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1. Full Listing of References with more that 10 authors 
 
60. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; 
Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, 
H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; 
Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; 
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; 
Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; 
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; 
Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, 
R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; 
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; 
Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; 
Fox, D. J. Gaussian 09, rev. C.01; Gaussian Inc.:  Wallingford, CT, 2010. 
 
79. Raamat, E.; Kaupmees, K.; Ovsjannikov, G.; Trummal, A.; Kutt, A.; Saame, J.; 
Koppel, I.; Kaljurand, I.; Lipping, L.; Rodima, T.; Pihl, V.; Koppel, I. A.; Leito, I.  
Acidities of Strong Neutral Bronsted Acids in Different Media J. Phys. Org. Chem., 
2013, 26, 162-170. 
 
 
2. Synthesis of 2,3,5,6-tetrafluoro-4-nitrophenol (tFNP) 
 
1.0 g 2,3,5,6-tetrafluorophenol (6.0 mmol) were dissolved in 5 mL of dichloromethane. 
After addition of 1.8 g 65 % nitric acid, an exothermic reaction was observed during 
which the mixture turned orange colored. TLC (silica gel, dichloromethane:methanol: 
acetic acid 20:1:0.1) indicated that the starting material (Rf = 0.6) had been consumed 
completely. Water was added to the mixture and after extraction with dichloromethane, 
drying of the organic phase with MgSO4 and removal of the solvent under reduced 
pressure 0.68 g raw product were obtained. Column chromatography over silica gel using 
the above solvent mixture afforded 0.57 g 2,3,5,6-tetrafluoro-4-nitrophenol (45 %) as 
yellow crystals (Rf = 0.2). 
1H NMR (300 MHz, DMSO-d6): 7.32 (s, broad). 
19F NMR (282 MHz, DMSO-d6): -148.81 ppm (m, J= 18 Hz), -161.02 ppm (m, J= 18 
Hz). 
 
The dissociation constant of tFNP was determined by titration of an aqueous solution (50 
µM) with HCl under monitoring of pH and UV-vis absorption spectra. The value pKa = 
2.81 was obtained as the inflection point of a sigmoid fit on experimental data of 
extinction (at a suitable wavelength) as a function of pH. This value is in agreement with 
the prediction of 2.84 ± 0.49 reported in ACS SciFinder (Advanced Chemistry 
Development Software V11.02). 
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Figure S1. Steady-state FT-IR spectra of selected substituted phenols and 1-naphthol 

hydrogen-bonded complexes in different solutions. 
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Figure S2. Correlation plot between calculated and measured1-3 gas phase O-H stretching 
frequencies for 2-naphthol complexes in (a) the ground and (b) the first 
electronic excited state. Labels for each complex correspond to the 
substituent in complex with 2-naphthol (2N). 
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Figure S3   Calculated O-H stretching frequency versus O-H distance for the hydrogen-

bonded complex. The upper panel shows the calculated intercept value 

representing the O-H stretching frequency for the gas phase case, the lower 

panel shows the frequency spread for eight different solvent dielectric 

models, representing the different solvents studied. (Each complex is 

indicated with a specific color.) 
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Figure S4.   Calculated (a) O…N and (b) O–H distances for each complex for eight 

different dielectric constants representing different solvents used in this study. 

The calculated gas phase value at F0 = 0 is shown as well. (Points 

corresponding to particular complexes are distinguished by color.) 
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Table S1. Change in calculated Mulliken atomic charge versus solvent dielectric function 
(F0) for atoms and functional groups of aromatic alcohol complexes at the 
B3LYP level of theory. 

Complex O H ACN α-C 
P –0.0218 +0.0081 +0.0111 +0.0005 
2NS0 –0.0205 +0.0071 +0.0110 +0.0017 
CP –0.0194 +0.0083 +0.0115 +0.0062 
CyP –0.0137 +0.0087 +0.0126 +0.0121 
NP –0.0102 +0.0088 +0.0139 +0.0115 
dFP –0.0298 +0.0059 +0.0090 +0.0075 
N1N –0.0023 +0.0069 +0.0153 +0.0107 
CNP –0.0142 +0.0091 +0.0158 +0.0100 
2NS1 –0.0185 +0.0054 +0.0155 +0.0022 
dCNP –0.0165 +0.0070 +0.0102 +0.0167 
tFNP –0.0178 +0.0054 +0.0156 +0.0295 

     
Complex o-C m-C p-C Other 

P –0.0434 –0.0497 –0.0182 +0.1134 
2NS0 –0.0368 –0.0472 –0.0068 +0.0916 
CP –0.0479 –0.0420 –0.0016 +0.0849 
CyP –0.0392 –0.0281 –0.0126 +0.0602 
NP –0.0364 –0.0328 +0.0434 +0.0015 
dFP –0.0112 –0.0184 –0.0224 +0.0616 
N1N –0.0139 –0.0134 +0.0315 –0.0348 
CNP –0.0216 –0.0138 +0.0364 –0.0218 
2NS1 –0.0445 –0.0432 –0.0086 +0.0917 
dCNP –0.0225 +0.0066 +0.0309 –0.0324 
tFNP +0.0202 –0.0150 +0.0474 –0.0852 
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Table S3.  Differences between alcohol-acetonitrile complexes and uncomplexed 

alcohols (comp – uncomp). 

Complex Oxy Hyd a-C o-C m-C p-C Other  

P –0.007 +0.024 –0.020 +0.254 +0.003 +0.001 –0.021  

2NS0 –0.008 +0.026 –0.016 +0.008 +0.010 +0.001 –0.035  

CP –0.007 +0.024 –0.020 +0.266 –0.001 +0.008 –0.026  

CyP –0.006 +0.025 –0.019 +0.268 –0.004 +0.006 –0.028  

NP –0.005 +0.024 –0.020 +0.270 –0.007 +0.010 –0.032  

dFP +0.001 +0.023 +0.025 –0.172 –0.007 –0.005 –0.025  

N1N –0.001 +0.025 –0.009 +0.224 –0.003 +0.010 –0.046  

CNP –0.004 +0.021 –0.012 +0.248 –0.015 +0.011 –0.037  

2NS1 –0.004 +0.031 –0.012 +0.039 –0.032 +0.003 –0.025  

dCNP +0.004 +0.030 +0.046 +0.297 –0.011 +0.008 –0.041  

tFNP +0.005 +0.015 +0.021 –0.365 –0.030 +0.005 –0.031  

  

Table S2.  Calculated Mulliken gas phase atomic charges for atoms and functional 
group of uncomplexed aromatic alcohols. 

Complex O H α-C o-C m-C p-C Other 
P –0.292 +0.276 +0.115 –0.338 –0.196 –0.135 +0.570 
2NS0 –0.284 +0.277 +0.129 –0.368 –0.039 +0.040 +0.244 
CP –0.287 +0.279 +0.114 –0.322 –0.070 –0.132 +0.418 
CyP –0.273 +0.284 +0.124 –0.312 –0.170 –0.048 +0.396 
NP –0.264 +0.287 +0.125 –0.290 –0.244 –0.032 +0.418 
dFP –0.266 +0.298 –0.131 +0.506 –0.345 –0.068 +0.005 
N1N –0.271 +0.293 +0.092 –0.214 –0.149 +0.019 +0.229 
CNP –0.245 +0.292 +0.196 –0.301 –0.187 –0.016 +0.262 
2NS1 –0.284 +0.277 +0.129 –0.368 –0.039 +0.040 +0.244 
dCNP –0.242 +0.299 +0.284 –0.375 –0.087 –0.009 +0.130 
tFNP –0.243 +0.313 –0.048 +0.351 +0.521 –0.202 –0.691 
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Table S4.  Calculated parameters for Pullin model slopes. 
Species μ(2) . μ0  a μ(1) . μ0  b V(3) / V(2)  c Esol

d 
P 60.1 30.1 –7.57 –4.9 

2NS0 65.6 32.9 –7.60 –5.2 
CP 79.6 40.3 –7.63 –4.8 

CyP 114.1 59.2 –7.72 –6.6 
NP 122.0 63.2 –7.76 –6.4 

dFP 59.2 29.4 –7.74 –4.9 
N1N 125.5 65.2 –7.79 –6.6 
CNP 111.1 61.7 –7.78 –6.2 

2NS1 64.6 49.7 –7.89 –6.4 
dCNP 84.9 56.0 –7.77 –5.7 
tFNP 142.8 75.3 –8.11 –6.2 

a Dot product of dipole second derivative and dipole moment has units of (D2 Å–2 amu–1). 
b Dot product of dipole first derivative and dipole moment has units of (D2 Å–1 amu–1/2). c 
Cubic force constant divided by quadratic force constant has units of (Å–1 amu–1/2). d 
Solvation energy has units of (kcal/mol). 
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