Supporting Information for: Single Molecule Rectification Induced by the Asymmetry of a Single Frontier Orbital

Wendu Ding, Christian F. A. Negre,* Leslie Vogt, and Victor S. Batista*

Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, and Energy Sciences Institute, Yale University, P.O. Box 27394, West Haven, CT 06516-7394

E-mail: christian.negre@yale.edu; victor.batista@yale.edu

^{*}To whom correspondence should be addressed

Transmission Function: Tight-Binding Model

This section provides a derivation of Eq. (1) of the main text, giving an expression for the transmission function as a function of the applied bias potential for a tight binding model with a single transport channel. The Green's function for such a molecule in between the electron source and drain reservoirs (Figure 1) is

$$\mathscr{G}_{dev}(\varepsilon) = [\varepsilon - H_{dev} - \Sigma_T(\varepsilon)]^{-1}$$
(1)

where ε is the energy, H_{dev} is the molecular Hamiltonian, and Σ_T is the total self-energy of the contacts, which can be decomposed as the sum of the self-energy of the left and right lead contributions: $\Sigma_T(\varepsilon) = \Sigma_L(\varepsilon) + \Sigma_R(\varepsilon)$.

Figure 1: Scheme of a molecule with a single transport channel state $|\varepsilon_0\rangle$, coupled to the left (L) and right (R) electron reservoirs with coupling constants γ_L and γ_R , respectively.

The retarded and advanced Green's functions are

$$\mathscr{G}_{dev}^{+}(\varepsilon) = \frac{1}{\varepsilon - H_{dev} - \Sigma_T(\varepsilon)}$$
(2)

$$\mathscr{G}_{dev}^{-}(\varepsilon) = \frac{1}{\varepsilon - H_{dev} - \Sigma_{T}^{\dagger}(\varepsilon)}$$
(3)

The self-energy for the left (L) and right (R) contacts are

$$\Sigma_{L/R}(\varepsilon) = \Delta_{L/R} + i\Gamma_{L/R}(\varepsilon) \tag{4}$$

where the real part Δ can be approximated as $\Delta_L \simeq \frac{V}{2}$ and $\Delta_R \simeq -\frac{V}{2}$, with *V* the applied bias voltage. The total self-energy is

$$\Sigma_T(\varepsilon) \simeq i[\Gamma_L(\varepsilon) + \Gamma_R(\varepsilon)] \tag{5}$$

Considering there is only one state $|\varepsilon_0\rangle$ between the two contacts, we have $\langle \varepsilon_0 | H_{dev} | \varepsilon_0 \rangle = \varepsilon_0$, and the retarded and advanced Green's function take the form:

$$\mathscr{G}_{dev}^{+}(\varepsilon) = \frac{1}{\varepsilon - \varepsilon_0 - i[\Gamma_L(\varepsilon) + \Gamma_R(\varepsilon)]}$$
(6)

$$\mathscr{G}_{dev}^{-}(\varepsilon) = \frac{1}{\varepsilon - \varepsilon_0 + i[\Gamma_L(\varepsilon) + \Gamma_R(\varepsilon)]}$$
(7)

For either the left or right contact:

$$\Sigma(\varepsilon)_{L/R} = \gamma_{L/R}^{\dagger} \mathscr{G}_{L/R}^{+} \gamma_{L/R} = \gamma_{L/R}^{2} \mathscr{G}_{L/R}^{+}$$
(8)

where $\gamma_{L/R}$ is the coupling between the contact and the device, and $\mathscr{G}^+_{L/R}$ is the retarded Green's function of the contact. The second equality results from the fact that $\gamma_{L/R}$ and $\mathscr{G}^+_{L/R}$ commute in this particular case. Together with the expression $\Sigma(\varepsilon)_{L/R} = \Delta_{L/R} + i\Gamma_{L/R}(\varepsilon)$, we have:

$$\Delta_{L/R} + i\Gamma(\varepsilon)_{L/R} = \gamma_{L/R}^2 \mathscr{G}_{L/R}^+(\varepsilon)$$

$$\Longrightarrow \mathscr{G}_{L/R}^+(\varepsilon) = \frac{\Delta_{L/R}}{\gamma_{L/R}^2} + i\frac{\Gamma_{L/R}(\varepsilon)}{\gamma_{L/R}^2}$$
(9)

The density of states (DOS) of the contact can be expressed by the imaginary part of the retarded Green's function of the contact:^{1,2}

$$DOS(\varepsilon) = -\frac{1}{\pi} Im[\mathscr{G}^+(\varepsilon)]$$
⁽¹⁰⁾

therefore, we can write the imaginary part of the self-energy $\Gamma_{L/R}$ in terms of the contact DOS:

$$DOS_{L/R}(\varepsilon) = -\frac{1}{\pi} Im[\mathscr{G}_{L/R}^{+}(\varepsilon)] = -\frac{1}{\pi} \frac{\Gamma(\varepsilon)_{L/R}}{\gamma_{L/R}^{2}}$$

$$\implies \Gamma(\varepsilon)_{L/R} = -\pi \gamma_{L/R}^{2} DOS_{L/R}(\varepsilon)$$
(11)

Also,

$$\mathscr{A}_{L/R}(\varepsilon) = i[\Sigma_{L/R}(\varepsilon) - \Sigma_{L/R}^{\dagger}(\varepsilon)] = -2\Gamma_{L/R}(\varepsilon)$$
(12)

Therefore, the transmission function can be computed as:

$$T(\varepsilon) = \mathscr{A}_{L}(\varepsilon)\mathscr{G}_{dev}^{+}(\varepsilon)\mathscr{A}_{R}(\varepsilon)\mathscr{G}_{dev}^{-}(\varepsilon)$$

$$= 2\Gamma_{L}(\varepsilon)\mathscr{G}_{dev}^{+}(\varepsilon)2\Gamma_{R}(\varepsilon)\mathscr{G}_{dev}^{-}(\varepsilon)$$

$$= \frac{4\Gamma_{L}(\varepsilon)\Gamma_{R}(\varepsilon)}{(\varepsilon - \varepsilon_{0})^{2} + [\Gamma_{L}(\varepsilon) + \Gamma_{R}(\varepsilon)]^{2}}$$

$$= \frac{4\pi^{2}\gamma_{L}^{2}DOS_{L}(\varepsilon)\gamma_{R}^{2}DOS_{R}(\varepsilon)}{(\varepsilon - \varepsilon_{0})^{2} + \pi^{2}[\gamma_{L}^{2}DOS_{L}(\varepsilon) + \gamma_{R}^{2}DOS_{R}(\varepsilon)]^{2}}$$
(13)

Under a voltage bias V, we have:

$$T(\varepsilon) = \frac{4\pi^2 \gamma_L^2 DOS_L(\varepsilon - \frac{V}{2}) \gamma_R^2 DOS_R(\varepsilon + \frac{V}{2})}{(\varepsilon - \varepsilon_0)^2 + \pi^2 [\gamma_L^2 DOS_L(\varepsilon - \frac{V}{2}) + \gamma_R^2 DOS_R(\varepsilon + \frac{V}{2})]^2}$$
(14)

Additional figures

Figure 2: Leads used for building the extended systems described in the text. The Au lattice constant of the hcp lattice is 4.080 ÅThe face of the leads is the (111) surface.

Figure 3: I-V curves for Au_L-S-Ph-amide-Ph-S-Au_R for various different S-Au distances.

Figure 4: I-V curves for Au_L -S-Ph-amide-Ph-S- Au_R for various rotational orientations of the molecule with respect to the contact.

Coordinates of isolated studied systems

HS-Ph-amide-Ph-SH

С	-4.67450400	-0.20420200	-0.02467400
С	-3.94683100	-1.37807200	-0.25661100
С	-3.97529100	0.98643100	0.19883800
С	-2.55787700	-1.35169100	-0.26369100
Н	-4.46321200	-2.31750500	-0.42910000
С	-2.58231400	1.01979600	0.19793000
Н	-4.51604700	1.91156900	0.37587200
С	-1.85676200	-0.15745000	-0.03641000
Н	-2.01053000	-2.27430200	-0.44378100
Н	-2.05262700	1.94605300	0.36696900
N	-0.44817600	-0.21925000	-0.04407200
Н	-0.06535500	-1.12745300	-0.26018600
С	0.46070200	0.80995600	0.07599500
0	0.14115700	1.99055500	0.17789900
С	1.90237500	0.39152300	0.05640800
С	2.84562000	1.36365600	-0.30164600
С	2.36007000	-0.88709700	0.40603100
С	4.20176300	1.06435900	-0.34469600
Н	2.49064000	2.35922700	-0.54465400
С	3.71692900	-1.19356900	0.37559500
Н	1.66776300	-1.65122300	0.74868600
С	4.65036000	-0.22121900	-0.00911500

Н	4.91104300	1.83270500	-0.63736800
Н	4.05145800	-2.18570700	0.66308500
S	-6.46079400	-0.30232900	-0.04553100
S	6.37123600	-0.68625000	-0.03993900
Н	-6.69517500	0.96005400	0.36047800
Н	6.85750900	0.51962300	-0.39088700

HS-stilbene-SH optimized structure

С	0.47890500	-0.47538500	0.00345300
С	1.92731500	-0.26994300	0.00606600
С	2.77580700	-1.38920900	-0.06945900
С	2.54100100	0.99647700	0.08251800
С	3.92175800	1.13386600	0.07667900
С	-1.92731100	0.27005100	0.00583500
С	-2.77637100	1.38995500	-0.07054300
С	-4.16061200	1.26307600	-0.07673900
С	-4.75058900	-0.00475600	-0.00324500
С	-3.92248000	-1.13392000	0.07803800
С	-2.54059100	-0.99547400	0.08304500
Н	-4.78271700	2.15114300	-0.13898500
Н	-4.35793200	-2.12702500	0.14100800
Н	-1.93177000	-1.89117300	0.15416800
С	-0.47878900	0.47533900	0.00353700
С	4.16138900	-1.26321800	-0.07487800
С	4.75064400	0.00377100	-0.00307100
Н	4.36185600	2.12504400	0.13643200
Н	1.93187400	1.89195400	0.15218400
Н	4.77942600	-2.15431300	-0.13464900
Н	2.33757900	-2.38228500	-0.12724900
Н	-2.33775500	2.38270200	-0.12923900
Н	0.17707900	-1.52141000	-0.00721500
Н	-0.17694600	1.52127300	-0.00666500
S	6.51738200	0.26104500	-0.00153000
S	-6.53308800	-0.10589100	-0.01224900
Н	6.86950300	-1.03368900	-0.11836900
Н	-6.61935100	-1.44845000	0.05164000

HS-stilbene-SH twisted structure

С	0.44773000	0.33651000	-0.00648200
С	1.91044200	0.19836200	-0.00507700
С	2.70345000	1.35748700	0.00064900
С	2.57832200	-1.04054200	-0.00893700

С	3.96454500	-1.11484200	-0.00613300
С	-1.93780700	-0.40060500	0.00034300
С	-2.65301300	-0.29528400	1.20227100
С	-4.02905500	-0.08047700	1.20830900
С	-4.73012600	0.03191800	0.00103000
С	-4.02987600	-0.07354600	-1.20597200
С	-2.65251700	-0.28907400	-1.20010200
Н	-4.55685400	0.00160500	2.15407200
Н	-4.55313100	0.01401200	-2.15382700
Н	-2.12227700	-0.36754500	-2.14477900
С	-0.46848800	-0.64451900	0.00014900
С	4.09425000	1.29575100	0.00347600
С	4.74007300	0.05497200	0.00029400
Н	4.44981100	-2.08651600	-0.00916900
Н	2.00873300	-1.96450100	-0.01478300
Н	4.67113000	2.21593900	0.00816300
Н	2.21919300	2.33061900	0.00349000
Н	-2.12243000	-0.37872100	2.14624000
Н	0.08668100	1.36466900	-0.01269200
Н	-0.15107700	-1.68762900	0.00989400
S	6.51723700	-0.12038300	0.00329100
S	-6.49533300	0.30916900	0.08077600
Н	6.80832300	1.19456300	0.01311700
Н	-6.71613600	0.32626800	-1.24770400

Sample imput file with the coordinates for the full system of Au_L-

S-Ph-amide-Ph-S-Au_R

Sample input for the L-S-Ph-amide-Ph-S-R system %block LatticeVectors 30.000 0.000 0.00000 0.000 30.000 0.00000 0.00000 0.00000 45.74497 %endblock LatticeVectors PAO.BasisType split PAO.SplitNorm 0.15 %block PAO.BasisSizes Au DZ

DΖ S С DΖ Н DΖ Ν DΖ 0 DΖ %endblock PAO.BasisSizes PAO.EnergyShift 0.01 eV %block kgrid_Monkhorst_Pack 0 0 0.0 1 0 1 0.0 0 0.0 0 0 1 %endblock kgrid_Monkhorst_Pack BandLinesScale ReciprocalLatticeVectors XC.functional GGA XC.authors PBE MeshCutoff 200.0 Ry ElectronicTemperature 300 K MaxSCFIterations 30000 DM.MixingWeight 0.02 4 DM.NumberPulay 1.0D-5 DM.Tolerance DM.UseSaveDM Т SolutionMethod transiesta TS.HSFileLeft AuLeads.TSHS TS.NumUsedAtomsLeft 20 TS.HSFileRight AuLeads.TSHS TS.NumUsedAtomsRight 20 TS.TBT.NPoints 1000 TS.TBT.Emin -1.0 eV TS.TBT.Emax 1.0 eV TS.TBT.OutputRegionData False TS.BiasContour.NumPoints 100 TS.ComplexContour.Emin -20.0 Ry TS.ComplexContour.NumCircle 100 TS.ComplexContour.NumLine 20 TS.ComplexContour.NumPoles 10 TS.BiasContour.Eta 10D-4 Ry TS.Voltage VOLTAGE eV

%block	Chemical	emicalSpeciesLabel			
	1	79	Au		
	2	16	S		
	3	6	С		
	4	1	Н		
	5	7	Ν		
	6	8	0		
0 11 7	1 01 '	10 '	т 1		

%endblock ChemicalSpeciesLabel

AtomicCoordinatesFormat Ang

%block AtomicCoordinatesAndAtomicSpecies

-0.83280000	-1.44250000	0.00000000	1	Au	1
1.66560000	0.0000000	0.00000000	1	Au	2
-0.83280000	1.44250000	0.00000000	1	Au	3
0.00000000	-2.88500000	2.35560000	1	Au	4
-2.49850000	-1.44250000	2.35560000	1	Au	5
2.49850000	-1.44250000	2.35560000	1	Au	6
0.0000000	0.0000000	2.35560000	1	Au	7
-2.49850000	1.44250000	2.35560000	1	Au	8
2.49850000	1.44250000	2.35560000	1	Au	9
0.0000000	2.88500000	2.35560000	1	Au	10
-0.83280000	-1.44250000	4.71120000	1	Au	11
1.66560000	0.0000000	4.71120000	1	Au	12
-0.83280000	1.44250000	4.71120000	1	Au	13
0.0000000	-2.88500000	7.06680000	1	Au	14
-2.49850000	-1.44250000	7.06680000	1	Au	15
2.49850000	-1.44250000	7.06680000	1	Au	16
0.0000000	0.0000000	7.06680000	1	Au	17
-2.49850000	1.44250000	7.06680000	1	Au	18
2.49850000	1.44250000	7.06680000	1	Au	19
0.0000000	2.88500000	7.06680000	1	Au	20
-0.83280000	-1.44250000	9.42240000	1	Au	21
1.66560000	0.0000000	9.42240000	1	Au	22
-0.83280000	1.44250000	9.42240000	1	Au	23
0.0000000	-2.88500000	11.77800000	1	Au	24
-2.49850000	-1.44250000	11.77800000	1	Au	25
2.49850000	-1.44250000	11.77800000	1	Au	26
0.0000000	0.0000000	11.77800000	1	Au	27
-2.49850000	1.44250000	11.77800000	1	Au	28
2.49850000	1.44250000	11.77800000	1	Au	29
0.0000000	2.88500000	11.77800000	1	Au	30
0.0000000	0.0000000	14.09800000	2	S	31
-0.02008000	-0.15150000	15.88056000	3	С	32
-0.42057000	-2.27107000	15.97585000	4	Η	33
0.38445000	1.95454000	16.15478000	4	Η	34

-0.24329000	-1.36252000	16.54395000	3	С	35
0.21218000	1.00008000	16.64291000	3	С	36
-0.24178000	-1.43752000	17.93531000	3	С	37
0.21987000	0.93217000	18.03045000	3	С	38
-0.41059000	-2.37921000	18.43713000	4	Η	39
0.40020000	1.83800000	18.60507000	4	Η	40
-0.00712000	-0.28250000	18.69564000	3	С	41
0.00116000	-0.26285000	20.10544000	5	Ν	42
0.21745000	0.63350000	20.51516000	4	Η	43
-0.22057000	-2.48930000	20.62852000	6	0	44
-0.11852000	-1.31878000	20.98318000	3	С	45
-0.79067000	1.10520000	22.26360000	4	Η	46
-0.09830000	-0.94365000	22.43672000	3	С	47
-0.44771000	0.32071000	22.93260000	3	С	48
0.50301000	-2.92806000	22.96561000	4	Н	49
0.26016000	-1.94355000	23.35031000	3	С	50
-0.41669000	0.58647000	24.29800000	3	С	51
-0.70402000	1.56816000	24.66218000	4	Н	52
0.30380000	-1.68495000	24.71478000	3	С	53
-0.03158000	-0.41336000	25.20177000	3	С	54
0.59678000	-2.47416000	25.40064000	4	Η	55
0.00000000	0.00000000	26.93577000	2	S	56
0.00000000	-2.88500000	29.25577000	1	Au	57
-2.49850000	-1.44250000	29.25577000	1	Au	58
2.49850000	-1.44250000	29.25577000	1	Au	59
0.0000000	0.0000000	29.25577000	1	Au	60
-2.49850000	1.44250000	29.25577000	1	Au	61
2.49850000	1.44250000	29.25577000	1	Au	62
0.0000000	2.88500000	29.25577000	1	Au	63
-0.83280000	-1.44250000	31.61137000	1	Au	64
1.66560000	0.00000000	31.61137000	1	Au	65
-0.83280000	1.44250000	31.61137000	1	Au	66
0.0000000	-2.88500000	33.96697000	1	Au	67
-2.49850000	-1.44250000	33.96697000	1	Au	68
2.49850000	-1.44250000	33.96697000	1	Au	69
0.0000000	0.00000000	33.96697000	1	Au	70
-2.49850000	1.44250000	33.96697000	1	Au	71
2.49850000	1.44250000	33.96697000	1	Au	72
0.0000000	2.88500000	33.96697000	1	Au	73
-0.83280000	-1.44250000	36.32257000	1	Au	74
1.66560000	0.00000000	36.32257000	1	Au	75
-0.83280000	1.44250000	36.32257000	1	Au	76
0.00000000	-2.88500000	38.67817000	1	Au	77
-2.49850000	-1.44250000	38.67817000	1	Au	78
2.49850000	-1.44250000	38.67817000	1	Au	79
0.00000000	0.00000000	38.67817000	1	Au	80

-2.49850000	1.44250000	38.67817000	1	Au	81
2.49850000	1.44250000	38.67817000	1	Au	82
0.0000000	2.88500000	38.67817000	1	Au	83
-0.83280000	-1.44250000	41.03377000	1	Au	84
1.66560000	0.00000000	41.03377000	1	Au	85
-0.83280000	1.44250000	41.03377000	1	Au	86
0.0000000	-2.88500000	43.38937000	1	Au	87
-2.49850000	-1.44250000	43.38937000	1	Au	88
2.49850000	-1.44250000	43.38937000	1	Au	89
0.0000000	0.00000000	43.38937000	1	Au	90
-2.49850000	1.44250000	43.38937000	1	Au	91
2.49850000	1.44250000	43.38937000	1	Au	92
0.0000000	2.88500000	43.38937000	1	Au	93
%endblock Atomi	cCoordinatesAr	ndAtomicSpecies	5		

References

- Zahid, F.; Paulsson, M.; Datta, S. In Advanced Semiconductor and Organic Nano-Techniques III: Physics and Technology of Molecular and Biotechnology Systems; Morkoç, H., Ed.; Academic Press: San Diego, 2003; Chapter 1 - Electrical Conduction through Molecules, pp 1 – 41.
- (2) Economou, E. *Green's Functions in Quantum Physics*, 3rd ed.; Springer Series in Solid-State Sciences; Springer, 2006.