissimilar sequences to be erroneously grouped.
This not only diminishes the accuracy and reliability of
clustering results but also hinders the identification of
meaningful patterns and trends within the data. Robust and
effective time-series clustering requires techniques that can
mitigate the impact of noise, such as noise filtering, outlier
detection, and noise-tolerant distance measures, to ensure
accurate and meaningful grouping of temporal sequences.
Noise filtering in time series analysis involves removing or

reducing unwanted variations, disturbances, or inaccuracies
present in the data, making it easier to identify and analyze
meaningful patterns and trends. This process allows for a more
accurate and reproducible interpretation of the data.24 Despite
these benefits, implementing noise filtering in analysis workflows
is not always practical. When dealing with data of high
dimensionality, it is challenging, if not impossible, to ensure
that the filtering performs as intended across every dimension.
Aggressive noise filtering can lead to the loss of important
information or introduce artifacts, both of which affect the
resultant clustering.25 This issue is exacerbated by the nature of
time-series data, as noise filtering may not work well for
nonstationary data where noise characteristics change over time,
making it challenging to find a single filtering approach that suits
the entire data set.26

Dimension reduction techniques play a crucial role in
reducing noise within data by capturing the most salient and
informative features, while discarding or minimizing the impact
of noise-related dimensions. These techniques work by
transforming the original high-dimensional data into a lower-
dimensional representation. In doing so, they inherently filter
out noise and emphasize the underlying patterns and structures
within the data. By focusing on dimensions that explain the most
variance or exhibit the strongest relationships, dimension
reduction effectively highlights the meaningful variations in

the data, while attenuating the influence of noisy and less
informative dimensions. This reduction also simplifies the
complexity of the data, making them more easily manageable
and interpretable.

Curse of Dimensionality. The primary aim of clustering
methods is to analyze numerous data points and identify
discernible communities or subsets. Analyzing thousands of
time series for patterns poses a significant challenge for
researchers. Similarity metrics require comparing each pixel
against all others, causing the number of comparisons to increase
quadratically with the number of pixels. Consequently, strategies
that reduce the number of pixels while preserving the essential
processes can substantially reduce the computation time
required.
Many data dimensionality approaches reduce the amount of

information in the time dimension while maintaining a constant
number of compared samples or pixels.27,28 However, it is also
important to consider reducing the number of pixels before
further analysis. The simplest example of this is thresholding,
which focuses the analysis on key spatial regions. Nevertheless,
even when the analysis is focused on key areas, one may still
encounter a large number of data points. Thresholds can also be
used to categorize the pixels into a predetermined number of
regions. Although these binning strategies are effective and
efficient, they reduce the spatial resolution of the imaging
technique without taking their behavior in the time domain into
account.
Agglomerative hierarchical clustering methods reduce the

number of pixels by considering their similarity in time and
space.29 However, they are much slower than the thresholding
and binning strategies described above. Indeed, because they
require n2 calculations for n samples, which must be recalculated
as the number of samples decreases, these approaches can
consume more computational time than spectral clustering.
Using local hierarchical agglomerative clustering that only
compares similarity with neighboring pixels for binning (Figure
S1), and therefore scales linearly with number of pixels, we have
found that each round of this informed binning reduces the
number of data points by a factor of 3−5.

Relating Ordered Data. Time series data are particularly
challenging to analyze for similarity because it is an ordered data
set. A data point at time t is related to time points t− 1 and t + 1.
Depending on the shape and nature of the data, various methods
of quantifying this similarity may prove to be useful.
Spectral clustering is a graph-based technique used for

clustering data points by leveraging the relationships between
them. (Figure 1) This method can accommodate various

Figure 1. Data workflow for spectral clustering of FRET microscopy videos. Each pixel in a microscopy video is in a 3-dimensional matrix, with two
positional coordinates and a time coordinate. To compare signal across time, the data is flattened into a 2-dimensional matrix where preprocessing
methods such as normalization and smoothing can be applied. For spectral clustering, an adjacency matrix is generated by evaluating the similarity of
each pixel or sample. This similarity metric is chosen based on the desired comparison. Since the matrix is symmetric, it can be efficiently spectrally
decomposed to obtain the eigenvalues of the adjacency matrix. This acts as a dimensionality reduction so that clustering can be performed more
efficiently in fewer dimensions.
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similarity metrics, adapt to different data distributions, and
efficiently solve problems using standard linear algebra
methods.30,31 The relationships between them are defined by
the construction of an affinity matrix that quantifies the
similarity or dissimilarity between each pair of data points
based on the selected similarity metric. This matrix is then
transformed into a graph representation, where each data point
becomes a node and edges represent pairwise similarities.

Clusters are formed by partitioning the graph’s Laplacian matrix,
aiming to minimize the normalized cut or other graph-based
criteria.23,24 This process involves finding the eigenvectors
associated with the smallest eigenvalues of the Laplacian matrix,
which capture the optimal embedding of data points in a lower-
dimensional space that enhances cluster separability.
Principal component analysis (PCA) is a technique related to

spectral clustering, though it focuses less on clustering and more

Figure 2. Ability of similarity metrics to distinguish function parameters. (a) A 51 × 51 pixel grid was subdivided into six regions, each simulating a
specific function whose parameters are varied across groups, as detailed in Table S1. These parameter variations model changes within the function’s
characteristics. (b) Representative time series from each region in (a) are depicted, with color coding consistent with the respective group. This helps
illustrate how sensitive the clustering is to the different time series. (c) Clustering outcomes of each similarity metric, tested against simulated sigmoidal
curves with varying midpoints. Each metric’s ability to cluster pixels according to the underlying parameter variations is displayed, highlighting the
differences in performance and suitability for this analysis context. (d) Quantitative evaluation of the clustering accuracy for each similarity metric,
applied to two different functions, sigmoid and exponential decay, with varying parameters. The accuracy is shown across four scenarios: (i) sigmoid
functions with a shifted midpoint, (ii) sigmoid functions with an altered slope, (iii) exponential decay functions with modified decay rates, and (iv)
exponential decay functions with changing amplitude. These scenarios are designed to test each metric’s sensitivity to specific types of parameter
alterations within the function.
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on dimensionality reduction and feature transformation.32−34

Similar to spectral clustering, PCA constructs the covariance
matrix, a type of affinity matrix where the similarity is measured
by the covariance between each point. However, instead of
generating a graph Laplacian and using graph-based partitioning
methods to cluster data, PCA-based clustering operates directly
on the covariance matrix. Like spectral clustering, this process
involves finding the eigenvectors and eigenvalues of the
covariance matrix, but PCA-based methods typically use a k-
means-based clustering scheme on a lower-dimensional
representation of the data, thereby reducing the complexity of
the data.
Due to the similarities between spectral clustering and PCA,

and their ability to reduce the data to a lower-dimensional space,
we explore both approaches in analyzing microscopy videos.
While other methods of dimension reduction and similarity
metrics exist,7,28,30,35,36 we focus on spectral clustering andmore
commonly used similarity metrics to make this approach
accessible to microscopists.

■ METHODS
Implementation of Spectral Clustering. Simulations

were carried out in Python using a commercial laptop (Dell
XPS 13, 7390 with an Intel(R) Core i7-10710U CPU). Custom
code was used to calculate the adjacency matrices for
correlational self-similarity, Euclidean distance, and cosine
distance. SciPy37 was used to calculate the adjacency matrices
for the Pearson Correlation, Spearman Correlation, Kendall’s
Tau. These adjacency matrices were then used for the spectral
clustering algorithm in Scikit-learn.38 PCA clustering was
performed with Scikit-Learns implementation of PCA with
their K-means clustering algorithm.
Similarity Metrics. Similarity can be assessed according to

data shapes, extracted features, and fitted models. Shape-based
methods operate on raw data, while methods for extracted
features and model parameters typically require a more
supervised approach.15 Similarity scores are defined using
generalized distances that quantify the closeness of two data
points within a data set. These distances vary depending on the
chosen similarity metric. There is no one-size-fits-all solution for
selecting a similarity metric. The effectiveness of a metric
depends on the nature of the data and the specific information
on interest. To illustrate this, we generate test data sets to help
researchers choose similarity metrics most useful for their
microscopy applications (Figure 2). For the similarity metrics
below, we assess distance-based, correlational, and convolu-
tional methods for time series X and Y, each consisting of n
measurements.
Distance-Based Metrics. We compared three types of

distance-based metrics: Euclidean distance, cosine similarity,
and dynamic time warping (DTW). In these metrics, a greater
distance indicates that the two vectors are less similar.
The Euclidean distance is the straight-line distance between

two points in the n-dimensional space.39 It is defined as follows:

X Y x yEuclidean distance ( , ) ( )i i
2= (1)

where xi and yi are the ith measurements ofX and Y, respectively.
The Euclidean distance is useful for low-dimensional problems
but becomes less practical in higher-dimensional spaces or when
the data involve vectors with different magnitudes, different
orientations, or significantly different amounts of noise.

Additionally, the Euclidean distance does not take into account
the order of the time-series data.
The cosine similarity metric measures the cosine of the angle

between two vectors, providing a measure of orientation
irrespective of magnitude.39 It is especially useful for high-
dimensional space analysis. The cosine similarity is given by

X Y X Y
X Y

x y

x y
cosine distance ( , ) i

n
i i

i
n

i i
n

i

1

1
2

1
2

= ·
|| || || ||

= =

= =

(2)

where X·Y is the dot product between vectors X and Y, and ||X||
and ||Y|| are the norms (or magnitude) of vectors X and Y,
respectively. The coordinates used for assessing the Euclidean
distance and cosine similarity are extremely restrictive and must
be in sync. However, in practice, microscopy data may not be
evenly sampled or may be out-of-phase, which effectively
accelerates or decelerates the features.
DTWmeasures the similarity between two-time series, which

may vary in time or speed. For instance, similarities in walking
patterns could be detected, even if one walker was walking faster
than the other. DTW is defined through an optimal alignment of
the sequences. It is obtained by nonlinearly warping the time
series to minimize their differences, as follows:40

X Y x yDTW ( , ) min
X YA i j i j( , ) ( , )= || ||

(3)

where π is an alignment path consisting of index pairs and
A(X,Y) represents the set of all admissible paths. These paths
satisfy constraints that ensure that the sequences start and end
are aligned, and the indices monotonically increase, with each
index appearing at least once. Therefore, DTW allows the
identification of similar shapes of data sets, even when the
coordinates or magnitude of the data are quite different. For
each of these concepts of generalized distances, a larger distance
implies greater dissimilarity.
Correlation-Based Metrics. We evaluated the capabilities

of three correlation metrics based on generalized distances: the
Pearson correlation coefficient, Spearman correlation, and
Kendall’s Tau Similarity. To address issues of magnitude,
these correlation metrics measure the degree to which two sets
of data are linearly related by comparing trend or shape
similarity.
The Pearson correlation metric measures the strength of the

linear relationship between two variables.41 It assesses the extent
to which one variable increases or decreases with another one.
The Pearson correlation coefficient is calculated as follows:

( )
X Y

x x y y

x x y y

Pearson correlation ( , )

( )

( ) ( )

i
n

i i

i
n

i i
n

i

1

1
2

1
2

= =

= = (4)

Here, x and y are the means of X and Y, respectively. This
coefficient ranges from +1, indicating a perfect positive linear
correlation, to −1, indicating a perfect anticorrelation, with 0
indicating no correlation.
Spearman Rank Correlation Coefficient metrics first convert

the data into ranks and then calculate the Pearson correlation
coefficient of these ranks. Spearman’s rank correlation can be
expressed, as follows:42
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X Y
R E R R E R

Spearman correlation ( , )
( )( )X X Y Y

R Rx y

= [ [ ] [ ] ]

(5)

where RX and RY are the rank transformations of X and Y,
respectively, E[RX] and E[RY] are the expected values of these
ranks, and σRx and σRy are the standard deviations of the ranks.
The coefficient also ranges from +1 to −1. Unlike the Pearson
correlation, Spearman correlation is particularly effective at
identifying monotonic relationships, regardless of whether the
correlation is linear or not. However, it is highly sensitive to
errors and outliers.43

The Kendall’s Tau coefficient metric also uses a ranking
system and assesses the degree of correspondence between the
orders of the data points. It compares pairs of observations to see
if their ranks are correlated, as follows:44

X Y
n n

x x y yTau similarity ( , )
2

( 1)
sgn( )sgn( )i j i j i j= <

(6)

where sgn is the sign function, indicating the direction of the
difference. Kendall’s Tau measures the difference between the
number of concordant and discordant pairs, normalized by the
number of possible pairs. It ranges from +1 (perfect agreement)
to −1 (perfect disagreement), with 0 indicating no correlation.
Convolutional-Based Metrics. Autocorrelation analysis

enables the assessment of self-similarity between data and its
lagged version. This analysis is particularly useful for detecting
repeatable patterns within a time-ordered data set, utilizing
scoring metrics such as those described above.45 This approach
is widely used to analyze time- and frequency-dependent data,
such as fluorescence correlation microscopy and infrared
spectroscopy data.5,14 Autocorrelation analysis often requires
additional analysis or parameter fitting before it can be
compared with other data points.
To generalize and facilitate the comparison of the time series

data, we used a correlational self-similarity metric that involves
both normalization and compression. It measures the cross-
correlation between two data sets, normalized by the maximum
autocorrelation of each data set. For two pixels represented by
time series X and Y over a window size w, the correlation self-
similarity (CSS) is calculated as

X Y
X Y

X X Y Y

n

n n

CSS ( , )
corr( )

max( corr( ) , corr( ) )
n
w

n
w

n
w

0

0 0

=
× [[ ]]

× [[ ]] × [[ ]]
=

= =
(7)

The cross-correlation corr(X×Y)[n] for a lag n is

X Y n X m Y m ncorr ( )
m

N

0

1

× [[ ]] = [ ] [ + ]
= (8)

This measure is normalized by the maximum of the sums of
the autocorrelations of X and Y over the window w, allowing a
relative comparison of similarity that accounts for the strongest
internal correlations of each data set. Window sizes were 0
(Figures 2 and 5) and 3 (Figures 3 and 4). These convolution-
based metrics, through the use of correlation calculations over
lagged intervals, provide a framework for understanding the
dynamics and similarities within and between time-series data
sets.

■ RESULTS AND DISCUSSION
Evaluation of Similarity Metrics. In the upcoming

discussion, we evaluate how similarity metrics assess the
resemblance between various functions or time-series data. We
divide our discussion into three sections, each examining how
different similarity metrics measure and quantify similarity based
on specific criteria. These tests will rigorously evaluate the
performance of similarity metrics: measuring their sensitivity to
changes in parameters, assessing their ability to capture different
behaviors, and gauging their effectiveness in detecting changes
in events occurring over time. Simulated time-series data
provide a known target to test the ability and sensitivity of
different similarity metrics. By controlling the cluster size,
function parameters, and noise, we can quantify the merits and
limitations of each approach. We aim to provide a

Figure 3. Comparative clustering of similarity metrics on cylinder-bell-
funnel (CBF) data set. (a) Example time series for the three illustrative
of the three function types: cylinder (blue), funnel (orange), and bell
(green). A target segmentation map delineates the ideal clustering
arrangement with each function type assigned to discrete segments
represented by different colors in the vertical layout: cylinder (top),
funnel (middle), and bell (bottom), signifying the benchmark for
subsequent clustering comparison. (b) Results depicted are a typical
clustering performance of each similarity metric when applied to the
CBF data set with color consistency indicating greater accuracy. The
variation in patterns shows the sensitivity of each similaritymetric to the
different shapes of the time series. Accuracies are quantified in Figure
S4a.
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comprehensive understanding of their utility and applicability in
various microscopy scenarios.
Changes in Parameter. To examine changes in parameters

within the same function, a sigmoid curve was chosen because
sigmoids present a challenging clustering task due to the regions
of high similarity at the beginning and end of the curves and
smaller regions of change. The simulated data shown in Figure
2a consisted of a 51× 51 array, with the distance from the center
used to generate six different regions in a “target”. Importantly,
these clustering approaches do not consider spatial proximity
and can just as easily cluster separated regions together. Based
on their region (color), the pixels are populated with sigmoid
functions of varying parameters with Gaussian noise added to
each time point (Figure 2b). The center of the image represents
the region with the highest dissimilarity. As the rings extend
outward, the difference in parameters decreases to test the
sensitivity of each metric. The accuracy was evaluated by
comparing the defined simulated groups to the clustered results.
A visual indication of the different abilities of similarity metrics
to cluster sigmoids with varying midpoints is represented in
Figure 2c. The midpoints used to generate each curve are 5, 2.5,
1, 0.5, 0.2, and 0.0. With a temporal resolution of 0.1, these
represent changes in the midpoint of 50, 25, 10, 5, and 2 frames
from the outer ring. Gaussian noise was added to each point,
with a standard deviation of 0.05 applied to each time point.
Results with varying levels of Gaussian noise are presented in
Figure S2.
PCA and correlational self-similarity performed the best

among the metrics, clustering the image with overall accuracies
of 96.7 and 92.9%, respectively (Figure 2c,d). Both PCA and
correlational self-similarity showed no errors in the three inner
regions. For PCA, the accuracies of the outer three regions were
99.3, 96.2, and 91.7%, from the middle to outer regions,
respectively.
Euclidean distance was able to cluster the image with an

accuracy of 63.4%, perfectly resolving the first two groups and

with few errors in the third group (95.7% accuracy). However, it
poorly resolved the three outer groups, where the midpoint was
the most similar. They showed accuracies around 50% (56.6,
38.8, and 58.9% from inside out). This demonstrates that
Euclidean distance struggles to resolve neighboring groups that
are more similar due to the noise present in the data. When
tasked with clustering the data into 6 clusters, the rest of the
metrics perform poorly.
It is worth noting that most metrics perform reasonably well

when asked to cluster into only 2 regions (Figure S3). Each
similarity metric, besides Kendall’s Tau similarity, was able to
divide the data set in Figure 1b into two communities. However,
only Correlational Self Similarity separated the most dissimilar
group from the others, even though it represented the smallest
community. The other metrics separated the data set into two
clusters but with a more equal distribution.
Changes in Function. The previous simulation compared

the same function with different parameters (such as the
midpoint, decay rate, and slope), but it is also important to test
the ability of an approach to detect differences in shape. For this,
we apply a well-known artificial 1-dimensional test data set for
shape determination that uses three classes of time series.46 The
cylinder, bell, and funnel are generated based on 3 random
variables, a, b, and n (Figure 3a). The variables adjust the
functions to change the shape within each set where n adjusts the
amplitude, a adjusts the starting point of the function, and b
adjusts the ending point:

i n i iCylinder ( ) (6 ) ( ) ( )a b,= + · +[ ] (9)

i n i a
b a iBell ( ) (6 ) ( ) ( )a b,= + · · +[ ] (10)

i n b i
b a iFunnel ( ) (6 ) ( ) ( )a b,= + · · +[ ] (11)

X[a,b] = 1 if a ≤ t ≤ b and 0 if a ≥ t or t ≥ b. This creates flat
regions of Gaussian noise, ϵ(i), with regions of difference either

Figure 4. Similarity metric sensitivity to event frequencies. (a) The underlying probability distributions for spike occurrence across different regions of
a video (red, blue, green, yellow, and black), consisting of overlapping Gaussian functions peaking at 20%. (b) Representative time-series data of spikes
for two pixels taken from each region. It is unlikely that two pixels in the same region behave identically; however, they behave similarly based on their
underlying probability distribution. The probability distributions in (a) are aligned with representative time-series data of individual pixels in (b). Pixels
from the same region have a high probability of spiking when the probability distribution in that region is high. These distributions are combined with a
baseline spike probability set at 5% (black) to model the stochastic nature of the spike generation. (c) A target data segmentation map is created based
on the probability parameters, displaying the idealized classification of data into four categories, each color-coded to represent a different spike
probability region. This map serves as a reference standard for clustering accuracy. (d) Results depicted are a typical clustering performance of each
similarity metric when applied to the data set with color consistency indicating greater accuracy. The variation in patterns visualizes the sensitivities of
each similarity metric to resolving the different regions in comparison to the background. Accuracies are quantified in Figure S4b.
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flat, decreasingly linear, or increasing linearly on the interval
[a,b]. To evaluate the similarity metrics, the noise was gradually
increased until all of the methods started to make errors. As
anticipated, DTW outperforms the other metrics in its ability to
cluster different shapes, correctly identifying 99.7% of the points.
However, correlational self-similarity performs fairly well,
correctly classifying 91.0% of the curves (Figure 3b). It confuses
some cylinders and bells for funnels. Principal component
analysis makes the same mistakes but with slightly less accuracy
(88.8%).
DTW outperforms other metrics in separating data sets from

different types of distribution functions. Intriguingly, DTW
performs the worst of all metrics when taskedwith separating the
same shape of either bells, funnels, or cylinders, when the a and b
are varied (Figure S5). DTW warps the two signals to minimize
the differences between them, which allows it to group similar
function shapes even if the parameters defining that function
differ. This benefit is a detriment when tasked with separating
similar data from different underlying variables. In this task, the
warping likely masks the small differences and prevents it from
properly clustering the data. For this reason, both Euclidean,
correlational self-similarity metrics, and principal component
analysis outperform dynamic time warping when similar curves
are separated with different parameters. This demonstrates that
DTW is best at perceiving differences in function, while
correlational self-similarity and PCA are best at separating
similar shapes with different parameters.
Changes in Time. In the realm of time-series clustering,

understanding the frequency of events over time is a crucial
aspect that can significantly impact the performance and
accuracy of clustering algorithms. The frequency of events,
such as peaks, troughs, or other distinctive patterns, can carry
valuable information about the underlying dynamics and
behavior of the time-series data. Incorporating frequency-
based testing in time-series clustering serves several essential
purposes that enhance the reliability and interpretability of the
clustering results.
In this experiment, we aim to assess the efficacy of various

similarity metrics in evaluating different time-series data
generated through microscopy, particularly focusing on the
ability to discern changes over time. The generated data consists
of a sequence of 500 frames to represent a video (Figure 4a).
Within these frames, five distinct groups are embedded, each
characterized by unique temporal behaviors. One group serves
as the background, exhibiting a consistent spike rate at a
frequency of 0.05. The remaining four groups are centered at
frames 100, 200, 300, and 400, respectively, and follow a
Gaussian probability distribution. These groups also exhibit
background spike frequencies of 0.05; however, around their
center points, the probability peak is 0.20 (Figure 3b).
By subjecting this synthesized data set to various similarity

metrics, we aim to explore their effectiveness in capturing the
temporal changes introduced by the distinctive spike patterns
within the data. This experiment offers valuable insights into the
suitability of different similarity metrics for detecting and
quantifying temporal variations in microscopy-generated time-
series data, facilitating an informed choice of metrics for specific
analytical contexts.
Through comparison to the target regions, we see that PCA

clustering and correlation self-similarity most accurately
produce the original groups with accuracies of 88.3 and 87.5%,
respectively (Figure 3c,d). Pearson, Spearman, Kendall’s Tau,
Euclidean, and cosine scored accuracies of 68.9, 68.8, 68.6, 66.6,

and 70.2%, respectively. Interestingly, while these metrics can
find the signal groups, they struggle to separate the background
from the signal. The correlation metrics seem to get it wrong the
opposite way, assigning more background points to the signal
areas. DTW also performs poorly on this task with a 31.4%
accuracy, because each time series has a similar shape to each
other.
Choosing a Similarity Metric.When choosing a similarity

metric, it is important to consider how the time for a method to
run scales off the size of the initial conditions. The number of
samples (e.g., pixels in microscopy images), frames, or
associated measurements in the time-series data set determines
the overall computational cost of calculations based on the
various similarity metrics (Table S2). In FRET microscopy
videos the upper bound of samples is determined by the number
of pixels on the camera, while the upper bound for the number of
frames is determined by the data storage capacity of the camera.
The computational cost of spectral clustering depends on the

number of samples, whereas the computational cost of PCA
depends on the number of frames. PCA and spectral clustering
are performed in two similar but different steps: first, the
creation of a similarity matrix (spectral clustering) or a
covariance matrix (PCA) and then the eigendecomposition of
these matrices into a lower-dimensional space for clustering.
The computational complexity, how the method’s computa-
tional cost scales with the number of samples and frames, is
dependent on how long it takes to create these matrices and the
resultant size of the similarity or covariance matrix. The sizes of
the matrices are different for spectral clustering and PCA. For
spectral clustering, the similarity matrix size is determined by the
number of samples. For PCA, the size of the covariance matrix is
determined by the number of frames. The computational cost of
the eigendecomposition of a matrix is dependent on the size of
the matrix and scales with the third power of the matrix size.
The time required for each method with different numbers of

frames and samples is evaluated in Figure S6. In general,
similarity metrics scale linearly with respect to the number of
frames and quadratically with respect to the number of points.
The primary decider of similarity metric speed is whether it can
be efficiently calculated with matrix manipulation or if it requires
a direct comparison between every data point. Thus, Euclidean,
cosine, Pearson, Spearman, correlational self-similarity, and
PCA, which can all be calculated with transformations on an
array, are faster than DTW and Kendall’s Tau. DTW and
Kendall’s Tau both require a direct comparison of each point
and n2 calculations for a time series of n frames.
Considering only the faster metrics, Euclidean, cosine, and

correlational self-similarity are the fastest with respect to
increasing frames, whereas Spearman and PCA scale poorly
(Figure S6b). Spearman scales poorly because it must first rank
all of the data, a task that becomes more complicated with
increasing numbers of frames. PCA scales quadratically with
respect to the number of frames. However, PCA is the fastest
with respect to increasing the number of samples to be
compared, with correlational self-similarity performing the
worst (after DTW and Kendall’s Tau) (Figure S6d). PCA
scales linearly with respect to an increasing number of samples,
while the spectral clustering approaches will scale quadratically
with respect to the number of sample comparisons. Correla-
tional self-similarity scales poorly because of the normalization
term, which must be applied in a second step.
In terms of computational time, the speed and flexibility of the

Euclidean distance make it a reasonable starting point for many
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researchers. Euclidean scales well with respect to the number of
points and performs adequately in many types of applications.
Alternatively, if the behavior of the system is known, an informed
decision can be made based on computational time and the
analyses performed in previous sections.
If Euclidean distance does not perform well and no

preknowledge about the behavior of the system is known,
correlational self-similarity, the best performer across all three
tests, is a good option. Where the Euclidean distance, as well as
Pearson and Spearman correlation metrics, are more susceptible
to noise,47,48 the correlational self-similarity metric is less
susceptible to noise since it compares the data sets by cross-
correlation, effectively “sliding” the time-series data sets with
each other. The computational cost of correlational self-
similarity is determined by the window width (i.e., the number
m of elements in the window). For each slide, the correlational
self-similarity method requires a series of n × m comparisons,
scaling linearly with n andm. The choice of window size depends
on the desired comparison; larger window sizes are appropriate
when there is a preknowledge that grouped behaviors may be
time-shifted. Nevertheless in a spectral clustering workflow, a
well-tuned window parameter is less critical because two time-
shifted time series can be clustered together by a third time-
series that is similar to both. A window size of 0 will better
separate difference in time (e.g., Figures 2 and 5), whereas a
larger window will pregroup time-shifted data together depend-
ing on the window set (e.g., Figures 3 and 4 had a window size of
3). The resulting regularization introduced by cross-correlation
reduces the impact of the noise and allows for the differentiation
of similar time series with differences in their underlying
parameters.
Although we did not explore combinations of similarity

metrics here, in practice the computational cost of a
combination of low-complexity techniques or a low- and high-
complexity technique may be capable of classification at a lower
computational cost. For example, DTW, the costliest metric
tested, could be used to cluster data sets from different families
of distribution functions after another clustering metric is used
that is more effective at distinguishing data sets from the same
type of distribution but with different parameters.
Limitations of Spectral Clustering. A limitation of this

study is that many of the methods are presented according to
their ability to separate relatively simple functions. This was
done to help the reader understand how these methods are
parsing out differences in information. However, if researchers
are analyzing data with well-defined functions, they may wish to
base their clusters based on derived or fitted parameters.
While useful for microscopy analysis, these methods may not

be fast enough for big data applications, approaching millions of
comparisons. If data sets contain more than hundreds of
thousands of samples or frames, the best course of action would
be to limit the amount of data using strategies presented in the
introductory section Curse of Dimensionality. The similarity
metrics investigated here scale linearly with frames and
quadratically in samples; therefore, reducing the number of
samples is more effective in lowering computation time. We
suggest an informed binning scheme for data reduction, local
hierarchical agglomerative clustering (Figure S1), that considers
the relationship between data in time and space.
Application to Real Microscopy Videos. To demonstrate

the application of the correlational self-similarity metric to real
microscopy data, we cluster videos of the spliceosome protein
U1A with its RNA binding partner stem-loop 2 (SL2) collected

in living cells.49 The binding process is monitored by probing the
FRET efficiency between a donor fluorophore on U1A (Alexa
488) and an acceptor fluorophore on SL2 (Alexa 594) (Figure
5a,b). A two-color Fast Relaxation Imaging (FReI) setup
enabled the investigation of thermodynamics and kinetics of
binding between U1A-SL2.50

In FReI, the binding equilibrium is perturbed by temperature
jumps induced by a 2 μm infrared laser, which rapidly heats the
sample. The equilibrium effect of the temperature increase

Figure 5. Analysis and clustering of U1A-SL2 binding dynamics using
spectral clustering. (a) Schematic representation of the U1A-SL2 FRET
construct showing the U1A protein (green) and SL2 RNA (red) bound
together. (b) Fluorescence images from the initial frame of the FReI
experiment displaying the donor (U1A labeled with Alexa 488, green)
and acceptor (SL2 labeled with Alexa 594, red). (c) Example data of
FReI experiment which gives us three outputs. (Left) FRET efficiency
data over time, showing the change in energy transfer efficiency as a
function of the temperature jumps and changes in interactions.
(Middle) Thermodynamic profile of the binding interaction, with
FRET efficiency plotted against temperature to assess the stability and
binding changes under varying thermal conditions. (Right) Kinetic
analysis data, depicting normalized FRET efficiency decay over time,
indicative of the rates of binding and unbinding. (d) Clustering results
from spectral clustering using correlational self-similarity. (e−g)
Calculated Kd, kon, and koff values based on the average signal for
each cluster. Results show that the changes in KD (e) are from changes
in the dissociation rates (g) and not the association rates (f).
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provides thermodynamic information, while the response to the
almost instantaneous temperature jump provides kinetic
information, as the relaxation of the new bound and unbound
populations are monitored in time (Figure 5c).51 We have
applied the correlation self-similarity metric to this data set to
test whether U1A-SL2 binding is regulated by its surrounding
local cellular environment. Our analysis was focused on the
nucleus by using Otsu thresholding on the U1A fluorescence to
separate the nucleus from the cytoplasm (Figure 5d). The data
was clustered using correlational self-similarity, and the average
signal of each resultant cluster was examined in the context of
the bimolecular binding reaction. The results from the other
similarity metrics are presented in Figure S7. Of the methods,
only correlational self-similarity and PCA successfully segment
the video, but correlational self-similarity is more computation-
ally efficient due to the large number of frames (4560) compared
to the number of pixels (933). Additionally, the data from each
cluster was fit to the integrated rate laws for the bimolecular
reaction to determine the binding affinity as well as the
association and dissociation rates (Figure 5e,f).
The previous study found that the binding affinities in the

nucleus (KD = 4.4 ± 0.6 × 10−6 μM) were slightly higher than
those in the cytoplasm (KD = 3.0 ± 0.8 × 10−6 μM). Here, we
further resolve two regions of binding in the nucleus, a lower
binding affinity region exhibiting 16.3 × 10−6 μM affinity and a
region of higher affinity of 0.9 × 10−6 μM. Consistent with
earlier observations, we find that the differences in affinities
result from differences in dissociation rates (Figure 5g) while the
association rates are not significantly different (Figure 5f).
These findings are significant since the nucleus is rather

heterogeneous and organized into compartments with distinct
functional roles. The high-affinity regions are likely Cajal bodies,
a site central for nuclear splicing and creation of the snRNP. The
U1A protein and its RNA binding partner SL2 RNA are known
to colocalize in Cajal bodies in the nucleus, which determines
distinct binding properties since Cajal bodies are small and
highly conserved subnuclear structures (i.e., 0.2−2 μm) in size
depending on the organism.
Several different properties of Cajal bodies could be the

source of this difference in affinity. One potential explanation is
that the increased macromolecular crowding in the Cajal bodies
could stabilize the U1A-SL2 complex compared to the rest of the
nucleus. It was determined for Xenopus oocytes that the Cajal
bodies had a macromolecule density of 0.136 mg/mL compared
to the 0.106 g/mL value for the surrounding nucleoplasm.52

However, while U1A-SL2 data fit with excluded volume theory
and experiments that predict stabilization they do not agree with
predictions of an increase in association rates.53−56 While it is
possible that an increase in association rates may be offset by
lower diffusion from more crowded environments, our
observations also support recent work that suggests that
macromolecular crowding does not have large effects on
association rates.49,57,58 This is supported by the in vitro study
of the U1A-SL2 complex with lysis buffer and cell lysate which
suggested that weak nonspecific interactions destabilized the
complex.21

■ CONCLUSIONS
Here we evaluate various similarity metrics and their
effectiveness in distinguishing different signal types in
microscopy videos. Lessons learned from clustering simulations
were then applied to actual microscopy videos obtained by FReI
microscopy. Although we provide a single practical example, we

believe that the observations made about clustering methods
generally apply to the clustering of ordered data found in
microscopy videos and are broadly relevant to other areas of
time-resolved fluorescence microscopy, such as fluorescence
correlation spectroscopy (FCS), single-molecule localization
microscopy (SMLM), and fluorescence lifetime imaging
microscopy (FLIM).
Cluster analysis has proven useful for IR and Raman imaging

for classification,12,59 and segmentation of cell or material
types60,61 for samples or tissues.62 We have employed the
workflows described in this paper to better understand the
heterogeneity of de novo lipogenesis and to identify previously
overlooked regions with higher concentrations of free fatty acids
in Huh-7 cells using OPTIR microscopy.61 Further applications
of quantitative clustering and iterative image analysis lie in the in
vivo study of the thermodynamic and kinetic properties of
biomolecules in different organelles, cellular regions, and
biocondensates. They have also shown promise in the
investigation of organism behavior.63 Microscopy videos
contain a wealth of information that often goes unused. We
believe that this work can facilitate the application of these
methods to other time series-based methods, furthering our
understanding of complex biological processes.
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