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The landscape of computational approaches 
for artificial photosynthesis

Ke R. Yang    1,2, Gregory W. Kyro    1 & Victor S. Batista    1,2 

Artificial photosynthesis is an attractive strategy for converting solar 
energy into fuels, largely because the Earth receives enough solar energy 
in one hour to meet humanity’s energy needs for an entire year. However, 
developing devices for artificial photosynthesis remains difficult and 
requires computational approaches to guide and assist the interpretation 
of experiments. In this Perspective, we discuss current and future 
computational approaches, as well as the challenges of designing and 
characterizing molecular assemblies that absorb solar light, transfer 
electrons between interfaces, and catalyze water-splitting and fuel- 
forming reactions.

We rely on finite fuels and chemicals whose utility is exhausted once 
consumed in nearly all aspects of life. Technological advances and 
improvements in overall standard of living are likely to require more 
energy and lead to rising energy costs. The potential for artificial photo-
synthesis to provide sustainable energy on a global scale is an exciting 
prospect for combatting the increase in energy consumption and cost. 
However, achieving that goal requires the development of photocata-
lytic devices from Earth-abundant materials that are able to withstand 
solar radiation and aqueous, oxidative conditions. Although progress 
has been made in recent years, the intricate mechanisms of charge 
separation and photocatalysis pose many challenges1–4.

Designing and characterizing components of artificial photo-
synthesis devices requires close collaboration between experimental 
work and computational modeling. This is because the efficiency of 
the photocatalytic interface depends on the performance and stabil-
ity of its multiple components including semiconductor electrodes 
covalently linked to molecular dyes for visible light absorption and 
catalysts for water oxidation. Additionally, many requirements and 
limitations must be considered when designing these components, 
making the analysis more challenging than other areas of materials 
or chemical research. The main outstanding challenge is the design of 
materials to create chemical fuels from water and protons or carbon 
dioxide (CO2) using visible and infrared photons from sunlight. Compu-
tational approaches are central to this effort because they can provide 
guidelines for materials design and fundamental understanding of the 
underlying mechanisms of light absorption, charge separation and 
catalysis at the molecular level. However, many computational chal-
lenges persist due to the balance between cost and accuracy, as is the 

case for determining relevant energy levels and reduction potentials, 
representing solvent interactions and designing catalysts, thus urging 
the development of cheaper and more efficient methods.

Artificial photosynthesis mimics natural photosynthesis by 
absorbing solar light and splitting water into O2, protons and electrons 
(Fig. 1). The electrons extracted from water can reduce protons or CO2 
to produce energy carrier fuels such as H2 or hydrocarbons.

Water oxidation reaction:
2H2O → O2 + 4H+ + 4e–

Proton reduction reaction:
2H+ + 4e– → H2

CO2 reduction reactions:
CO2 + 2H+ + 2e– → CO + H2O
CO2 + 6H+ + 6e– → CH3OH + H2O
CO2 + 8H+ + 8e– → CH4 + 2H2O
To develop an artificial photosynthesis device to efficiently con-

vert solar energy into chemical fuels, it is therefore necessary to tune 
photoabsorption to the solar spectrum (mostly visible and infrared) 
with materials that are resilient and do not degrade under oxidative 
aqueous conditions5.

Computational design has been combined with synthesis and 
spectroscopic characterization to create artificial photosynthetic 
systems with semiconductor electrodes sensitized to visible light 
absorption by covalently attaching molecular dyes6. Computational 
modeling has been useful for designing sensitizers and anchoring 
groups that can survive in aqueous and oxidative conditions while 
facilitating rapid electron transfer at the interface7. Moreover, quan-
tum dynamics simulations have revealed that photoexcitation of the 
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rigorous interpretations of experiments and for predictions of observa-
bles that could be checked by a new round of experiments, establishing 
a synergistic iterative loop between theory and experiments.

The iterative approach has proven particularly effective for the 
development of molecular assemblies on semiconductor surfaces, 
anchoring sensitizers and catalysts that are stable under aqueous 
oxidative conditions, while providing understanding of the timescales 
and mechanisms for charge separation and catalysis in artificial photo-
synthesis devices8,9. For example, quantum simulations of interfacial 
electron transfer (IET) initially addressed the feasibility of sensitizing 
a TiO2 semiconductor surface to visible light by functionalization of 
catechol adsorbates. The simulations suggested sensitization to vis-
ible light and a sub-picosecond timescale for IET, promoting the idea 
that photoabsorption and IET would not be rate-limiting compared 
with the microsecond timescale at which solar photons arrive to the 
photosensitizer under normal conditions (1 sun = 1 kW m−2 is roughly 
2,000 photons nm–2, with a typical surface coverage of 1 adsorb-
ate nm–2)8. Experiments subsequently confirmed those predictions 
by ulatraviolet–visible (UV-vis) spectroscopy and terahertz pump–
probe spectroscopy, showing injection times on the sub-picosecond 
timescale. Subsequent experimental studies showed that catechol 
anchoring groups were not sufficiently robust under aqueous oxida-
tive conditions, motivating the development of a new generation of 
anchoring groups more suitable for high-potential photoanodes.

Computational modeling has also been essential for advancing our 
ability to design efficient and stable catalysts, as proven by successful 
collaborations between computational and experimental studies on 
water oxidation, hydrogen evolution and CO2 reduction reactions. 
For example, the actual molecular structure of the active form of the 
water oxidation catalysts Cp*IrIII (Cp*, pentamethyl-cyclopentadienyl) 
in solution was computationally resolved9. It was shown that the Cp* 
ligand undergoes oxidative degradation and forms an IrIII dimer that 
turns out to be the catalytically active species in solution. The proposed 
structural model, obtained at the density functional theory (DFT) 
level, was subsequently validated by simulations of high-energy X-ray 
scattering (HEXS), extended X-ray absorption fine structure (EXAFS) 
spectroscopy and direct comparisons with experiments. Another 
example where computations were essential to resolve ambiguities 

chromophore triggers ultrafast electron transfer on a sub-picosecond 
timescale, creating a charge-separated state that quickly separates fur-
ther and injects the photoelectron into the semiconductor electrode.

Balancing the rates of electron transfer and charge recombination 
in robust materials is essential for achieving high photoconversion 
efficiency. After electron injection into the semiconductor electrode, 
photogenerated electrons are then used to reduce protons or CO2 to 
create fuels, while the holes left behind are used to catalytically oxidize 
water, effectively storing the absorbed solar energy in the form of 
chemical bonds (Fig. 2a). One of the challenges addressed by compu-
tational studies has been the elucidation of the catalytically active spe-
cies responsible for water oxidation. A complication in understanding 
catalytic performance is the propensity of catalysts to change form in 
solution. In this scenario, the originally prepared catalysts turn out to 
be pre-catalysts, while the actual catalytic species are formed in situ 
and remain elusive to identification. Resolving the identity of water 
oxidation catalysts has therefore especially benefited from computa-
tional modeling and close collaboration with spectroscopic analyses8,9.

Considering the central role of computational studies in the devel-
opment and characterization of artificial photosynthetic systems, it is 
natural to anticipate that more advanced computational approaches, 
in conjunction with advances in machine learning (ML)10,11 and quan-
tum computing12–14, will continue to make significant contributions 
essential for exploration and innovation in this field.

Synergistic computational and experimental 
approaches
Computational approaches can be most effective in the field of artifi-
cial photosynthesis when applied to assess structural or mechanistic 
hypotheses formulated for the interpretation of experiments. Building 
and validating computational models thus typically requires experi-
mental information on the nature of the specific material investigated, 
as well as data from experiments addressing well-defined questions 
about the behavior of the system.

Benchmark model systems allow for validation of the computa-
tional approaches and level of theory. After validation, computations 
provide insights at the molecular level that can support or otherwise 
disfavor the formulated hypotheses. Moreover, simulations allow for 
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Fig. 1 | Schematic representation of natural photosynthesis and artificial 
photosynthesis. a,b, In both natural (a) and artificial (b) photosynthesis, light-
induced charge separation occurs at reaction centers by absorption of solar 
light, which drives the water oxidation and proton or CO2 reduction reactions. In 
natural photosynthesis, the oxidized form of NADP+ is reduced to NADPH, while 
in artificial photosynthesis, protons or CO2 are reduced to H2 or CO, respectively, 
or hydrocarbons. To achieve efficiency in artificial photosynthesis, the light 
absorbers must cover the solar spectrum as much as possible while still having 
enough of a band gap to straddle the potentials for water oxidation and proton 
reduction, therefore driving both reactions. In b, this is shown by the water 
oxidation catalyst transferring electrons to the lower energy state of the reaction 

center, and the high energy state of the reaction center transferring electrons to 
the proton reduction catalyst. Additionally, robust and efficient water oxidation 
and proton or CO2 reduction catalysts are needed to lower overpotentials. 
Effective interfacial structures need to be formed between each component of 
an artificial photosynthetic system to enable effective interfacial charge transfer. 
Red arrows indicate transfer pathways of electrons, e– denotes electrons and  
E represents energy. FNR, ferredoxin–NADP(+) reductase; NADP+, nicotinamide 
adenine dinucleotide phosphate; NADPH, reduced form of nicotinamide 
adenine dinucleotide phosphate; OEC, oxygen evolving complex; P680, pigment 
absorbed at ~680 nm in photosystem II; P700, pigment absorbed at ~700 nm in 
photosystem I; PRC, proton reduction catalyst; WOC, water oxidation catalyst.
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regarding the nature of the catalytically active species in solution 
has been the demonstration of in situ generation of self-improved 
water oxidation catalysts with the general formula [(trpy)(5,5′-X2- bpy)
RuIV(μ-O)RuIV(trpy)(O)(H2O)]4+ (trpy, tripyridine; bpy, 2,2′-bipyridine; 
X = H or F) found to form in solution during the catalytic cycle from 
their corresponding pre-catalyst mononuclear counterparts [Ru(trpy)
(5,5′-X2-bpy)(H2O)]2+ (ref. 15). DFT computational analysis established 
the coexistence of two interconnected catalytic cycles where the mono-
nuclear catalytic system is slowly and irreversibly converted to the 
more stable dinuclear catalytic system.

Computational approaches have enabled us to make great strides 
in understanding light absorption16, charge separation17 and catalytic 
water oxidation processes18–20 of artificial photosynthesis. In the fol-
lowing sections, we discuss the limitations of current computational 
methods and identify potential future steps to progress the field. We 
look forward to seeing these advances come to fruition, ultimately ena-
bling us to create efficient solar energy conversion devices from Earth-
abundant materials, paving the way for a sustainable-energy society.

Light absorption
Light absorption is the first step in artificial photosynthesis. Light 
is typically absorbed by a semiconductor material or molecular dye 
adsorbed to a semiconductor, generating electron–hole pairs that 
subsequently separate and drive oxidation and reduction reactions. 
The seminal work of Fujishima and Honda demonstrated for the that 
TiO2 can be used as a photoanode to absorb light and catalyze water 
oxidation when applying a small bias potential21. However, TiO2 is only 
capable of absorbing UV light, which is just a small fraction of the solar 

spectrum. In prolonged attempts to increase the efficiency of photo-
absorption, many other materials have since been analyzed, including 
perovskites, Fe2O3, WO3 and BiVO4, as well as semiconductor materials 
sensitized with molecular adsorbates7. Efforts in materials design to 
maximize absorption of the solar spectrum while enabling efficient 
photoconversion by charge separation have greatly benefitted from 
computational approaches discussed in subsequent sections, including 
DFT calculations of electronic structure, the analysis of electronic-level 
alignment, inverse design and simulations of IET.

Computational tools provide a fast and inexpensive approach 
for in silico screening and design of semiconductors for optimal light 
absorption. In many cases, light absorption has been improved by het-
erogenization of molecular dye sensitizers inspired by dye-sensitized 
solar cells used in dye-sensitized photoelectrosynthesis cells5 for solar 
fuel production (Fig. 2a). The energies of photogenerated electrons 
and holes can be estimated by computing electron affinities (EAs) and 
ionization potentials (IPs), often approximated according to Koop-
mans’ theorem22 in terms of the energies of frontier orbitals such as the 
lowest-unoccupied molecular orbital (LUMO) and highest-occupied 
molecular orbital (HOMO) energies of a molecule, respectively. The 
difference between the EA and IP defines the ‘quasiparticle gap’ (or also 
the ‘fundamental gap’ or ‘physical gap’) of a molecule or material1. For 
semiconductor materials, this corresponds to the band gap, defined 
as the energy difference between the edge of the conduction band 
minimum and the edge of the valence band maximum.

Solar light absorption must power water oxidation and proton 
or CO2 reduction reactions to generate chemical fuels. Therefore, 
computational design and modeling of energy level alignment must 
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Fig. 2 | Water splitting driven by photoexcitation. a, Energy level 
alignment of the normal hydrogen electrode, reduction potential of O2 or 
H2O, valence band maximum (VBM) and conduction band minimum (CBM) 
of semiconductors, and HOMO and LUMO of molecular dyes. b, Procedures 
to perform a DFT calculation to obtain Kohn–Sham (KS) orbitals (Φ) and 
orbital energies (∊); a TDDFT calcuation to obtain excitation energies (∊) 
and oscillation strengths (f); the GW method to obtain more accurate orbital 
energies (∊) and orbitals (Φ) using the KS orbitals and orbital energies as 
input; and the Bethe–Salpeter (BS) equation to obtain excitation energies 

(∊) and oscillation strengths (f). c, Local excitation (ES1) and charge-transfer 
excitation states (ES2) and an overlay of absorption/fluorescence spectra and 
solar spectrum. GS refers to a ground-state transition, Eabso is the absorption 
energy from the electronic ground state to an excited state, and Efluo is the 
fluorescence energy from the lowest energy excited state back to the ground 
state. d, IET between a molecular dye and semiconductor. Valence band 
(VB), VBM, conduction band (CB) and CBM are shown. Molecular dye injects 
electrons into the conduction band of semiconductor after photoexcitation.
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ensure that the photogenerated holes have enough energy to oxidize 
water to dioxygen, producing electrons (that is, reducing equivalents) 
that could be used to reduce protons to H2 or CO2 to hydrocarbons 
(Fig. 2a). Therefore, the quasiparticle gap (often approximately the 
HOMO–LUMO gap of a dye molecule, or the band gap of a semiconduc-
tor) must straddle the redox potentials of water splitting into dioxygen 
and hydrogen, while the chromophore maintains the ability to span 
as much of the solar spectrum as possible without degrading through 
oxidation, or detaching from the surface in aqueous solution. Compu-
tational approaches for determining the quasiparticle gap are crucial to 
the design and development of dye-sensitized photoelectrosynthesis 
cells for their ability to assess the viability of different materials at 
high speed and low cost. Quasiparticle gaps are often determined 
by DFT calculations. However, the predicted HOMO–LUMO gaps for 
molecules and band gaps for solids tend to be smaller than the actual 
values1 due to self-interaction errors (SIEs)23, which arise from spurious 
self-interactions of electrons, particularly when using local spin density 
approximation (LSDA) and generalized gradient approximation (GGA) 
functionals. There are two common approaches to partially correct-
ing SIEs, including hybrid functionals and the DFT+U methodology. 
DFT+U was introduced to properly describe Mott insulators such as 3d 
transition-metal oxides24. Since then, rotationally invariant implemen-
tations25,26 have been widely used. The DFT+U approach can properly 
describe the electronic structure and band gap of hematite, and has 
been used to determine the band gaps and band edge positions of 
pristine27 and doped28 hematite. However, it is insufficient when applied 
to semiconductors with d0 or d10 metal ions such as TiO2 (ref. 2) and 
Cu2O (ref. 3), which require treatments based on hybrid functionals29 
or GW methods (where G stands for the one-body Green’s function and 
W stands for the dynamically screened Coulomb interaction)30. While 
computationally more expensive, hybrid functionals such as B3LYP29 
are generally more accurate than non-hybrid functionals for considera-
tion of the exact exchange from Hartree–Fock calculations, and have 
been extensively applied to calculating band gaps of a wide range of 
semiconductor materials with a mean absolute error of only 0.3 eV for 
TiO2, WO3, BiVO4, Cu2O and GaN (ref. 16) for solar water splitting. Nev-
ertheless, accurate yet efficient methods for calculating the electronic 
structure of semiconductor materials have yet to be developed, a chal-
lenge that is expected to benefit from recent progress in ML methods31.

Figure 2c shows a schematic diagram of the energy levels associ-
ated with the primary event of artificial photosynthesis involving light 
absorption, a process that promotes the absorber to an electronically 
excited state (ES1). Usually, the system relaxes back to the ground state 
by dissipation of the absorbed energy in the form of heat (vibrations), 
emitting a photon by fluorescence, or generating a charge-separated 
state (ES2) that can be used to drive redox chemistry to produce fuels6–8.  
Computational modeling of the electronic structure can provide 
insights of the relaxation mechanisms as well as guidelines for the 
design of materials that promote charge-separated states. Absorption 
energies can be approximated as quasiparticle gaps, although calcula-
tions of absorption intensities and energy dissipation require more 
rigorous treatments of electronic excitations and vibronic transitions.

For molecular systems, excited states can be described quite rigor-
ously using wavefunction-based quantum chemical methods such as 
the equation-of-motion coupled-cluster single–double (EOM-CCSD) 
method, complete active space self-consistent field (CASSCF) theory, 
complete active space perturbation theory second-order (CASPT2), 
n-electron valence state perturbation theory second-order (NEVPT2) 
and multireference configuration interaction (MRCI). However, the 
computational cost of these methods scales unfavorably with system 
size, limiting the applicability to small benchmark molecular models18. 
Time-dependent DFT (TDDFT)32 provides a cost-effective method 
for studying electronic excitations, and is therefore widely used to 
calculate absorption spectra of dye molecules and small nanoclusters. 
TDDFT has the advantage of producing reliable oscillator strengths, 

which are directly related to absorption intensities. However, current 
implementations of TDDFT are not sufficiently reliable. For example, 
the adiabatic approximation is almost universally made in TDDFT 
implementations, and its impact on accuracy has not been fully inves-
tigated4. Moreover, the magnitudes of the particle–hole SIE associated 
with the exchange functional and the orbital relaxation error associ-
ated with using fixed ground state orbitals (both within the adiabatic 
approximation) have only been estimated in terms of their impacts on 
EA (EA-TDDFT)33. The orbital-optimized DFT (OO-DFT) method34 has 
been developed to avoid these errors.

Sophisticated functionals have been developed to address 
charge-transfer excitation, including the range-separated hybrid 
functionals, which are quite promising35. Besides TDDFT, the Bethe–
Salpeter equation36 at the GW level (BSE-GW) has recently attracted 
significant interest in the chemistry community since it can properly 
describe charge-transfer excitations in both molecular and extended 
systems, essential for the computational modeling of complex 
interfaces involved in artificial photosynthesis. In fact, the BSE-GW 
approach has been used to the calculate absorption spectra of photo-
electrode materials including TiO2, WO3, Fe2O3, BiVO4, SrTiO3 and GaN, 
all of which show good agreement with experimental spectra. Moreo-
ver, given the recent successes of ML methods for predicting optical 
spectroscopic properties, we envision that emerging techniques will 
be very useful for addressing the current challenges of excited-state 
computational methods37.

Charge separation
Electron–hole pairs are generated upon photoabsorption, storing 
the absorbed solar energy in the form of electrochemical energy. The 
charge separation process is particularly difficult because there is only 
a small window of time for kinetically favored processes to predominate 
over the otherwise thermodynamically preferred charge recombina-
tion. In sensitized semiconductors, the process of IET from the dye 
molecule to the surface is controlled by the electronic level alignment 
and electronic coupling between the donor states mostly localized on 
the adsorbate dye and the acceptor energy levels in the semiconduc-
tor (Fig. 2d). Thus, the design of efficient artificial photosynthesis 
devices must solve the challenge of promoting charge separation via 
IET using anchoring groups that enable efficient electron transfer and 
are structurally and functionally robust even after photo-oxidation of 
the anchored molecular assembly in aqueous solutions. DFT calcula-
tions of molecular assemblies anchored to semiconductor surfaces 
can provide characterization of binding modes, while calculations 
of molecular conductance6 and simulations of IET from adsorbate 
dyes into semiconductor surfaces through anchoring groups allow 
for estimations of the timescales and mechanisms of IET.

Quantum dynamics simulations of electron transfer have been 
reported for a variety of model systems, going back at least to the initial 
study of IET from catechol into TiO2 (Fig. 2d)8. In that work, ab initio 
molecular dynamics (MD) was used to obtain representative nuclear 
configurations, and electronic wavefunctions were then propagated 
by solving the time-dependent Schrödinger equation with an extended 
Hückel Hamiltonian. Although approximate, models based on tight-
binding Hamiltonians can make IET simulations possible even for thou-
sands of atoms. That methodology has also been widely used to study 
the effects of thermal nuclear dynamics38, exposed facets39 and solva-
tion40 on IET for several dye–TiO2 complexes41, and has allowed for the 
discovery of a two-step mechanism for ultrafast IET42, highlighting its 
applicability to screening dye–semiconductor complexes for efficient 
IET in artificial photosynthesis. However, a tight-binding Hamiltonian, 
such as extended Hückel, requires parameterization and is not suitable 
to describe the effects of changes in nuclear configurations. Therefore, 
it is often coupled to classical MD simulations of the nuclei such as in 
the DynEMol software package, as demonstrated in studies of vibronic 
effects in the ultrafast IET of perylene-sensitized TiO2 surfaces43.
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Ab initio nonadiabatic MD (NAMD) simulations using DFT orbitals 
is also typically applied to study IET17. Due to the computational cost, 
current ab initio NAMD simulations are limited to the analysis of short 
simulations. Exploring longer time dynamics, including carrier-trap-
ping mechanisms that limit the overall efficiency of charge transport 
through the semiconductor material, is still beyond the capabilities 
of current computational methods and would require development 
of cost-effective methodologies.

A challenging aspect of modeling artificial photosynthetic assem-
blies is the proper description of electronic energy level alignment, 
which is critical for efficient photoelectrocatalysis. The performance of 
photoelectrocatalysis is dependent on the energy alignment between 
electron donor and electron acceptor states, such as the alignment of 
the photoelectrode band edges and the water oxidation and proton 
or CO2 reduction potentials (Fig. 2a). Essentially, the alignment of 
electronic energy levels is critical since it determines the overall effi-
ciency of charge transfer and thus whether photo-generated holes 
and electrons are able to oxidize water and reduce protons or CO2. 
The computational analysis of level alignment is typically based on 
DFT calculations of electronic energy levels relative to vacuum, and 
free energy calculations of redox potentials. For a bulk semiconduc-
tor, the absolute band edge position can be obtained through slab 
calculations. LSDA/GGA functionals are often used due to their low 
computational cost, although they typically underestimate the band 
gaps. More reliable approaches such as hybrid functionals44 and GW 
approximations45 can be used to determine the band edge positions 
through slab calculations, but they are computationally expensive. 
An approximate approach combines LSDA/GGA slab calculations with 
band gap corrections from hybrid functionals and GW methods. Recent 
work has combined ML and DFT and has shown success in rapidly 
advancing electronic structure applications such as in silico materials 
discovery and the search for new chemical reaction pathways46.

It is important to note that determining band edges under realis-
tic conditions would require modeling photoelectrode–water inter-
faces rather than semiconductor–vacuum interfaces. This could be 
done with implicit solvation models using joint DFT approaches47, 
or with explicit solvation models using DFT-based ab initio MD48. 
Implicit solvation models can provide a computationally efficient 
way to describe solid–liquid interfaces. However, important aspects 
of solvation, including the description of critical hydrogen-bonding 
interactions, require fully atomistic models. Unfortunately, explicit 
solvation models based on ab initio calculations are quite expensive, 
so they are restricted to short simulations and rather limited sampling 
of configurations. Therefore, there is an urgent need for development 
of accurate and efficient computational methods that can properly 
determine the effects of solvation on the electronic bands of photo-
electrodes in aqueous solution.

Catalysis
Modeling catalytic reactions
After light absorption and the subsequent creation of electron–hole 
pairs, electrons are employed to reduce protons or CO2, thus creating 
chemical fuels, while holes drive the extraction of electrons from water 
through catalytic water oxidation. As such, the development of compu-
tational models for artificial photosynthesis has been largely directed 
at understanding the relevant electrochemical reactions. These are 
multi-electron reactions that tend to be slow, so catalysts are needed 
to speed up their rate. For these reactions, the catalyst must be stable 
in water and not degrade when exposed to light. As a result, it remains 
rather challenging to create efficient water oxidation catalysts that are 
affordable and abundant enough to be used worldwide.

Computational modeling of the key chemical reactions in artificial 
photosynthesis must elucidate the mechanisms driving the electron 
or proton transfer steps, bond cleavage and bond formation. This 
analysis is essential to map reaction pathways and understand how 

catalysts enable these mechanisms, considering both kinetic and 
thermodynamic data. In general, the precise mechanism of water 
oxidation depends on the reaction conditions and the nature of the 
catalyst. However, it is commonly assumed that the minimum free 
energy pathway enables water oxidation by formation of a series of 
intermediate states, including *OH2, *OH, *O, *OOH and *OO generated 
by proton-coupled electron transfer (Fig. 3d).

Theoretical overpotentials (the difference between the minimal 
applied potential and the equilibrium potential of an electrochemi-
cal reaction) can then be estimated at the DFT level by computing the 
standard reduction potentials for each one-electron oxidation step 
(Fig. 2d). In the case of water oxidation, the equilibrium potential 
relative to the standard hydrogen electrode is 1.23 V at pH = 0, and the 
minimum applied potential is the maximum reduction potential of 
all intermediates. The computational hydrogen electrode has been 
used to calculate the theoretical overpotentials of water oxidation 
over a wide range of metal oxide surfaces19, finding that the adsorption 
energy difference between *O and *OH can serve as a good descriptor 
for oxygen evolution reactions. Clearly, the free energy change for 
each reduction reaction should be close to 1.23 eV for an efficient water 
oxidation catalyst20.

Optimizing CO2 reduction is very challenging since large overpo-
tentials are often required to activate the rather inert CO2 molecules, 
and heterogeneous catalysts suffer from poor product selectivity. 
Computational approaches are therefore essential to elucidate the 
underlying reaction mechanisms to enable the rational design of robust 
catalysts with low overpotentials, small activation free energies and 
high product selectivity. As shown in Fig. 3a, the standard free energy 
changes for an oxidation–reduction pair (ΔGo

gas (Ox|Red)) are typically 
determined with the Born–Haber cycle from the IP, the thermal correc-
tion to free energy changes in the gas phase, and the solvation energies 
of reactants and products. To calculate ΔGo

gas (Ox|Red), we need poten-
tial energy surfaces for both the oxidized and reduced forms of a redox 
pair Ox|Red, which correspond to the ground states of N – 1 and N elec-
tron systems, respectively. Therefore, both forms can be well described 
by ground-state quantum chemical methods, which generally include 
single-reference and multireference methods (Fig. 3b). The common 
single-reference methods include the Hartree–Fock method, Møller–
Plesset perturbation theory, coupled-cluster methods and DFT49.  
Multireference methods are generally more complicated but are neces-
sary when the energy separations between electronic states are small, 
which is often the case for transition-metal catalysts, excitation pro-
cesses, and chemical bond cleavage and formation in most artificial 
photosynthesis systems. Common multireference methods include 
CASSCF, CASPT2, CASPT3 and so on, NEVPT2, configuration interaction 
(CI), multireference CI (MRCI) and multireference coupled-cluster 
(MRCC) theory18. It is worth noting that active-space approaches are 
highly dependent on the choice of active space, and although they are 
potentially powerful, they can also be unreliable. Additionally, modern 
local correlation approaches to coupled-cluster methods such as 
domain-based local pair natural orbital-coupled-cluster singles and 
doubles have enabled highly accurate redox and spin-state energetic 
calculations in large molecular systems that are of direct relevance to 
artificial photosynthesis research. Among these quantum chemical 
methods for calculating the gas-phase reaction energies, the cost of 
DFT scales most favorably with respect to system size. However, the 
performance of DFT depends on the choice of exchange-correlation 
functionals and, unlike wavefunction-based methods, there is no sys-
tematic way to improve its performance. As has been mentioned previ-
ously to address many of the computational concerns related to 
modeling both light absorption and charge separation, ML can be com-
bined with DFT to improve electronic structure-based techniques for 
modeling catalytic reactions46.

Solvation effects can contribute significantly to the changes in 
reaction free energy in solution, and therefore need to be accounted for 
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by implicit50, explicit51 or hybrid implicit and explicit solvation models 
(Fig. 3c)52. Implicit solvation models treat the solvent as a polarizable 
dielectric medium, without representing any solvation molecules 
explicitly. Through careful parameterization, implicit solvation models 
can properly account for the average bulk electrostatic contribution to 
solvation effects. However, they cannot properly describe hydrogen-
bonding interactions. By contrast, explicit models treat the solvent as 
explicit molecules and consider explicit interactions between solute 
and solvent molecules. To obtain reliable solvation free energies with 
explicit models, it is necessary to describe the interactions between 
solute and solvent molecules as accurately as possible and sample the 
configuration space exhaustively through either MD or Monte Carlo 
techniques. Hybrid implicit and explicit models treat a small number of 
solvent molecules explicitly, such as those that form hydrogen bonds 
with solute molecules, and represent the rest of the solvent molecules 
implicitly. With current solvation models, the error in solvation energy 
calculations can be as low as 0.2 eV (ref. 18). However, it remains the 
dominant error in free energy calculations of redox potentials. There-
fore, it is imperative to develop more accurate methods for estimating 
solvation energies that could be used in free energy calculations based 
on traditional methods as well as new approaches based on ML53.

Inverse design of catalysts
The discovery and development of new catalysts can be substantially 
accelerated with ML through inverse design (such as a data-driven 

method that explores chemical-wide space)54,55. ML requires a data 
set to train the model, and therefore much of the model’s predictive 
capability is dependent on both the quality and quantity of the data at 
hand. However, mature databases of catalysts and materials for artificial 
photosynthesis have yet to be developed and made widely available. 
Some databases that are currently available include AtomWork56, the 
Automatic Flow of Materials Discovery Library57, the Inorganic Crystal 
Structure Database58, the Materials Project59 and the Open Quantum 
Materials Database60.

Both supervised and unsupervised ML approaches have been uti-
lized to assist catalyst design. Supervised learning involves training on 
data with known labels and learning the proper parameters of the ML 
model to predict with high accuracy the output label for a given input. 
Deep learning models have been shown to perform significantly bet-
ter than other methods on supervised learning tasks61. Convolutional 
neural networks (CNNs) first developed for image detection have been 
tuned for chemical prediction, often incorporating methods such as 
those presented in ResNet and VGG. In the case of CNNs, molecules 
are embedded into a spatial grid, either 2D or 3D, and a filter scans 
over the data to generate an output, learning its weight to properly 
fit the data relative to the corresponding labels. A sufficiently trained 
ML model can make accurate predictions and provide information 
on the relationship between the input and output data. Therefore, it 
is possible to extract information regarding how strongly each fea-
ture used to represent the input data contributes to the prediction.  
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Fig. 3 | Computational modeling of reduction potentials and catalytic 
mechanism in artificial photosynthesis. a, Schematic representation of slices 
of potential energy surfaces (in black) of the oxidized (Ox) and reduced (Red) 
forms of a generic oxidation–reduction (Ox|Red) redox couple in gas phase and 
in aqueous solution. Blue and red lines represent vibrational and rotational 
levels, respectively. The green boxes show the Boltzmann population of 
vibrational and rotational states at a finite temperature, T. Ionization potential 
(IP) and the gas phase free energy change (ΔGo

gas (Ox|Red)) are shown. b, A list of 
popular quantum chemical methods that can be used to calculate ΔGo

gas (Ox|Red).  

c, Schematic representation of implicit solvation, explicit solvation and hybrid 
implicit or explicit solvation models, using formic acid (HCOOH) as the solute 
molecule. The grey, black and red balls represent H, C and O atoms, respectively. 
d, Catalytic water oxidation mechanism with *OH2, *OH, *OOH and *OO 
intermediates, with the associated free energy profile (in black) and the direct 
conversion without a catalyst (in red). Grey, red and blue balls represent H, O and 
the active site of the water oxidation catalyst, respectively. ΔGo

i  (i = 1–4) is the 
standard free energy change for four consecutive proton-coupled electron 
transfer steps, which determines the overpotential of water oxidation.
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This approach has already been successfully applied to identify poten-
tial catalysts to be used in artificial photosynthesis devices, including 
water oxidation catalysts62, CO2 reduction catalysts63 and hydrogen 
evolution catalysts64.

ML has also been used to predict DFT-derived properties of cata-
lytic materials10,11. For example, there have been recent studies using 
ML to predict the surface adsorption energies of reactants and reaction 
intermediates54. Additionally, ML has been used to predict d-band cent-
ers65, which are widely used to describe a variety of reactions occurring 
over transition-metal catalysts. There are also instances of ML being 
used to predict band gaps and surface phase diagrams66.

ML models trained with data from various types of spectroscopic 
and microscopic techniques for a large number of catalysts would be 
extremely valuable. It is natural to anticipate those models would be 
able to predict and generate the structures of active sites, intermedi-
ates and product distributions. Also, reactions could be predicted 
with an ML model trained on experimentally generated data for reac-
tions promoted by different catalysts. While still at an early stage, this 
approach has already been shown for CH4 conversion, CO oxidation, 
CO2 reduction, the oxygen evolution reaction as well as the photocata-
lytic splitting of water54. With a proper understanding of the catalytic 
mechanisms involved in artificial photosynthesis reactions, one could 
enable the in silico design of better catalysts with lower activation free 
energies and lower overpotentials.

A major challenge in ML-based catalyst design arises from the 
fact that most work reported to date has focused on a very narrow 
subset of catalysts and reactions. Additionally, ML studies have been 
limited to establishing correlations between human-selected reac-
tion descriptors such as reaction rates and energies, adsorption ener-
gies and turnover numbers. It is, therefore, crucial to bridge the gap 
between current efforts, mostly focused on simple descriptor-based 
screenings of catalysts, and the capabilities of pattern recognition 
that could be provided by deep learning models. As has already been 
shown in other areas of artificial intelligence applications, ML models 
will become increasingly powerful computational tools in the field as 
soon as databases become more available and better organized for the 
class of materials and catalysts relevant to artificial photosynthesis. 
However, it is worth noting that ML models are not self-aware, and 
therefore will require human tuning to achieve optimal performance.

Looking forward
Artificial photosynthesis is clearly an intrinsically complex process with 
multiple chemical events spanning different timescales and involv-
ing materials and molecular components of different sizes (Fig. 4), as 
discussed herein. Multiscale computational approaches are available 
for studying artificial photosynthesis, including a variety of methods 
with a wide range of costs and accuracies. Atomic modeling of pro-
cesses in artificial photosynthesis is enabled for a reasonable com-
putational cost by ab initio wavefunction and DFT-based methods, 
semi-empirical quantum mechanics, density functional tight binding 
methods67 and reactive force field methods68. Coarse-grained69 and 
continuum models70, on the other hand, sacrifice accuracy of atomic 
details to describe larger systems with longer dynamics. The integra-
tion of atomistic and coarse-grained models involving different lengths 
and timescales remains to be developed, an effort that could provide 
a complete mechanistic understanding of the catalytic transport pro-
cesses involved in artificial photosynthesis.

Computational modeling of light absorption on the femtosecond 
timescale requires accurate computational methods to describe both 
the ground state and excited states, as well as the influence of the 
surrounding environment on the oscillator strengths and vibronic 
couplings. TDDFT and BSE-GW methods are widely used for calcula-
tions of absorption spectra. However, the adiabatic linear-response 
implementation of TDDFT underestimates charge-transfer excita-
tion energies, and therefore BSE-GW methods are often preferred.  

To account for solvation and environmental effects on light absorption, 
quantum or molecular mechanics methods are commonly used, incor-
porating either implicit, explicit or hybrid solvation models. Similar 
approaches with BSE-GW methods are currently under development to 
account for solvation and environment effects71. Aside from solvation 
and environment effects, vibronic couplings43 and nuclear dynamics 
can also affect light absorption, as demonstrated in the study of BiVO4, 
showing that modeling nuclear dynamics with classical MD lowers the 
bandgap by 0.70 eV, while modeling with path-integral MD methods 
further lowers the gap by 0.22 eV (ref. 72). It is, therefore, important to 
account for both the complex environment and the dynamical nature 
of dye molecules and photoelectrodes when modeling light absorption 
under realistic conditions.

Quantum dynamics methods based on tight-binding model Hamil-
tonians have provided an effective way to study IET between the photo-
excited dye molecule and the semiconductor surface8. However, new 
parameterizations from reliable reference data are needed to study 
charge injection into other semiconductors, such as Fe2O3, WO3 and 
BiVO4, that may have important applications in artificial photosynthe-
sis. Advancements have led to implementation of explicit non-adiabatic 
effects, allowing for the description of vibronic effects, and the influ-
ence of the electron–hole interaction and the changing electron density 
on the nuclear dynamics73. Further developments of computational 
approaches are required to enable non-adiabatic quantum simula-
tions of both nuclear and electronic dynamics, as demonstrated for 
small molecular systems with tensor network methods74. The NAMD 
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Fig. 4 | Sizes and timescales of computational modeling methods and 
chemical events in artificial photosynthesis. Filled squares depict approximate 
time and size scales feasible for specific computational methods. Ab initio 
methods include wavefunction-based methods, DFT and their variant for excited 
states; semi-empirical quantum mechanics (SQM) and density functional tight 
binding (DFTB)67; reactive force field method (ReaxFF)68, which uses force 
fields with flexible functional forms to describe bond breaking and formation; 
force field methods for describing interactions between atoms; coarse-grained 
models69, which use coarse-grained representations rather than atomic 
representation to describe complex systems; and continuum models70, which 
use continuous representations to describe systems. Unfilled boxes represent 
approximate time and size scales of chemical events involved in artificial 
photosynthesis: light absorption, IET between an excited dye molecule and 
semiconductor photoelectrode or between catalysts and dye molecules; charge 
recombination of photo-generated electrons and holes; interfacial dynamics 
describe the dynamics of photoelectrode–electrolyte interfaces, which are 
important for stabilizing surface charges; charge and substrate transport refer  
to the transport of charges in photoelectrodes and substrates in the solution;  
PRC and WOC are catalytic reactions for solar water splitting.
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approach combined with TDDFT can be used to study IET without 
parametrization, but the computational cost currently limits the size 
and timescale of the simulations that can feasibly be performed. Charge 
recombination dynamics, which are rarely modeled computationally 
due to the long associated timescale, could in principle be described 
using more cost-effective approaches such as time-dependent density 
functional tight binding67. In addition, ML methods have been recently 
applied to study excited state dynamics of molecules75, and could be 
extended to study excited-state dynamics in extended bulk materials 
and interfacial systems with larger sizes and longer timescales. Further 
outstanding challenges regarding simulations of IET dynamics also 
concern the role of spin transitions ubiquitous to electronic relaxation 
at photoelectrode interfaces.

Computational modeling enables researchers to examine the key 
chemical reactions of artificial photosynthesis at a molecular level, 
such as water oxidation and proton or CO2 conversion into fuels. Most 
of these catalysts involve transition metals that have significant static 
correlations and therefore, in principle, require multireference treat-
ments with methods such as CASPT2 or MRCI. Owing to the computa-
tional cost of these methods, however, many computational studies of 
catalytic mechanisms are currently limited to approximate approaches 
such as broken-symmetry DFT. It is also worth mentioning that it is 
necessary to adequately consider relativistic effects and spin–orbit 
coupling in the case of heavy-element systems. The recent develop-
ments of quantum Monte Carlo76, multi-configurational DFT77, and 
tensor network methods78 such as density matrix renormalization 
group theory provide accurate treatment of larger systems with transi-
tion metals. Although these methods are still too expensive for routine 
application, they can be used to benchmark broken-symmetry DFT 
approaches with approximate functionals and even guide the develop-
ment of better functionals. In fact, a functional has been developed by 
training a neural network, and has demonstrated good performance 
for main-group atoms and molecules with significant static correla-
tions79, providing a viable approach to develop reliable functionals for 
transition-metal catalysts in artificial photosynthesis. Additionally, 
there are multiple ongoing developments in ML that are expected to 
be particularly valuable for identification of catalytic intermediates 
and calculations of molecular properties that can be directly com-
pared to X-ray absorption and emission spectroscopies80, electron 
paramagnetic resonance spectroscopy, Mössbauer spectroscopy and 
magnetic circular dichroism.

ML approaches are promising in the field of artificial photosynthe-
sis and have already been explored in a variety of applications, includ-
ing the description of interatomic interactions from MD simulations81. 
Aside from catalyst design and interatomic interactions, ML methods 
have been used for photocatalyst screening82, UV-vis spectra predic-
tion for molecules in solution83, and for correcting redox potentials 
in implicit and explicit solvation models84. However, as a data-driven 
approach, ML requires sufficient data to populate the selected feature 
space, which needs be generated either from reliable experiments 
or highly accurate quantum mechanics calculations. Further devel-
opments are required to make ML models flexible to ensure faithful 
representations of input data, transferable across chemical space and 
scalable to systems of different sizes. Even considering these major 
challenges, we envision that ML will soon be a truly transformative 
tool in computational studies of artificial photosynthesis. In addition, 
emerging quantum computing methods12–14 have tremendous poten-
tial for applications to artificial photosynthetic systems due to their 
exponential speed compared with classical computation.

Powerful computational approaches have been developed and 
applied to study the components of cells for artificial photosynthesis. 
However, a full atomistic understanding of the overall process remains 
elusive. Such treatments would be particularly valuable to model 
Z-schemes and rectification mechanisms that could be essential for 
development of highly efficient photocatalytic cells. Advancements 

in hardware such as graphics processing unit acceleration and massive 
parallelization, as well as algorithm development such as linear scaling 
and fragment methods, have already facilitated large-scale calculations 
in artificial photosynthesis85. However, many aspects remain diffi-
cult to model and require further development, including modeling 
dynamical and environmental effects at complex interfaces, photo-
induced charge separation and recombination dynamics including 
non-adiabatic effects and spin crossover transitions, charge and sub-
strate transport mechanisms that could be rate limiting, changes and 
structural evolution of catalysts under working conditions, and redox 
properties of intermediates in catalytic cycles. Substantial advances are 
thus required to develop a rigorous understanding of the components 
involved in artificial photosynthesis, and guidelines for the design of 
efficient solar energy conversion devices that could provide humanity 
with a means of sustainable energy.
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