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Abstract 

 The function of a protein is predicated upon its three dimensional fold. Representing 

its complex structure as a series of repeating secondary structural elements is one of the most 

useful ways by which we study, characterize, and visualize a protein. Consequently, 

experimental methods that quantify the secondary structure content allow us to connect a 

protein’s structure to its function. Here, we introduce an automated gradient descent-based 

method we refer to as Secondary Structure Distribution by NMR that allows for rapid 

quantification of the protein secondary structure composition of a protein from a single, 1D 

13C NMR spectrum without chemical shift assignments. The analysis of nearly 900 proteins 

with known structure and chemical shifts demonstrates the capabilities of our approach. We 

show that these results rival alternative techniques such as FT-IR and circular dichroism that 

are commonly used to estimate secondary structure compositions. The resulting method 

requires only the primary sequence of the protein and its referenced 13C NMR spectrum.  Each 

residue is modeled in an ensemble of secondary structures with percentage contributions from 

random coil, α-helix, and β-sheet secondary structures obtained by minimizing the difference 

between a simulated and experimental 1D 13C NMR spectrum. The capabilities of the method 

are demonstrated as applied to samples at natural abundance or enriched in 13C, acquired by 
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either solution or solid-state NMR, and even on low magnetic field benchtop NMR 

spectrometers. This approach allows for rapid characterization of protein secondary structure 

across traditionally challenging to characterize states including liquid-liquid phase-separated, 

membrane-bound, or aggregated states. 

 

  

Introduction 

The relationship between protein structure and biological function is central to 

structural biology. One of the most useful organizing principles for communicating and 

classifying the complex structures of proteins is that of secondary structure elements. Our 

understanding of protein structure is greatly aided by visualization of three-dimensional 

arrangements of protein domains adopting canonical secondary structural forms. Therefore, a 

wide range of computational tools have been developed to predict, classify, and recognize 

secondary structure domains in protein structures(1). A variety of spectroscopic tools have also 

been developed to experimentally determine secondary structures and monitor changes in 

secondary structures induced by environmental conditions(2-4). For example, circular 

dichroism (CD) is routinely applied to determine changes in secondary structure elements of 

a protein upon ligand binding or melting.  

A limitation of any optical spectroscopy-based secondary structure determination is the 

difficulty in comparing results from dilute aqueous phase samples with data from liquid protein 

droplets, condensed complex coacervates, and/or solids. At the same time, detection of changes 

in protein conformation within these states is of prime importance for understanding their 

role in biological function and disease. Unfortunately, routine characterization of those states 

is typically difficult for optical techniques due to light scattering (2, 5). Nuclear Magnetic 

Resonance (NMR) spectroscopy, on the other hand, is immune to such effects, and able to 

probe solution, gel and solid phases equally well (6, 7). This has allowed NMR to analyze 
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protein conformation and its response to environmental conditions across a variety of 

biologically relevant phases, including in vivo (8).  

NMR spectroscopy, especially 13C NMR, is a powerful method for mapping secondary 

structure elements onto the protein primary sequence (9-11). 13C NMR chemical shifts for CO, 

Ca, and Cb carbons are largely a reflection of protein backbone torsion angles and thus their 

secondary structures (9, 10). For example, Figure 1A shows database(12) 13C chemical shift 

distributions for alanine and isoleucine colored by their assigned secondary structures; α-helix 

as red, β-sheet as blue, and grey as random coil. In the case of alanine (Figure 1A, top), the 

peak of the respective secondary structure-dependent chemical shift distributions are well 

separated. In this case, any one of the backbone chemical shifts can lead to relatively confident 

identification of secondary structure for a single residue. Isoleucine, in contrast (Figure 1A, 

bottom), has less separated distributions. The CO and Cα atoms are significantly overlapped 

for β-sheet and random coil, while the Cβ shifts are instead overlapped between α-helix and 

random coil. Figure 1B plots the mode 13Cα chemical shift for each amino acid color coded by 

secondary structure, showing that this shift is good at distinguishing α-helices for all amino 

acids.  

Biological NMR studies have long utilized the relationship between chemical shift and 

secondary structure. The chemical shift index, for example, reports the presence of a-helical 

or b-sheet content according to the departure of an observed chemical shift of a residue relative 

to its random coil average(11, 13). Alternatively, tools such as TALOS-N use chemical shifts to 

directly predict the backbone dihedral angles which correspond to specific secondary structure 

elements (14). While powerful and information-rich, the use of NMR for this purpose is labor 

intensive, since sequential site-specific assignments of backbone chemical shifts are required. 

In many instances, however, the percentage composition by secondary structural type alone is 

sufficient for answering important questions. As a result, analytical methods such as CD are 

more routinely utilized for protein secondary structure composition determination in 

biophysical chemistry.  
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In this paper we introduce a method to determine the secondary structure percentage 

composition of a protein using the information content contained in a single, one-dimensional 

13C NMR spectrum. This method, called secondary-structure distribution by NMR (SSD-

NMR), bypasses the need for chemical shift assignments. Instead, SSD-NMR uses the general 

relationship between 13C shifts and secondary structure to fit each residue as an ensemble of 

secondary structures. The resulting output gives an overall secondary structure composition. 

We show that method works on data acquired with either solution or solid-state NMR and can 

be used on proteins across their differing states; from soluble monomers, to protein-rich 

liquids, protein aggregates, and crystals. The method presented here differs from prior NMR 

approaches to evaluating secondary structure from NMR spectra by employing tools 

commonly employed in deep learning algorithms, along with validation by application to a 

large curated collection of NMR chemical shifts and structures. Using gradient descent 

optimization, the SSD-NMR algorithm reproduces with high fidelity the percentage secondary 

structure content of nearly 900 proteins from the protein data bank. These include soluble 

proteins that are accessible to optical-based methods as well as those in condensed phases. This 

algorithm is automated and simple to apply to proteins that are isotopically enriched in 13C, 

including data acquired on low-field benchtop NMR spectrometers. We also demonstrate 

practical approaches to apply this method to proteins without isotopic enrichment on 

instrumentation that is available in most shared NMR resource centers with standard 

experiments.   
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Figure 1: Protein backbone 13C chemical shifts depend strongly on secondary structure. 

(A) Distributions of database assignments of the 13Ca,13CO, and 13Cb chemical shifts for 

alanine as a function of secondary structure (top) which have excellent dispersion in the 

secondary chemical shift for each carbon. (bottom) The same distributions for isoleucine 

show that it has much less dispersion in the secondary shifts, most notably between b-sheet 

and random coil. (B) The mode 13Ca chemical shift for each amino acid type colored by 

secondary structure: Red = a-helix, Grey = Coil, Blue = b-Sheet.  

  

https://doi.org/10.26434/chemrxiv-2024-qt9g4 ORCID: https://orcid.org/0000-0002-8146-5066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qt9g4
https://orcid.org/0000-0002-8146-5066
https://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

2. Methods 

2.1 Generating Simulated 13C NMR Spectra from Protein Secondary-Structure Content  

We simulate a Secondary-Structure Content Simulated Spectra (SCSS) 13C NMR 

spectrum of a protein by initializing peaks for each atom in a protein as an ensemble of three 

secondary structures: α-helix, β-sheet, and random coil. In this work we have chosen to use 

the STRIDE(15) algorithm to derive residue specific secondary structure classifications from 

structural data. For simplicity, we reduced the secondary structures defined by STRIDE to 

three types by combining: (1) 3-10 Helix, Pi-Helix, and a-Helix into a-helix; (2) Extended 

Conformation, Isolated Bridge, and b-Sheet into b-sheet; (3) Turn, Coil and other unidentified 

secondary structures into random-coil. We assign the mode backbone chemical shift for each 

atom given the residue type and secondary structure using the values reported by Fritzsching 

et al. (12) (Fig. 1B, Fig S1). The chemical shift of sidechain atoms beyond Cb do not depend 

strongly on backbone dihedral angles and are thus initialized as a single peak at their respective 

mode chemical shifts irrespective of secondary structure. These peaks are initialized using the 

Lorentzian lineshape profile: 

 

𝐺!"#$%&'()%(𝑥, 𝜇, 𝜎) =
*

+,-(/01)!34"!5
!
6
, [1] 

where µ is the center of the line shape and 𝜎 is the width, evaluated at point	𝑥.  

To generate the SCSS of a protein, we account for the contribution from the mode 

chemical shift of each atom from each residue and each secondary structure. In this way, a 

single backbone atom is initialized as a linear combination of three peaks, where each peak is 

centered at its respective mode chemical shift according to each secondary structure. The 

intensity from the backbone atoms	𝐼7)897"%$, at any ppm value 𝑥, contributed by the backbone 

atoms in the SCSS is given by the equation: 

 

𝐼+7)897"%$(𝑥) = ∑ 𝐺(𝑥,(,9,;; 𝛿(,9;; + ∆𝛿(,9;; − 𝛿# , 𝜎)𝑎(;;, [2] 
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where 𝐺(𝑥, 𝜇, 𝜎) is the Lorentzian lineshape profile defined in equation 1. 𝛿(,9;;  is the mode 

chemical shift for atom 𝑘 from amino acid 𝑖 for each secondary structure (𝑠𝑠, from α-helix, β-

sheet, and coil) and 𝜎 	is a global linewidth parameter. Since gradient descent requires 

continuous derivatives, for expediency our algorithm fits a parameter b where 𝑏+ = 𝜎, which 

ensures that the linewidth is positive. ∆𝛿(,9;;  is a perturbation term for each initialized peak and 

are all initialized as 0. 𝛿# is a global self-referencing parameter which allows the SCSS to be 

uniformly shifted. This parameter can be initialized by the user if a referencing offset is known, 

fitted by our algorithm, or both. The 𝑎(;;values are the contribution from each secondary 

structure where 

∑ 𝑎(;; =;; 𝑎(<=$>(/ + 𝑎(
?;=$$& + 𝑎(8"(> = 1. [3] 

The intensity from the sidechain atoms 𝐼;(@$8=)(%, at any chemical shift  𝑥, in the SCSS for atom 

𝑘 from amino acid 𝑖 is instead: 

𝐼+;(@$8=)(%(𝑥) = ∑ 𝐺(𝑥,(,9 𝑣(,9 + ∆𝑣(,9 − 𝛿# , 𝜎), [4] 

where 𝑣(,9 is the secondary structure-independent mode chemical shift for atom 𝑘 from amino 

acid 𝑖. Here, 𝜎 is the same global linewidth parameter from Eq. 2. ∆𝑣(,9 is the perturbation 

term for each peak, analogous to ∆𝛿(,9;;   from Eq. 2 and are initialized as 0.	𝛿# is the global re-

referencing parameter from Eq. 2. 

The SCSS of a protein, given its primary sequence, is then generated by summing over 

each atom (𝑘) from each amino acid (𝑖) in the protein. Each atom contributes the same total 

normalized intensity and has the same linewidth (𝜎). In this way, the spectrum depends solely 

on the secondary structure content of each residue (𝑎(;;), the individual perturbations around 

the mode shift (∆𝛿(,9;; , ∆𝑣(,9), a global linewidth parameter (𝜎), and the optional global self-

referencing parameter (𝛿#). The final SCSS is given by summing the intensity from every 

backbone and sidechain atom in the protein. At any chemical shift 𝑥 the intensity is given by: 

𝐼+(𝑥) = 𝐼+7)897"%$(𝑥) + 𝐼+;(@$8=)(%(𝑥) [5] 

 

2.2 Gradient Descent Loss Function 

https://doi.org/10.26434/chemrxiv-2024-qt9g4 ORCID: https://orcid.org/0000-0002-8146-5066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qt9g4
https://orcid.org/0000-0002-8146-5066
https://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

We optimize the values of the percentage secondary structure elements (𝑎(;;) assigned 

to each residue by minimizing the following loss function which compares the jth point in the 

SCSS 𝐼+A to the corresponding point in the experimental spectrum 𝐼A: 

 

𝐿 = ln ;B
C
∑ <𝐼+A − 𝐼A=

+C
A > + ∑ <∆𝛿(,9;;=

+ +(,9,;; ∑ <∆𝑣(,9=
+.(,9  [6] 

 

𝐼A is normalized such that ∑ 𝐼A = 1A . The loss function introduced by Eq. (6) is composed of two 

main terms. The first is the penalty for the difference between the SCSS and the experimental 

spectrum. For this term, we chose to use the log of the squared difference because it will 

provide faster convergence speed when the sum of residuals between the two spectra are small. 

This can be shown by inspecting the derivative of the first term of the loss with respect to 𝑎(;;.  

The difference term in the denominator makes the gradient with respect to 𝑎(;; larger when 

the difference is small: 

D!
D)#

$$ =
∑ +(FG%0F%)H(/,I#,'

$$3∆I#,'
$$0I(,K)%,'

∑ (FG%)0*) F%))!
, [7] 

The second term in the loss enforces a harmonic well on the offsets ∆𝛿(,9;;  and ∆𝑣(,9 (Eqns 2,4). 

To minimize the loss, gradient descent optimization (GD) is used to adjust these offsets for 

each atom, the secondary structure contribution (𝑎(;;) from each residue, the global linewidth 

(𝜎), and the optional global self-referencing parameter (𝛿#) such that the next step is along the 

steepest descent along the loss function landscape. For each step in gradient descent, the 

parameters 𝑎(;; are updated such that the difference between the current step and the previous 

step, 𝑎(;;follows: 

∆𝑎(;; = −𝑟 D!
D)#

$$ [8] 

where 𝑟 is the learning rate, which we set to 0.1. This process is repeated for a number of pre-

determined steps (discussed below) using the ADAM optimizer(16) with default parameters 

b1 of 0.9, b2 of  0.99, ϵ of 10-8, and a weight decay of 0, using PyTorch(17). The output provides 

the optimized parameters.  
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For each residue, the values of 𝑎(<=$>(/  , 𝑎(
?;=$$& and 𝑎(8"(>  are extracted. As we will 

explain in the discussion, many of the amino acids are near-indistinguishable during the fitting 

process based on their mode Cα, Cβ, and CO shifts (Fig S1). Moreover, the 𝑎(;; output cannot 

distinguish individual amino acids within the primary sequence. As such, any residue 𝑋 in the 

sequence can be interchanged with residue 𝑋 + 𝑛 in the sequence so long as it is the same 

amino acid type. Thus, instead of reporting the secondary structure of each residue, we report 

the overall secondary structure content by summing over all of the 𝑎(;;, yielding the proportion 

of each secondary structure, 𝑃(𝑠𝑠) where 𝑠𝑠  is one of a-helix, b-sheet, or coil: 

 

𝑃(𝑠𝑠) = ∑ )#
$$

#

∑ ∑ )#)
$$)

$$)#)
[9] 

 

 

2.3 Optimization of Initialization and Hyperparameters for Gradient Descent 

 An important consideration for our GD based approach is the selection of 

hyperparameters for GD and the initial parameters for the SCSS discussed above (Individual: 

∆𝛿9,;; , ∆𝑣9 , and 𝑎(;;. Global: 𝜎	and 𝛿#). To obtain a set of hyperparameters that are generally 

applicable for the majority of protein NMR 13C spectra, we studied the effect of these 

parameters on convergence criteria. We set initial values of 0 for all ∆𝛿9,;; and ∆𝑣9 , and 0.04 

ppm for the global linewidth	𝜎. We assume equal probabilities for each secondary structure by 

setting 𝑎(;; of 0.33 for a-helix, b-sheet, and coil for all residues. We ran each minimization for 

100 steps. The self-referencing parameter 𝛿# is initialized as 0 unless there is an appropriate 

guess for the referencing offset. For instance, the 13C referencing offset between the biological 

referencing standard DSS (assumed here) and TMS referencing standards is approximately -2.4 

ppm(18), and one could set this for 𝛿# if experimental data was instead referenced to TMS(12, 

18, 19).  

In order to evaluate the efficacy of this set of hyperparameters for GD to converge 

across the range of values expected in experimental data, we extracted the value of the loss 
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function at each step of the GD for simulated experimental spectra of microcrystalline 

ubiquitin (BMRB: 25123)(20) which were generated with varying underlying linewidths 

ranging from 0.2 to 20 (Fig. S2). The value of the loss function converged for all linewidths less 

than 20 ppm within 100 steps of GD as demonstrated by the stability in the value of the loss 

function. However, convergence of GD is not sufficient to show that the fit parameters have 

converged on a set of values that are consistent with the underlying data.  

To determine if GD with our loss function converges in this way, we compare the global 

fitted linewidth parameter 𝜎L(& to the simulated 𝜎;(M. This shows whether convergence of the 

loss function results in a linewidth that matches the value we generated the spectra with. To 

do this, we extracted 𝜎L(& at each step of the GD and observed when oscillations in the fitted 

value ended and GD reached a stable value. Figure 2 shows  𝜎L(& as a function of the number 

of training steps for each generated spectrum with fixed linewidth 𝜎;(M. These results indicate 

that the model converges to a stable 𝜎L(& value very close to the true value 𝜎;(M within 100 

steps when the underlying linewidths are below 20 ppm, which far exceeds the linewidths 

expected in NMR spectra of proteins. When the linewidth is greater than 20 ppm, a choice of 

a larger starting width parameter close to the linewidth leads to faster convergence (Fig S3). 

Additionally, when using the self-referencing parameter, we also observed that additional 

steps are required for convergence, and we recommend a minimum of 500 steps. In the cases 

discussed below, we ran GD for 100 steps as the experimental or simulated linewidths were ≤ 

10 ppm and were not self re-referenced unless specified.  
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Figure 2: Convergence of Gradient Descent with Chosen Hyperparameters. Simulated 

experimental spectra were generated from ubiquitin with varying Lorentzian width ranging 

from 0.2 to 20 ppm. The	Ω parameter was extracted at each step for each linewidth with  

different colored lines representing the SSD-NMR fitted results at each step. The black solid 

lines indicate the different underlying width parameters used. The set of hyperparameters 

(initial Ω=0.04, 100 steps, 0.1 learning rate) is sufficient for spectra with an underlying 

linewidth of ≤ 10 ppm. 
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2.4 Model Testing on Simulated Experimental Spectra from Databases  

To validate our algorithm, we generated simulated experimental 1D 13C spectra (SES) 

using the assigned chemical shifts from proteins found within the PACSY database(21) as 

described in the Experimental Section. PACSY is a SQL database connecting the assigned NMR 

chemical shifts in the Biological Magnetic Resonance Data Bank (BMRB)(22) to their 

applicable structures deposited in the Protein Databank (PDB)(23). We then curated the 

PACSY database using the following criteria: (1) the “Metal_ion” and “Paramagnetic” fields 

within the assembly heading must be filled in and must be either “.” or “no” to exclude proteins 

with metal centers; (2) a protein must have ≥90% completeness for the assignment of backbone 

13C atoms; and (3) the protein sequence is at least 20 residues long. A total of 1839 proteins 

remained in the curated database following this criterion (BMRB and PDB accession codes 

provided in the github repository) This filter eliminated some outliers, which are known to 

exist in the BMRB, as well as proteins with few chemical shift assignments. However, we 

acknowledge that this filter does not exclude all paramagnetic/ion-containing data due to 

mislabeling in the BMRB. Additionally, some entries deposited in the BMRB are known to 

have mis-referenced chemical shifts relative to the DSS standard(12, 24). As a result, we were 

also able to assess the performance of our self re-referencing parameter using these SES. 

For each protein, we generated a SES with signal-to-noise ratio (SNR) of 50 using the 

method described in the Experimental Section, using a Lorentzian line shape with a full-

width-half-maximum (FWHM) of 1.0 ppm. These simulations used only the Ca, Cb, and CO 

carbon shifts since many entries lack the additional side-chain chemical shift assignments. The 

results from this study showed a remarkable correlation between the predicted and the 

STRIDE extracted secondary structure (Fig 3A, Fig S4). We obtained a correlation of 0.97 for 

-helix, 0.91 for b-sheet, and 0.74 for random-coil for well-referenced proteins (<0.2 ppm 

mode predicted referencing offset, 891 of the 1839 proteins, list in github repository). The 

correlation of α-helical content is the highest, and rivals the correlation observed for CD 

measurements (25). Our approach is less reliable at distinguishing between β-sheet and random 

↵
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coil secondary structure elements. This is also observed with CD (25). Expectedly, the 

correlation decreases with increasing chemical shift referencing errors (Fig S6). An additional 

test using the re-referencing parameter 𝛿#  (run for 500 steps for convergence) results in a 

better RMSE for proteins with large reference offsets (>2.7 ppm) but does not outperform the 

results for well-referenced data (<0.2 ppm) without inclusion of the self-referencing parameter 

𝛿# (Fig S7).  

For comparison, we simulated the spectra for the set of 891 well-referenced proteins 

from above with a range of simulated linewidths to test the robustness of our algorithm with 

respect to linewidth (Fig. 3B, 3C).  The observed trend is that with narrow (<0.4 ppm) or 

increasing linewidths (>2 ppm) (Fig 3B), the algorithm tends to have a larger RMSE, most 

notably for random coil. However, the predicted secondary structure percentage composition 

remains relatively stable for a-helix and b-sheet over a range of simulated linewidths from 0.4 

ppm to 9 ppm, with added RMSEs of only 0.01 for a-helix and 0.05 for b-sheet. Similarly, 

using a fixed linewidth of 1 ppm, we tested the effect of signal-to-noise by varying the SNR 

from 1 to 50 (Fig 3C).  The prediction accuracy of a-helix and b-sheet content stabilizes at the 

same value for SNR as low as 2. We also repeated this simulation using an alternative SNR 

based upon the most intense point present in the spectrum (described in the methods). This 

reports on the SNR of the envelope of the spectrum, instead of the SNR of an individual peak. 

These results (Figure S5) show that SSD-NMR stabilizes even when the SNR of the envelope 

is as low as 5 ppm. 
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Figure 3: Secondary Structure Distribution Prediction from Simulated Spectra from 

Database Chemical Shifts. (A) Correlation between SSD-NMR secondary structure (vertical 

axis) and the secondary structure reported by STRIDE (horizontal axis) for each secondary 

structure type from simulated experimental spectra of 891 proteins. Correlation coefficients of 

0.74 for random coil, 0.91 for b-sheet and 0.97 for a-helix show the accuracy of SSD-NMR. 

(B) The correlation and RMSE obtained by varying linewidth parameters in the simulated 

spectrum. While the performance decreases with increasing linewidth, the algorithm remains 

relatively constant for a-helix and beta-sheet predictions for linewidths that are less than 9 

ppm. (C) The correlation and RMSE resulted by using different 𝑆𝑁𝑅;(M ratios demonstrate the 

reliability of this approach for signal to noise ratios as low as 2. 
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2.5 Comparison of SSD-NMR to TALOS-N 

We further evaluated the performance of our model by comparing its results to those 

obtained when site specific chemical shift assignments are available. To do this, we ran 

TALOS-N(14), a widely used program for predicting secondary structure from assigned 

chemical shifts, on a subset of the 891 well-referenced proteins used above. From the BMRB 

website, 332 NMR-STAR files with complete backbone chemical shift assignments were 

downloaded. Figure 4 demonstrates the correlation between the resulting subset of 332 well-

referenced proteins and the corresponding STRIDE extracted secondary content. TALOS-N 

predicts the probability (Q_L = coil, Q_H = a-helix, and Q_E = b-sheet) of each residue being 

in each of the three secondary structures. Since Q_L, Q_H, and Q_E represent a distribution 

for each residue, we report the extracted secondary structure content from TALOS-N by taking 

the sum over the continuous probabilities. TALOS-N shows excellent agreement to STRIDE, 

with correlations of 0.99, 0.97, and 0.92 for α-helix, β-sheet, and random coil, respectively. 

We compared the performance of SSD-NMR to the 332 proteins (Figure S8) and then 

compared them to the TALOS-N output, with TALOS-N RMSEs being only 2.2%, 2.9%, and 

4.6% better for α-helix, β-sheet, and random coil, respectively (Fig. 3). Furthermore, Figure 5 

shows the correlation of SSD-NMR to the TALOS-N results from Figure 4. The correlation 

between SSD-NMR and TALOS-N is higher for all secondary structure types than the 

correlation between SSD-NMR and STRIDE, as shown in Figure 3.  
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Figure 4: Secondary Structure Distribution Prediction from TALOS-N compared to 

STRIDE Extracted Secondary Structure. Results for 332 well-referenced proteins extracted 

from TALOS-N. The agreement between TALOS-N and STRIDE demonstrates the strong 

relationship between NMR chemical shifts and protein secondary structure. 

 

 

Figure 5: Secondary Structure Distribution Prediction from SSD NMR compared to 

TALOS-N Secondary Structure Distribution. Benchmarking SSD-NMR to TALOS-N on the 

https://doi.org/10.26434/chemrxiv-2024-qt9g4 ORCID: https://orcid.org/0000-0002-8146-5066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qt9g4
https://orcid.org/0000-0002-8146-5066
https://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

same subset of proteins as shown in Figure 4. The SSD-NMR shows better agreement with 

TALOS-N than with STRIDE (Figure 3).   

 

 

2.6 Testing the Model’s Robustness to Experimental Baseline Offsets 

We generated an SES with a linewidth of 1 ppm and SNR of 50 and then applied a series 

of constant baseline offsets relative to the largest intensity in the spectrum (Figure S9). This 

was done to approximate a constant baseline offset in an experimental dataset. To do this, we 

first determined the maximum intensity, 𝐼𝑚𝑎𝑥, defined as 𝐼𝑚𝑎𝑥=(𝐼1,𝐼2…𝐼𝑁). We then shift 

the entire spectrum by the percent deviation, 𝐷, such that each intensity was adjusted by 

𝐷*𝐼𝑚𝑎𝑥. For instance, If 𝐷 is equal to 0.1, the spectrum of interest will be raised by 10% of its 

maximum intensity. By analyzing the result of the 891 well-referenced proteins, we 

determined that the algorithm produces optimum results when the baseline is flat with no 

deviation, (Figure S9).  When |𝐷| < 0.05, SSD-NMR produces excellent results with errors that 

are comparable to a case when there is no baseline offset. However, if 𝐷 is around -0.07 or less, 

the correlations become negative or unstable. The loss of correlation is abrupt if 𝐷 continues 

to take values less than -0.07. This is not observed when 𝐷 takes values higher than 0.07. This 

is due to the fact that negative intensities result in ill-defined normalization. To ameliorate 

this instability from negative intensities that may occur when experimental data is to be fit, 

we calculate the mean negative intensity of the spectrum and add that value to each datapoint 

prior to GD minimization as further described in the Experimental Methods section. 

 

3. Results 

3.1 SSD-NMR Testing using Solution NMR of Ubiquitin 

         Figure 6A shows a 1D 13C NMR directly polarized spectrum acquired on uniformly 13C, 

15N isotopically labeled Ubiquitin at 500 MHz 1H frequency. The pulse sequence used to 

acquire this data was a single pulse excitation spectrum with a 5 second interscan delay, and is 
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a default 13C detected experiment included on most spectrometers. We then input this 

spectrum into SSD-NMR along with the amino acid protein sequence for ubiquitin. We 

initialized the algorithm with a window ranging from 10 to 195 ppm, and an initial σ of 0.04 

ppm.  We then ran SSD-NMR for 100 steps with a learning rate of 0.1, as discussed above. The 

SSD-NMR algorithm best-fit SCSS predicted 39.1% random coil, 25.8% α-helix, and 35.1% b-

sheet content, which was nearly identical to the secondary structure extracted by STRIDE 

from the solution NMR PDB file 1D3Z (39.5% coil, 25.0% helix, and 35.5% sheet, Figure 

6C,6D). We also processed the Ubiquitin spectrum with different apodization to produce 

different apparent linewidths in the processed data. Fig. 6B compares no apodization ( top) and 

with a 10 ppm Gaussian filter ( bottom).  In both cases, the observed convergence is consistent 

with the estimate of the set of hyperparameters chosen for gradient descent and the estimates 

for the secondary structure content lie within the RMSEs predicted for each linewidth from 

our testing.  
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Figure 6 SSD NMR of Ubiquitin. (A) Experimental 13C single pulse excitation spectrum (black) 

of uniformly 13C, 15N labeled Ubiquitin at 500 MHz 1H Frequency, 128 scans with 0.2 ppm 

Gaussian line-broadening overlaid with SSD-NMR simulated spectrum (magenta). (B) 

Examples of the spectrum shown in from Fig.6A with no line broadening (top) and 10 ppm 

Gaussian line broadening (bottom) overlaid with the respective simulated spectrum. (C) 

Estimated secondary structure content of each spectrum compared to the secondary structure 

of Ubiquitin extracted via STRIDE from the solution NMR structure of Ubiquitin PDB: 1D3Z.  

(D) Structure of Ubiquitin (PDB: 1D3Z) colored via secondary structure. 
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3.2 SSD-NMR using Solid-State NMR Spectroscopy 

We further tested our SSD-NMR algorithm using solid-state NMR spectroscopy of the 

microcrystalline protein GB1. A directly polarized 13C spectrum was acquired on uniformly 

13C,15N isotopically labelled GB1 (Fig. 7A) at 800 MHz 1H frequency. In this case, the pulse 

sequence was a single pulse excitation with a 110 µs spin echo to remove background signals. 

The spectrum was processed with 0.4 ppm Gaussian line broadening apodization. We 

initialized SSD-NMR as was done for the ubiquitin example. The predicted SCSS (Fig. 7A) 

indicated 18.5% random coil, 52.5% b-sheet, and 29.1% for α-helix. These results follow the 

secondary structure reported by Franks et al.(26) from the solid-state NMR chemical shift 

assignments (Fig. 7C) of 19.6% random coil, 51.8% b-sheet and 28.6% α-helix. However, they 

vary from the secondary structure extracted from STRIDE from the resulting ssNMR structure, 

PDB: 2QMT (30.4% coil, 42.9% sheet, and 26.8% helix). Nevertheless, these results fall within 

the predicted RMSEs from the database testing. Notably, SSD-NMR does not fit the first-order 

spinning side sideband from magic-angle spinning (Fig. 7A). This shows that SSD-NMR is 

robust to artifacts in regions of the spectrum not expected to have signals from protein, and 

that the constraint on the ∆𝛿9,;; and ∆𝑣9 parameters prevents SSD-NMR from overfitting the 

experimental data. 
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Figure 7: Secondary Structure Distribution of GB1 determined by Gradient Descent 

and Solid-State NMR. (A) Experimental Solid-State NMR spectrum (black) of uniformly 13C, 

15N labeled GB1 13C acquired at 800 MHz 1H frequency signal-averaged for 43 minutes overlaid 

with the simulated spectrum (magenta) derived from SSD-NMR. s.s.b. corresponds to the first 

order spinning side band from magic-angle spinning. (B) The secondary structure distribution 

found by this work derived from the simulated spectra in (A), compared to the 3D structure of 

GB1 from PDB: 2QMT colored by secondary structure: (blue) b-sheet (red) a-helix, (silver) 

coil. (C) Secondary structure distribution reported by Franks et al.(26) from chemical shift 

assignments (left) vs STRIDE classification extracted from PDB 2QMT (right).  
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3.3 Application of SSD-NMR to Natural Abundance Protein Samples 

To assess the feasibility of using SSD-NMR on protein samples at natural abundance, 

we acquired a 13C 1D NMR spectrum of 1 mM Hen Egg White Lysozyme at 600 MHz 1H 

frequency doped with 20 mM CuEDTA and 2mM DSS. CuEDTA is a water-soluble 

paramagnetic doping agent commonly used in NMR spectroscopy to increase both the 

longitudinal and transverse relaxation rates of the samples (27). In practice, this permits 

dramatically shortened interscan delays which allows for rapid signal averaging at the cost of 

increased linewidths in the spectrum. We acquired 16,384 scans with an interscan delay of 1 s 

in 5 hours on a 1H detect cryo-probe (Fig. 8A).  The observed natural linewidths in the sample 

ranged from 20 to 40 Hz (0.1 to 0.2 ppm). The data was processed with 150 Hz of exponential 

apodization to bring the linewidths near the optimal width of 1.0 ppm found above. The SSD 

NMR results on this spectrum (Fig 6A) gave 28.4% coil, 26.4% b-sheet, and 45.2% -helix (Fig. 

8B). We then compared our result on lysozyme to the STRIDE extracted distribution from the 

X-Ray crystal structure (PDB:6LYZ) as well as those reported by literature from CD(28), 

Raman, and FT-IR (Fig. 8B). Results from SSD-NMR are consistent with the STRIDE extracted 

structure for α-helical content and follows the trend of increased b-sheet content predicted by 

other solution-based techniques.  

 

↵
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Figure 8: Secondary Structure Distribution of Hen Egg-White Lysozyme. (A) Experimental 

13C NMR Spectrum of natural abundance 1 mM Hen Egg White Lysozyme (black) doped with 

20 mM Cu(II)-EDTA (5 hours acquisition) overlaid with the simulated spectrum (magenta). 

(B) Predicted secondary structure distributions for Lysozyme by different experimental 

methods. The SSD-NMR distribution predicted from (A) (left). The STRIDE reported 

secondary structure from the X-Ray structure 6LYZ (middle-left). Averaged secondary 

structure of Lysozyme by Circular Dichroism as reported by Greenfield(28) (middle). FT-IR 

distribution as reported by Dong et al. (29) (middle-right). Raman-determined distribution as 

reported by Di Foggia et al. (30) (right). 
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3.4 SSD-NMR at Low Magnetic Field 

We also acquired a spectrum with the isotopically labeled ubiquitin sample studied 

above on a benchtop 60 MHz 1H Frequency (1.4 T) NMR Spectrometer (Magritek Spinsolve 

60 MHz). We acquired the default 1D CARBON+ WALTZ with 2048 scans, without NOE 

enhancement with an interscan delay of 3 s for a run time of 1.7 hours. This spectrum, 

shown in Figure 9, was then input into our SSD-NMR algorithm with the same initialization 

discussed above. The secondary structure content of 25.6% a-helix, 33.9% b-sheet, and 

40.6% coil is very close to the 25.0%, 35.5%, and 39.5% percentages expected from the 

STRIDE classification, and is remarkably similar to the results shown in Figure 6, determined 

by SSD-NMR at 500 MHz 1H field. 
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Figure 9: Secondary Structure Distribution of Ubiquitin at 60 MHz 1H Frequency (1.4 T).  

Experimental 13C single pulse excitation spectrum of uniformly 13C, 15N labeled Ubiquitin at 60 

MHz 1H Frequency, 2048 scans processed with 0.67 ppm Exponential line-broadening (black) 

overlaid with simulated spectrum from SSD-NMR (magenta). The SSD-NMR estimated 

secondary structure content (left) compared to the secondary structure of ubiquitin extracted 

via STRIDE from the solution NMR structure of Ubiquitin PDB: 1D3Z (right).  
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4. Experimental Methods 

4.1 Simulated Experimental Spectrum 

Simulated experimental spectra were generated from database chemical shift 

assignments of proteins with known structure. To approximate experimental data, the SES are 

composed of peaks with a single global linewidth which are centered at each assigned chemical 

shift from a protein of interest. The intensity of any point, 𝐼(𝑥), in an SES is defined as: 

𝐼(𝑥) = ∑ 𝐺(𝑥, 𝛿(( , 𝜎) [10] 

Where 𝐺(𝑥, 𝜇, 𝜎) is the Lorentzian from Eq. 1, evaluated at point 𝑥 (i.e. chemical shift). 𝛿( 

corresponds to the 𝑖&= assigned chemical shift from the database from the protein of interest. 

Therefore 𝐼(𝑥) is the sum of the contribution from every assigned chemical shift in a protein 

of interest using the lineshape profile 𝐺(𝑥, 𝜇, 𝜎)  evaluated at point 𝑥 . Unless specified 

differently, the tests above were performed with a 𝜎 of 1.0 ppm. 

 

4.2 Simulated Gaussian Noise 

To add simulated noise to a simulated experimental spectrum as would be present in an 

experimental spectrum, we insert random noise with a defined signal-to-noise ratio 𝑆𝑁𝑅;(M 

based on the intensity of an individual peak in the spectrum. This random noise is added to 

the original intensities, 𝐼(𝑥) obtained from Eq.10. This gives a new intensity, 𝐼NCO(𝑥) at the jth 

point in the spectrum, with a user specified 𝑆𝑁𝑅;(M, defined by: 

𝐼NCO<𝑥A= = 𝐼(𝑥) + 𝐼P ;
∈*

NCO$#+
> [11] 

The noise amplitude ∈A is randomly drawn from a Gaussian distribution with a mean of 0 and 

width 1. 𝐼P is the peak amplitude of a single line contributing to the SES envelope from Eq. 10. 

Unless specified otherwise, a 𝑆𝑁𝑅;(M of 50 was used. 

 For comparison to experimental data, it is more convenient to consider the signal to 

noise of the spectral envelope, especially if an individual peak for a single resonance is not 
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readily discernible. To this end we also alternatively added noise to an SES based on the 

maximum amplitude of the envelope of the entire spectrum (𝐼RST).  The intensity of the at the 

jth point of the spectrum 𝐼NCO$<𝑥A= is defined as:
 

𝐼NCO$<𝑥A= = 𝐼(𝑥) + 𝐼RST ;
∈*

NCO$#+
> [12] 

The noise amplitude ∈A is randomly drawn from a Gaussian distribution with a mean of 0 and 

width 1.  

 

4.3 Sample Preparation 

Lyophilized powder of egg white lysozyme was purchased from Millipore-Sigma and 

dissolved into 99% D2O /1% H2O purchased from Cambridge Isotopes Laboratory with 2 mM 

sodium trimethylsilylpropanesulfonate (DSS) as a referencing standard. For samples with a 

relaxation dopant, CuEDTA (Sigma) was added to the solution to bring the concentration to 

20 mM. A uniformly 13C,15N labelled ubiquitin standard sample from Cambridge Isotopes 

Laboratory was used for solution NMR experiments. Uniformly 13C,15N GB1 was prepared as 

previously reported(26) and packed into a 2.5 mm zirconia solid-state NMR rotor. 

 

4.4 NMR Spectroscopy 

NMR spectra were acquired at 1.4 T (Magritek Spinsolve 60 MHz Carbon 

Spectrometer),  11.7 T, (Agilent DD2 500 MHz NMR Spectrometer, OneNMR probe with auto-

tune-and-match), 14.1 T (Agilent DD2 600 MHz NMR Spectrometer, 13C (H) cold probe with 

auto-tune-and-match), and 18.8 T (Agilent 800 MHz VNMRS NMR Spectrometer, custom 

built triple resonance 1H,13C,15N ssNMR probe(31)). When magic angle spinning was used the 

spin rate was monitored and set by an Agilent MAS controller to 17,777 Hz with 2.5 mm rotor 

outer diameter zirconia rotors and custom Kel-f spacers for optimal RF homogeneity(31). Pulse 

widths for ssNMR experiments were 2.5 us for 1H and 3.5 us for 13C, with 100 kHz small phase 

incremental alternation (SPINAL-64) decoupling(32) applied during evolution and acquisition 

periods on 1H. Solid-state experiments were run at 5° C which was controlled with a Ranque-

https://doi.org/10.26434/chemrxiv-2024-qt9g4 ORCID: https://orcid.org/0000-0002-8146-5066 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-qt9g4
https://orcid.org/0000-0002-8146-5066
https://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Hilsch vortex tube cooler (33). Solution NMR Experiments were performed at 25° C set by a 

Varian/Agilent temperature controller. Chemical shift referencing in the solution state for 

natural abundance sampled was referenced with the inclusion of 2 mM DSS and setting the 

DSS peak to 0 ppm. Isotopically enriched samples were referenced to the DSS scale using the 

D2O lock frequency. Adamantane was used as an external chemical shift reference for ssNMR 

experiments with the downfield peak set to 40.48 ppm(18).  

 

4.5 Experimental Spectrum Processing 

1D spectra were converted, processed, and analyzed in either MestreNOVA or VNMRJ 

3.2. The data was apodized with Gaussian or exponential line broadening and zero filled to 

double the number of points prior to Fourier transformation and phasing. Normal baseline 

adjustments used only a direct current offset adjustment, but when significant baseline roll 

was present, a 3rd order polynomial baseline correction was instead applied. The data was then 

exported in a x,y format with the chemical shift axis in referenced ppm and a unitless intensity 

axis. The spectrum is then indexed for a user definable ppm window. Unless otherwise 

specified, the window was set to cover 5 to 195 ppm for the results presented above. As 

discussed previously, excessive negative signals can lead to broadening in the simulated 

spectrum. To ameliorate this problem, we measure the number of negative points, Nmn, and 

raise the intensity of all points in the spectrum by the mean negative intensity, Imn, defined as, 

𝐼M% =
B

C+,
∑ 𝐼((,F#∈FUP  [12] 

Where the corrected intensity 𝐼8"##(𝑥) at any chemical shift value 𝑥 is given by: 

 

𝐼8"##(𝑥) = 𝐼(𝑥) − 𝐼M% [13] 

 

For experimental data shown above, the spectrum has been processed in this manner, with the 

index removed from 𝐼8"##(𝑥), giving 𝐼(𝑥) to represent the corrected intensity at chemical shift 

𝑥. 
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Discussion 

In this work we introduce SSD-NMR, a method which can extract the overall 

secondary structure content of a protein using a single experimental 1D 13C NMR spectrum. 

To do this, we utilize the relationship between secondary structure and 13Ca,13CO, and 13Cb 

chemical shifts to simulate an NMR spectrum of a protein based on its secondary structure 

content. We then then minimize the difference between this simulated spectrum and an 

experimental spectrum using gradient descent guided by a loss function we developed. The 

results from SSD-NMR are surprisingly robust and have a high correlation with proteins in the 

PACSY database, which covers a wide range of the 3D structures available in the PDB.  

Given the high fidelity of the results obtained  by SSD-NMR, we investigated how well 

the individual 𝑎(;; parameters for each residue type matched those of the data being fitted. 

These residue-specific distributions were notably less accurate than the overall distribution 

(Figures 6,7,8 and S10,S11,S12). It was also observed that while the overall SSD is stably 

reproduced for a range of SNR conditions, the SSD for individual amino acid types could vary 

quite markedly. While initially concerning, reaxaminaiton of the mode 13C chemical shifts. 

identifies the source of this apparent discrepancy. As can be seen in in Figure S1, there are 

several classes of amino acids that have very similar sets of backbone secondary-structure 

dependent 13C shifts. Their contributions to the spectrum are not entirely linearly 

independent,  so it is not expected they will be readily distinguished from one another during 

the fitting procedure. Based on this observation, we examined whether residues that have 

similar shift sets could be put into subgroups that better match the secondary structures 

extracted by STRIDE. To do this, we formed 5 subgroups of amino acids:  TS, WHQREMK, 

LDN, FY, and IVP. We kept C, A, and G separate as they have distinct patterns of backbone 

shifts and can be fit more independently. For Ubiquitin (Fig. S10), GB1 (Fig. S11), and 

Lysozyme (Fig. S12) the secondary structure distributions of these subgroups better match 

with those obtained from STRIDE. The GD procedure is then expected to interchange 
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secondary structure content between residues (via their 𝑎(;; parameters) with similar backbone 

chemical shifts, yet still arrive at a reliable overall SSD.  

In addition to the similarities in sets of chemical shifts between different amino acid 

types, we also note that every residue of the same amino-acid type is initialized identically in 

our fitting procedure; they have the same mode shifts, the same 𝑎(;;, same ∆𝛿9,;;, and the same 

linewidth σ. Because of this, the gradient at each step of the fitting for the same amino acid 

type will be identical, resulting in the same optimized parameters. This means that each 

residue of the same amino acid type is not fit independently. In the Secondary-Structure 

Content Simulated Spectrum (SCSS) then there are effectively 3 peaks for each backbone atom 

and 1 for each sidechain atom for each amino acid type. Because of this SSD-NMR works best 

on protein spectra where it only need fit the envelope and not each individual peak. 

This helps to explain why SSD-NMR has surprising resilience to a wide range of 

experimental linewidths and why the optimal linewidth is near 1 ppm (Figure 3C). Our initial 

instinct was that higher-resolution data would yield the best results. However, because SSD-

NMR is fitting the envelope of the spectrum, the best results are observed when the linewidth 

is narrow enough to resolve the differences in the mode shifts between secondary structure 

types (which are separated by ~2-5 ppm between β-sheet and ⍺-helix, Figure S1), but wide 

enough to broaden out narrow resonances that are offset from the mode shifts. The SSD-NMR 

algorithm then focusses more on adjustment of the 𝑎(;; terms while keeping ∆𝛿9,;; and ∆𝑣9 

small. We observed this in our testing – the distribution of extracted  ∆𝛿9,;; values (Fig. S13) 

at 1 ppm linewidth resulted in ∆𝛿9,;; terms that were almost always less than 0.01 ppm; Under 

these conditions, SSD-NMR does not require ∆𝛿9,;;  and ∆𝑣9 	terms, but we have elected to 

keep them in the model to stabilize the algorithm should there be large intensity offsets from 

the mode shifts. 

The combination of these observations also resolves why SSD-NMR is able to provide 

meaningful results when the peak envelope SNR is as low as 5. We were initially suspicious of 

this result – a SNR of 5 for the envelope is below what would be required for typical NMR 
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analysis of a protein. However, the intensity of the envelope of a spectrum is dependent on 

the total amount of 13C in the sample, which is a combination of both the SNR of each peak 

and the number of peaks present. This means that, for the same amount of experimental 

acquisition time, SSD-NMR should provide similar quality results for the same mass of protein, 

regardless of the size of the protein, as they will have the same total number of 13C atoms in 

the sample tube. Because of this, SSD-NMR should work for proteins much larger than is 

typically considered for NMR studies. For solution NMR, this means SSD-NMR can be applied 

even to proteins where the lines are significantly broadened by long correlation times. In cases 

where the protein is not soluble, magic-angle spinning solid-state NMR, which has no inherent 

size limitation, may be able to provide spectra for SSD-NMR on proteins of any size. In fact, 

results on larger proteins may provide results that are more consistent with STRIDE, as the 

impact of individual peaks with larger perturbations from the mode shift will be minimized.   

One challenge with developing new computational tools is how to estimate the error 

of the predictions. While this is often accomplished by reporting error terms like those derived 

from a non-linear regression model, they reflect the model’s prediction variance, not 

necessarily the error from the underlying population. In our case, because we are trying to 

match chemical shift-based results to those extracted from a PDB file by STRIDE, database 

testing (Figures 3 and 5) will best reflect our knowledge of the uncertainty in SSD-NMR. These 

tests show RMSEs of 6.2% for a-helix, 8.2% for b-sheet, and 11% for coil from the STRIDE 

secondary structure content. These errors are highly competitive with those reported by other 

comparable techniques such as CD(25, 28) and FT-IR(3, 34). Even in cases where SSD-NMR 

predictions differ from STRIDE assignments, our method produces a consistent outcome for a 

protein in a specific conformation at reasonable SNR (Figure 3). This can be used to track 

conformational changes in a protein, as distinct conformations of the same protein will result 

in different predictions by SSD-NMR. In our lab, we are now routinely using SSD-NMR on 

liquid-liquid phase separated proteins to track such changes. 
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SSD-NMR has a remarkably high correlation to distributions created from TALOS-N 

output for proteins in the PACSY database. This is particularly noteworthy as TALOS-N 

requires site specific chemical shift assignments and uses joint information from the chemical 

shift assignment as well as those of neighboring residues. In fact, it is likely that SSD-NMR’s 

accuracy is near the maximum that could be expected without including residue-residue 

connections in the fitting process. This is because classification of protein secondary structure 

relies not only on the backbone torsion angle of individual residues, but also on those of their 

neighboring residues and on patterns of hydrogen bonding. Our prediction correlation is 

higher for a-helix in part because the hydrogen bonding network in a helix leads to distinctive 

torsion angles, giving rise to the separable helical mode chemical shift (Fig. 1). In comparison, 

b-sheet residues occupy a much larger region of Ramachandran space (35) and may require 

more information than torsion angles alone to be differentiated from turns and random coils.  

Chemical shifts are also representative of the ensemble average of the protein 

conformation on the NMR timescale. Because of this, in some cases, the observed shifts may 

not correspond to the singular structure reflected in a static PDB file. This explanation is 

corroborated by the lower RMSE for SSD-NMR versus TALOS-N (Fig. 5) than versus STRIDE 

(Fig. 3). SSD-NMR and TALOS-N prediction are both based on measured chemical shifts and 

are biased by the same effects. Additionally, secondary structure classification is not well-

defined during the transition from one secondary structure element to another (such as the 

transition from an a-helix to a random coil). This is a well-known phenomenon, as 

classification programs such as STRIDE and DSSP(36) have different thresholds that define 

secondary structure subtypes.  

Our model was developed to be straightforward and to be generalizable to the type of 

data one expects from NMR spectra of proteins acquired on high-field instruments. However, 

there are alternative models, improvements, or loss functions that could be explored in future 

studies. For example, in consideration of the discussion above, we wanted to include nearest 

neighbor effects in our model. In addition to aiding in classifying secondary structure, it is 
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well-established that neighboring residues can induce identity-specific chemical shift 

perturbations to proximal residues (37, 38). The largest of these perturbations are for residues 

directly preceding a proline, which can move the Ca shift by more than 1 ppm (38). This effect 

is not accounted for in SSD-NMR and as such, proline-rich proteins are likely to have a poorer 

fit. However, the representation of all tripeptides in each secondary structure in the BMRB is 

not complete enough to account for these perturbations in our model. To address this, targeted 

experimental studies are needed to extend these statistics beyond the limitations of our current 

databases, and may provide an avenue for site-specific secondary structure assignment from 

1D NMR spectra alone. Barring such experimental studies, chemical shift prediction of high-

quality X-ray structures, similar to how TALOS-N generates its database (14), or high-level 

theory calculations may be able to provide sufficient data to fill this gap.  

Additional spectra, such as a 1H 1D, 15N 1D, and/or multidimensional spectra, may also 

be incorporated into future iterations of SSD-NMR. Previous approaches for estimating protein 

secondary structure from NMR in lieu of complete chemical shift assignment have been 

reported using 1H 1D or multidimensional spectra. In general, these methods focused on 

solution NMR and relied on manual analysis of individual peaks(39), acquisition of more 

challenging multidimensional experiments(40), or both(41). These methods thus generally 

required more manual interpretation of the data, are difficult to compare to solid-state NMR 

spectra on proteins in condensed phases, and required higher resolution and/or sensitivity than 

is needed for SSD-NMR. Further, 13C shifts are more disperse and are less sensitive to 

environmental changes (such as solvent and pH) when compared to 1H and 15N shifts. These 

properties have made 13C chemical shifts appealing targets for chemical shift prediction(42-44) 

and algorithmic development(45) and contribute to the robustness of SSD-NMR. 

When acquiring experimental data for use in SSD-NMR, we recommend following 

experimental protocols designed to provide accurately referenced spectra with quantitative 

relative intensities. SSD-NMR assumes that data is referenced to the DSS standard, ideally by 

inclusion of DSS in solution samples (19) or external referencing using adamantane for solid 
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samples(18). While SSD-NMR is able to detect systemic referencing errors using our re-

referencing term 𝛿# (Figure S6,S7), the performance is lower than if the experimental data was 

properly referenced. SSD-NMR further assumes that each carbon contributes equal intensity 

in the final spectrum. While SSD-NMR is robust to varied intensities, as evidenced by its high 

correlation even at low SNR, if the experimental spectrum is lacking signals or has non-

uniform intensities then the accuracy will be lower. In this work we chose to acquire fully 

relaxed directly polarized Bloch decay spectra for the experimental results presented above. 

However, any quantitative 13C spectrum(46, 47) should work similarly.  

If the spectrum has obvious baseline distortions, that should also be addressed at the 

spectrometer prior to acquiring data. To this end, collecting data with a short spin echo can 

alleviate some baseline distortion. Digital baseline corrections can be applied during processing 

but should be applied judiciously to not distort relative intensities. In general, we expect our 

method to provide consistent results for referenced experimental NMR data with a flat baseline 

and linewidths between 0.4 and 9 ppm and with signal-to-noise ratios greater than 5 post-

apodization. Should the observed linewidth be narrower than 1ppm, the peaks can be 

broadened during processing. Optimal performance is expected when the linewidths in the 

apodized spectrum are near 1 ppm and with a peak signal-to-noise ratio greater than 10. SSD-

NMR’s reliance on solution or solid-state NMR spectroscopy provide it unique advantages 

when compared to other biophysical techniques for characterizing secondary structure. It can 

be applied to the wide array of biological systems across all physiologically and disease relevant 

phases accessible to NMR spectroscopy – including soluble proteins, membrane proteins(48), 

microcrystalline proteins(26), protein complexes, protein aggregates(49-52), liquid-liquid 

phase separated coacervates(7, 53, 54), and even living cells(8). Additionally, 13C isotope 

incorporation provides a structurally non-perturbing approach to labeling that can be used to 

selectively probe protein conformation in heterogeneous mixtures. For example, one can 

isotopically label a single protein of interest in a large complex. The resulting spectrum has 

signals from the labeled protein, while the rest of the complex is suppressed(6). The same 
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approach can be extended to probing specific domains in a single protein using intein 

segmental labeling. We envision that SSD-NMR and future iterations will greatly increase the 

throughput of such studies and be accessible to any researcher with access to an NMR 

spectrometer. 

 In summary, we have introduced a gradient-descent based approach, called secondary-

structure distribution by NMR (SSD-NMR), to determine the secondary structure composition 

of a protein sample using a single 1D 13C NMR spectrum and the sequence of the protein. SSD-

NMR can accurately determine the secondary structure percentage composition of a protein 

as demonstrated on nearly 900 proteins from simulated experimental spectra. We further 

showed experimentally that this approach can be used by either solution or solid-state NMR 

and demonstrated practical approaches to apply it to natural abundance proteins. The model’s 

robustness to signal-to-noise ratio and resolution extends it applicability to samples at low 

magnetic field, as demonstrated with isotopically labelled ubiquitin on a benchtop 60 MHz 

spectrometer. This method is especially useful for proteins found in condensed phase 

environments, such as those related to membranes, aggregated states, and liquid-liquid 

segregated phases.  
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