Occupancy Analysis of Water Molecules inside Channels within 25 Å Radius of the Oxygen Evolving Center of Photosystem II in Molecular Dynamics Simulations

Divya Kaur, ^{*†**} Krystle Reiss, ¶ Jimin Wang, ^{*‡*} Victor S. Batista, ¶ Gary W. Brudvig, ¶, ^{*‡*} M. R.

Gunner§

†Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, L2S 3A1, Ontario, Canada

¶Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA

‡Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA

§ Department of Physics, City College of New York, 10031, New York, NY, USA

Corresponding author: dmatta@brocku.ca

- S1. Code to Create Occupancy Maps with CCP4.
- S2. Scripts to Generate Probability Density Functions and Decay.
- **S3.** Matlab Code for Generating Plots.
- S4. Occupancy Analysis of Water Molecules in the Broad (Cl1) Channel.
- S5. Occupancy Analysis of Water Tetramer next to the Yz.
- S6. Occupancies of Water Tetramer Plus a Reference W2 in the S1 and S2 (Table S1) States.
- S7. Oxygen PDFs of Water Molecules inside the Large (O1) Channel.
- **S8.** Topology files for Fe-heme
- **S9.** Partial Charges for S₁ and S₂ states
- S10. Bond Parameters for S1 and S2 states
- S11. Angle Parameters for S1 and S2 states

S1. Code to create occupancy maps with CCP4.

Run using: ccp4 ./NuclearDensity.com

#!/bin/bash for ID in S1 S2 ; do sfall xyzin \${ID}_oxygen.pdb mapout

{ID}_oxygen_1A.map.ccp4 hklout

\${ID}_oxygen_1A.mtz ATOMSF atomsf_neutron.lib << eof

mode SFCALC XYZIN ATMMAP

CELL 80 80 80 90 90 90

GRID 240 240 240

SFSGROUP P1

SYMMETRY P1

RESOLUTION 100 1.0

BRESET 10.0

FORMFACT NEUTRON

end

eof done

S3

S2. Scripts to Generate Probability Density Functions and Decay.

A: Probability densities

A1- SphericalAveraging.com

#Replace columns 3-5 with coordinates of water position

#Replace column 14 with the name of the map to be analyzed

#Replace column 15 with the desired output name

#Run as ./SphericalAveraging.com

...

A2- CalSphereDensity.com

This code is called by SphericalAveraging.com and produces probability density

data that is printed to a file named "foo.SphericalAveraged"

```
# !/bin/csh cp awk_ functions
awk.it
# CRYST1 30.000 30.000 30.000 90.00 90.00 90.00 P 1 cat
«eof »awk.it
BEGIN {cx[1]=30.000; cx[2]=30.000; cx[3]=30.000; cx[4]=90.00; cx[5]=90.00; ccpvolr(cx,ac,v); ortho(cx,c2f,f2c);
# ortho(ac,RF,RO); x1[1]=$ 1; x1[2]=$ 2; x1[3]=$ 3; b1=$ 4; ab[1]=$ 5; ab[2]=$ 6;
ab[3]=$ 7; ab[4]=$ 8; ab[5]=$ 9; ab[6]=$ 10;bave=$ 11;
ab[1]=ab[1]*ac[1]*ac[1]/10000.0; ab[2]=ab[2]*ac[2]*ac[2]/10000.0;
```

```
ab[3]=ab[3]*ac[3]*ac[3]/10000.0; ab[4]=ab[4]*ac[1]*ac[2]/10000.0;
```

ab[5]=ab[5]*ac[1]*ac[3]/10000.0; ab[6]=ab[6]*ac[2]*ac[3]/10000.0;

C=0.017453; twopi=6.28319; octahedron(x);

} eof

cat awk_ newmain_ spherical_ average »awk.it awk -f awk.it

 $\{ 12 \}.list >! \\ \{ 13 \}.SphericalAverage$

A3 awk_functions

#This code is called by CalSphereDensity.com

Calculates density along 12 vectors centered at the coordinates provided in

#SphericalAveraging.com

#!/bin/csh function ccpvolr(cx,ac,v) dtor=0.017453; a1=cx[1]; b1=cx[2]; c1=cx[3];

alph=dtor*cx[4]; beta=dtor*cx[5];gamm=dtor*cx[6];sum=0.5*(alph+beta+gamm); v=sin(sum-

alph)*sin(sum-beta)*sin(sum-gamm); v=2.0*a1*b1*c1*sqrt(sin(sum)*v);

astar=b1*c1*sin(alph)/v; bstar=c1*a1*sin(beta)/v; cstar=a1*b1*sin(gamm)/v;

cosast=(cos(beta)*cos(gamm)-cos(alph))/(sin(beta)*sin(gamm)); cosbst=(cos(gamm)*cos(alph)-

cos(beta))/(sin(gamm)*sin(alph)); cosgst=(cos(alph)*cos(beta)-

cos(gamm))/(sin(alph)*sin(beta)); ac[1]=astar*astar; ac[2]=bstar*bstar; ac[3]=cstar*cstar;

ac[4]=2.0*bstar*cstar*cosast; ac[5]=2.0*cstar*astar*cosbst; ac[6]=2.0*astar*bstar*cosgst; return

function ortho(cx,c2f,f2c) C=0.017453; cabg[1]=cos(cx[4]*C); cabg[2]=cos(cx[5]*C);

cabg[3]=cos(cx[6]*C); sabg[1]=sin(cx[4]*C); sabg[2]=sin(cx[5]*C); sabg[3]=sin(cx[6]*C);

cabgs[1]=(cabg[2]*cabg[3]-cabg[1])/(sabg[2]*sabg[3]); cabgs[2]=(cabg[3]*cabg[1]-

cabg[2])/(sabg[3]*sabg[1]); cabgs[3]=(cabg[1]*cabg[2]-cabg[3])/(sabg[1]*sabg[2]);

v=cx[1]*cx[2]*cx[3]*sqrt(1.0+2.0*cabg[1]*cabg[2]*cabg[3]-cabg[1]**2-cabg[2]**2-

```
cabg[3]**2); abcs[1]=cx[2]*cx[3]*sabg[1]/v; abcs[2]=cx[3]*cx[1]*sabg[2]/v;
```

abcs[3]=cx[1]*cx[2]*sabg[3]/v; sabgs1=sqrt(1.0-cabgs[1]**2); # cartesian to fraction

```
c2f[1,1]=1.0/cx[1]; c2f[1,2]=-cabg[3]/(sabg[3]*cx[1]); c2f[1,3]=-
```

```
(cabg[3]*sabg[2]*cabgs[1]+cabg[2]*sabg[3])/(sabg[2]*sabgs1*sabg[3]*cx[1]); c2f[2,1]=0.0;
```

```
c2f[2,2]=1.0/(sabg[3]*cx[2]); c2f[2,3]=cabgs[1]/(sabgs1*sabg[3]*cx[2]); c2f[3,1]=0.0;
```

```
c2f[3,2]=0.0; c2f[3,3]=1.0/(sabg[2]*sabgs1*cx[3]);
```

fraction to cartesian

f2c[1,1]=cx[1];

f2c[1,2]=cabg[3]*cx[2];

```
f2c[1,3]=cabg[2]*cx[3];
```

f2c[2,1]=0;

```
f2c[2,2]=sabg[3]*cx[2];
f_{2c}[2,3] = -
sabg[2]*cabgs[1]*cx[3];
f2c[3,1]=0.0; f2c[3,2]=0.0;
f_{2c}[3,3] = sabg[2] * sabgs1 * cx[3];
return function product(y,r,x)
y[1]=x[1]*r[1,1]+x[2]*r[1,2]+x[
3]*r[1,3];
y[2]=x[1]*r[2,1]+x[2]*r[2,2]+x[
3]*r[2,3];
y[3]=x[1]*r[3,1]+x[2]*r[3,2]+x[
3]*r[3,3]; return function
formfactor(E,ss,B,afc,bfc,afs,bfs)
form=0; if(E=="C") for(kk=1;
kk \le 5; kk \le 1)
badd=B/4.+bfc[kk]/4.0;
form=form+afc[kk]*exp(-
```

badd*ss); if(E=="S") for(kk=1; kk<=5; kk+=1) badd=B/4.+bfs[kk]/4.0; form=form+afs[kk]*exp(-

badd*ss); return form function octahedron(x) pi=3.141593; d2r=pi/180; alpha=70.5288*d2r; beta=60.0*d2r; x[1,1]=1.0; x[1,2]=0.0; x[1,3]=0.0; x[2,1]=1.0/2.0; x[2,2]=sin(beta); x[2,3]=0.0; x[3,1]=-1.0/2.0; x[3,2]=sin(beta); x[3,3]=0.0 x[4,1]=1.0/2.0; x[4,2]=cos(alpha)*sin(beta); x[4,3]=sin(alpha)*sin(beta); x[5,1]=-1.0/2.0; x[5,2]=cos(alpha)*sin(beta); x[5,3]=sin(alpha)*sin(beta); x[6,1]=0.0; x[6,2]=-cos(alpha)*sin(beta)*2; x[6,3]=sin(alpha)*sin(beta); for(i=7; i<=12; i+=1) x[i,1]=-x[i-6,1]; x[i,2]=-x[i-6,2]; x[i,3]=-x[i-6,3]

A4 awk_newmain_spherical_average

This code is called by CalSphereDensity.com

Averages the 12 vectors

h[NR]=\$ 1; k[NR]=\$ 2; l[NR]=\$ 3; apart0=\$ 4*cos(\$ 5*C); bpart0=\$ 4*sin(\$ 5*C); #

making B-factor corrections and store into apart[NR] and bpart[NR] ss=ac[1]*\$ 1*\$

1+ac[2]+ac[2]* 2*\$ 2+ac[3]*\$ 3*\$ 3+ac[4]*\$ 2*\$ 3+ac[5]*

\$ 3*\$ 1+ac[6]*\$ 1*\$ 2;

Btensor=ab[1]*\$ 1*\$ 1+ab[2]*\$ 2*\$ 2+ab[3]*\$ 3*\$ 3+2*ab[4]*\$ 2*\$ 3+2*ab[5]*

\$ 1*\$ 3+2*ab[6]*\$ 1*\$ 2;

```
Btensor=2*pi*pi*Btensor; scale=exp(Btensor-bave*ss/4.0); apart[NR]=apart0*scale; bpart[NR]=bpart0*scale; }
```

```
ENDNX=30; dr=0.05; r=0; srho=0; xnew[1]=x1[1]; xnew[2]=x1[2];
```

```
xnew[3]=x1[3]; product(yfract,c2f,xnew); rho=0; for(j=1; j \le NR; j=1)
```

alpha=h[j]*yfract[1]+k[j]*yfract[2]+l[j]*yfract[3];

rho=rho+apart[j]*cos(twopi*alpha)+bpart[j]*sin(twopi*alpha);;

rho=2*(rho+129124)/v; printf("%8.3f%12.5f%12.5f

```
%12.5f\n",r,rho,rho-srho,rho+srho);
```

averaging for (i1=1; i1<=NX; i1+=1) r=dr*i1; rho0=0; sumxx=0;

for(i2=1; i2<=12; i2+=1) xnew[1]=x1[1]+x[i2,1]*r;

```
xnew[2]=x1[2]+x[i2,2]*r; xnew[3]=x1[3]+x[i2,3]*r;
```

```
product(yfract,c2f,xnew); rho=0; for(j=1; j<=NR; j+=1)
```

```
alpha=h[j]*yfract[1]+k[j]*yfract[2]+l[j]*yfract[3];
```

```
rho=rho+apart[j]*cos(twopi*alpha)+bpart[j]*sin(twopi*alpha);;
```

rho=2*(rho+129124)/v; rho0=rho0+rho; sumxx=sumxx+rho*rho;

rho=rho0/12; srho=sqrt(sumxx/12-rho*rho); printf("%8.3f %12.5f %12.5f

%12.5f\n",r,rho,rho-srho, rho+srho)

B: To calculate decay

B1 rrlog.com

#Calculates $y = log(x2^{/max2})^{/2}$ for the probability density calculated by

SphericalAveraging.com

#Run using ./rrlog.com

!/bin/csh

foreach Mn (W1 W2 W3 W4)

awk -f awk_rrlog S2_51_100ns_\$ {Mn}.SphericalAveraged >!

S2_51_100ns_\${Mn}.SphericalAveraged_rrlog

end

B2 awk_rrlog

#This code is called by rrlog.com

!/bin/csh

{if(NR==1) {ymax=\$ 2}; rr=\$ 1*\$ 1; ylog=log(\$ 2*\$ 2/ymax**2)/2.0; print rr,ylog}

S3. Matlab Code for Generating Plots.

%Load data generated by the codes included in S2

S1W1 = dlmread('/Users/foo/bar/S1_51_100ns_W1.SphericalAveraged');

S1W2 = dlmread('/Users/foo/bar/S1_51_100ns_W2.SphericalAveraged');

S1W3 = dlmread('/Users/foo/bar/S1_51_100ns_W3.SphericalAveraged');

S1W4 = dlmread('/Users/foo/bar/S1_51_100ns_W4.SphericalAveraged');

S1W1_log = dlmread('/Users/fo/bar/S1_51_100ns_W1.SphericalAveraged_rrlog');

S1W2_log = dlmread('/Users/foo/bar/S1_51_100ns_W2.SphericalAveraged_rrlog');

S1W3_log = dlmread('/Users/foo/bar/S1_51_100ns_W3.SphericalAveraged_rrlog');

S1W4_log = dlmread('/Users/foo/bar/S1_51_100ns_W4.SphericalAveraged_rrlog');

%Determining the probability of each position by dividing the number of occurances by the total number of frames

S1W1(:,2:4) = S1W1(:,2:4)/1250;

S1W2(:,2:4) = S1W2(:,2:4)/1250;

S1W3(:,2:4) = S1W3(:,2:4)/1250;

S1W4(:,2:4) = S1W4(:,2:4)/1250;

%Calculating the scaling factor to normalize the CDF of W1

S1W1tot = trapz(S1W1(:,1),S1W1(:,2));

S1W1scale = trapz(S1W1(:,1),S1W1(:,2))/S1W1tot;

S1W2scale = trapz(S1W2(:,1),S1W2(:,2))/S1W1tot;

S1W3scale = trapz(S1W3(:,1),S1W3(:,2))/S1W1tot; S1W4scale = trapz(S1W4(:,1),S1W4(:,2))/S1W1tot;

%Calculation of CDF

S1W1cdf = ecdf(S1W1(:,2), 'Function', 'survivor');

S1W2cdf = ecdf(S1W2(:,2), 'Function', 'survivor')*S1W2scale;

S1W3cdf = ecdf(S1W3(:,2), 'Function', 'survivor')*S1W3scale; S1W4cdf = ecdf(S1W4(:,2), 'Function', 'survivor')*S1W4scale;

%Plotting the PDF, CDF, and decay

figure('rend', 'painters')

tiledlayout(1,3) nexttile

hold on

plot(S1W1(:,1),S1W1(:,2),'k','Linewidth',2);

plot(S1W2(:,1),S1W2(:,2),'g','Linewidth',2);

plot(S1W3(:,1),S1W3(:,2),'b','Linewidth',2);

plot(S1W4(:,1),S1W4(:,2),'c','Linewidth',2);

set(gca,'FontSize',25,'XMinorTick','on','YMinorTick','on');

legend('W1', 'W2', 'W3', 'W4', 'Location', 'eastoutside')

xlabel('Radius (Å)') ylabel('S_1';'Probability') xlim([0 1.5])

xticks([0:0.5:1.5]) ylim([0 0.25])

yticks([0:0.05:0.25]) ax=gca; hold off nexttile hold on

plot(S1W1(:,1),S1W1cdf(1:31,1),'k','Linewidth',2);

plot(S1W2(:,1),S1W2cdf(1:31,1),'g','Linewidth',2);

plot(S1W3(:,1),S1W3cdf(1:31,1),'b','Linewidth',2);

plot(S1W4(:,1),S1W4cdf(1:31,1),'c','Linewidth',2);

set(gca,'FontSize',25,'XMinorTick','on','YMinorTick','on');

legend('W1', 'W2', 'W3', 'W4', 'Location', 'eastoutside')

xlabel('Radius (Å)') ylabel('Occupancy') xlim([0 1.5]); ylim([0 1]);

xticks([0:0.5:2.25]); yticks([0:0.25:1]); ax=gca; hold off nexttile

hold on

plot(S1W1_log(:,1),S1W1_log(:,2),'k','Linewidth',2); plot(S1W2_log(:,1),S1W2_log(:,2),'g','Linewidth',2); plot(S1W3_log(:,1),S1W3_log(:,2),'b','Linewidth',2); plot(S1W4_log(:,1),S1W4_log(:,2),'c','Linewidth',2); plot(S1WX_log(:,1),S1WX_log(:,2),'r','Linewidth',2); plot(S1WY_log(:,1),S1WY_log(:,2),'r','Linewidth',2); set(gca,'FontSize',25,'XMinorTick','on','YMinorTick','on'); legend('W1','W2','W3','W4','Location','eastoutside') xlabel('Squared Radius (Å2)^ ') ylabel('log(Prob2'/Max2)^ /2') xlim([0 2.25]) xticks([0:0.75:2.25]) ax=gca; hold off

S4. Occupancy Analysis of Water Molecules in the Broad (Cl1) Channel.

Figure S1. Occupancy analysis of water molecules in the broad channel: PDF (left), occupancy (center), and decay (right) of water molecules in the broad channel. The total occupancy is calculated as a survival function, measuring the probability of finding a water beyond the specified radial distance. The broad channel water molecules behave similarly in the S_1 state compared to those in the S_2 state.

Figure S2. A and B show the occupancy analysis of the water tetramer next to Y_Z in the S_1 and S_2 states. C and D show the probability density and decay for water molecules in the broad channel in the S_1 state. W2, W3, and W5 (black, green, and blue, respectively) are largely unaffected by changing S states or fixing the chloride in the MD simulations. W6 and W7 (cyan and magenta, respectively) have a drastic drop in occupancy exhibiting a close coupling of Cl1 with the water molecules in the broad channel.

S6. Occupancies of Water Tetramer Plus a Reference W2 in the S1 and S2 (Table S1) States.

Water	\mathbf{S}_1	\mathbf{S}_2
(W2)	0.98	0.96
W3	0.95	0.95
W5	0.83	0.76
W6	0.28	0.60
W7	0.29	0.53

Table S1. Occupancy of water tetramer plus a reference W2 in the S_1 and S_2 states.

S7. Oxygen PDFs of Water Molecules inside the Large (O1) Channel.

Figure S3. Top: Oxygen PDFs contoured at 1σ for water molecules in the large channel. Unlike the narrow and broad channels, the large channel is characterized by its disorganized globular water arrangement with no defined equilibrium positions. Middle: Same as above but contoured at 15σ for both O (red) and H (white) atoms. Bottom: A rotated view focusing on the secondary lesser branch to show the network of asparagines that stabilize individual water molecules occupying the lesser branch. Water positions from $3WU2^1$ are marked as red crosses.

S8. Topology files for Fe-heme²

* bis-HIS heme and non-heme iron complexes for CHARMM36

* Compiled by Suliman Adam, Free Universtit Berlin

```
* Version from June 2017
```

*

! Parent files that have to be read prior to streaming this file:

```
! (1) top_all36_prot.rtf (CHARMM36 protein, doi: 10.1021/ct300400x , 10.1021/ja036959e , 10.1021/jp973084f )
```

! (2) par_all36_prot.prm

! (3a) toppar_all36_prot_heme.str for loading heme B with propionic groups (doi: 10.1016/S0022-2836(05)80196-2)

! (3b) toppar_ions_won.str for loading non-heme iron (doi: 10.1021/jp309150r)

read rtf card append

* Topology for bis-HIS heme and non-heme iron complexes

*

41 1

!reference:

!Adam, S., Knapp-Mohammady, M., Yi, J., Bondar, A.-N. Revised CHARMM force field !parameters for iron-containing cofactors of photosystem II. (doi: 10.1002/jcc.24918)

MASS -1 FE2H0 55.84700 ! heme iron, taken from all36_prot_heme: FE
MASS -1 FE2H 55.84700 ! heme iron, taken from all36_prot_heme: FE
MASS -1 FE3H 55.84700 ! hematin iron, taken from all36_prot_heme: FE
MASS -1 FE2NH1 55.84700 ! ferrous non-heme iron in his-bicarbonate system, taken from all36_prot_heme: FE
MASS -1 FE3NH1 55.84700 ! ferric non-heme iron in his-bicarbonate system, taken from all36_prot_heme: FE
MASS -1 FE2NH2 55.84700 ! ferrous non-heme iron in his-bicarbonate system, taken from all36_prot_heme: FE
MASS -1 FE2NH2 55.84700 ! ferrous non-heme iron in his-only system, taken from all36_prot_heme: FE
MASS -1 FE3NH2 55.84700 ! ferric non-heme iron in his-only system, taken from all36_prot_heme: FE

RESI HCO3-1.00 ! Bicarbonate with MK chargesATOM CTCC0.84 !ATOM OC1OC-0.74 ! Use with patch only!ATOM OC2OC-0.74 !ATOM OC3OH1-0.72 !ATOM HO3H0.36 !BOND CTOC1CTOC3HO3DOUB CTOC2

!ferrous FeHis

PRES FEBI2	1.00 ! Connect non-heme iron (2+) to four histidines and bicarbonate
	! Order: 1-FE2P, 2-HSD, 3-HSD, 4-HSD, 5-HSD, 6-HCO3
GROUP	! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch

ATOM 1FE2P FE2NH1 0.16 ! GROUP ! ATOM 2ND1 NR1 -0.40 ! ATOM 2HD1 H 0.34 ! 2HD1 2HE1 3HE1 3HD1 ATOM 2CG CPH1 0.43 ! ATOM 2CB CT2 -0.24 ! 2HB1 2ND1--2CE1 3CE1--3ND1 3HB1 ATOM 2HB1 HA2 0.09 ! | / || ATOM 2HB2 HA2 0.09 ! -----2CB--2CG || || 3CG-3CB-----GROUP ! 2HB2 2CD2--2NE2 ATOM 2NE2 NR2 0.10 ! 3NE2--3CD2 3HB2 ATOM 2CD2 CPH1 -0.48 ! 2HD2 \ / ATOM 2HD2 HR3 0.23 ! 3HD2 ATOM 2CE1 CPH2 -0.02 ! $\backslash /$ ATOM 2HE1 HR1 0.19 ! 1FE(2+) GROUP ! ATOM 3ND1 NR1 -0.40 ! / || \ / || \ ATOM 3HD1 H 0.34 ! ATOM 3CG CPH1 0.43 ! $// \setminus$ ATOM 3CB CT2 -0.24 ! / /(-) \ \ ATOM 3HB1 HA2 0.09 ! /60C1 60C2 \ 5HD2 / \ // \ ATOM 3HB2 HA2 0.09 ! 4HD2 $/ \langle / / \rangle |$ GROUP 1 1 ATOM 3NE2 NR2 0.10 ! 5HB1 5CD2--5NE2 6CT 4NE2--4CD2 4HB1 // / ATOM 3CD2 CPH1 -0.48 ! ATOM 3HD2 HR3 0.23 ! -----5CB--5CG || 6OC3 4CG--4CB-----ATOM 3CE1 CPH2 -0.02 ! ATOM 3HE1 HR1 0.19 ! 5HB2 5ND1--5CE1 6HO3 4CE1--4ND1 4HB2 GROUP ! 1 \ / | ATOM 4ND1 NR1 -0.40 ! 5HD1 5HE1 4HE1 4HD1 ATOM 4HD1 H 0.34 ! ATOM 4CG CPH1 0.43 ! ATOM 4CB CT2 -0.24 ! ATOM 4HB1 HA2 0.09 ! ATOM 4HB2 HA2 0.09 ! GROUP 1 ATOM 4NE2 NR2 0.10 ! ATOM 4CD2 CPH1 -0.48 ! ATOM 4HD2 HR3 0.23 ! ATOM 4CE1 CPH2 -0.02 ! ATOM 4HE1 HR1 0.19 ! GROUP ! ATOM 5ND1 NR1 -0.40 ! ATOM 5HD1 H 0.34 ! ATOM 5CG CPH1 0.43 ! ATOM 5CB CT2 -0.24 ! ATOM 5HB1 HA2 0.09 ! ATOM 5HB2 HA2 0.09 ! GROUP !

ATOM 5NE2 NR2 0.10 ! ATOM 5CD2 CPH1 -0.48 ! ATOM 5HD2 HR3 0.23 ! ATOM 5CE1 CPH2 -0.02 ! ATOM 5HE1 HR1 0.19 ! GROUP Į. ATOM 6CT CC 0.80 ! ATOM 60C1 OC -0.57 ! ATOM 60C2 OC -0.57 ! ATOM 6OC3 OH1 -0.54 ! ATOM 6HO3 H 0.40! BOND 2NE2 1FE2P 3NE2 1FE2P 4NE2 1FE2P 5NE2 1FE2P BOND 6OC1 1FE2P 6OC2 1FE2P ANGL 1FE2P 2NE2 2CD2 1FE2P 2NE2 2CE1 1FE2P 3NE2 3CD2 1FE2P 3NE2 3CE1 ANGL 1FE2P 4NE2 4CD2 1FE2P 4NE2 4CE1 1FE2P 5NE2 5CD2 1FE2P 5NE2 5CE1 ANGL 1FE2P 6OC1 6CT 1FE2P 6OC2 6CT ANGL6OC1 1FE2P 6OC2 DIHE 1FE2P 6OC1 6CT 6OC2 1FE2P 6OC1 6CT 6OC3 1FE2P 6OC2 6CT 6OC1 1FE2P 6OC2 6CT 60C3 DIHE 6CT 6OC1 1FE2P 6OC2 6CT 6OC2 1FE2P 6OC1 Iferric FeHis PRES FEBI3 2.00 ! Connect non-heme iron (3+) to four histidines and bicarbonate ! Order: 1-FE3P, 2-HSD, 3-HSD, 4-HSD, 5-HSD, 6-HCO3 GROUP ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch ATOM 1FE3P FE3NH1 0.04 ! GROUP Į. ATOM 2ND1 NR1 -0.36 ! 2HD1 2HE1 3HE1 3HD1 ATOM 2HD1 H 0.38 ! ATOM 2CG CPH1 0.31! T T 2HB1 2ND1--2CE1 3CE1--3ND1 3HB1 ATOM 2CB CT2 -0.09 ! ATOM 2HB1 HA2 0.09 ! | / \setminus ATOM 2HB2 HA2 0.09! -----2CB--2CG 3CG-3CB-----// | GROUP 1 | \\ || ATOM 2NE2 NR2 0.14 ! 2HB2 2CD2--2NE2 3NE2--3CD2 3HB2 ATOM 2CD2 CPH1 -0.45 ! \setminus / Т ATOM 2HD2 HR3 0.23 ! 2HD2 \ / 3HD2 ATOM 2CE1 CPH2 -0.02 ! $\backslash /$ ATOM 2HE1 HR1 0.22 ! 1FE(3+) GROUP Į. /||\ ATOM 3ND1 NR1 -0.36 ! / 11 \ ATOM 3HD1 H 0.38 ! / || \ $// \setminus$ ATOM 3CG CPH1 0.31! ATOM 3CB CT2 -0.09 ! / /(-) \ \ ATOM 3HB1 HA2 /60C1 60C2 \ 0.09! ATOM 3HB2 HA2 0.09! 5HD2 $/ \setminus // \setminus$ 4HD2 GROUP ļ / $\setminus //$ ATOM 3NE2 NR2 0.14 ! 5HB1 5CD2--5NE2 6CT 4NE2--4CD2 4HB1

ATOM 3CD2 CPH1 -0.45 ! | // || ATOM 3HD2 HR3 0.23 ! -----5CB--5CG 60C3 4CG--4CB-----ATOM 3CE1 CPH2 -0.02 ! $| \rangle$ / ATOM 3HE1 HR1 0.22 ! 5HB2 5ND1--5CE1 6HO3 4CE1--4ND1 4HB2 GROUP i / ATOM 4ND1 NR1 -0.36 ! 5HD1 5HE1 4HE1 4HD1 ATOM 4HD1 H 0.38! ATOM 4CG CPH1 0.31 ! ATOM 4CB CT2 -0.09 ! ATOM 4HB1 HA2 0.09 ! ATOM 4HB2 HA2 0.09 ! GROUP 1 ATOM 4NE2 NR2 0.14 ! ATOM 4CD2 CPH1 -0.45 ! ATOM 4HD2 HR3 0.23 ! ATOM 4CE1 CPH2 -0.02 ! ATOM 4HE1 HR1 0.22 ! GROUP ! ATOM 5ND1 NR1 -0.36 ! ATOM 5HD1 H 0.38! ATOM 5CG CPH1 0.31! ATOM 5CB CT2 -0.09 ! ATOM 5HB1 HA2 0.09 ! ATOM 5HB2 HA2 0.09 ! GROUP ! ATOM 5NE2 NR2 0.14 ! ATOM 5CD2 CPH1 -0.45 ! ATOM 5HD2 HR3 0.23 ! ATOM 5CE1 CPH2 -0.02 ! ATOM 5HE1 HR1 0.22 ! GROUP I ATOM 6CT CC 0.72 ! ATOM 60C1 OC -0.47 ! ATOM 60C2 OC -0.47 ! ATOM 60C3 OH1 -0.44 ! ATOM 6HO3 H 0.46 ! BOND 2NE2 1FE3P 3NE2 1FE3P 4NE2 1FE3P 5NE2 1FE3P BOND 6OC1 1FE3P 6OC2 1FE3P ANGL 1FE3P 2NE2 2CD2 1FE3P 2NE2 2CE1 1FE3P 3NE2 3CD2 1FE3P 3NE2 3CE1 ANGL 1FE3P 4NE2 4CD2 1FE3P 4NE2 4CE1 1FE3P 5NE2 5CD2 1FE3P 5NE2 5CE1 ANGL 1FE3P 6OC1 6CT 1FE3P 6OC2 6CT ANGL6OC1 1FE3P 6OC2 DIHE 1FE3P 6OC1 6CT 6OC2 1FE3P 6OC1 6CT 6OC3 1FE3P 6OC2 6CT 6OC1 1FE3P 6OC2 6CT 60C3 DIHE 6CT 6OC1 1FE3P 6OC2 6CT 6OC2 1FE3P 6OC1

!ferrous FeHis without bicarbonate
PRES FE4H2 2.00 ! Connect non-heme iron (2+)

```
! Order: 1-FE2P, 2-HSD, 3-HSD, 4-HSD, 5-HSD
GROUP
              ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch
ATOM 1FE2P FE2NH2 0.08 !
GROUP
              Į.
ATOM 2ND1 NR1 -0.12 !
ATOM 2HD1 H
                          2HD1 2HE1 3HE1 3HD1
              0.31!
ATOM 2CG CPH1 0.33 !
                                   /
                                       2HB1 2ND1--2CE1
ATOM 2CB CT2 -0.11 !
                                          3CE1--3ND1 3HB1
ATOM 2HB1 HA2 0.09 !
                         | / ||
                                     \setminus |
ATOM 2HB2 HA2 0.09 !
                                              3CG-3CB-----
                      -----2CB--2CG
                                  GROUP
              ļ
                    \\ ||
                                // |
                         2HB2 2CD2--2NE2
ATOM 2NE2 NR2 -0.07 !
                                           3NE2--3CD2 3HB2
ATOM 2CD2 CPH1 -0.38 !
                            \ / |
ATOM 2HD2 HR3 0.24 !
                            2HD2 \ /
                                         3HD2
ATOM 2CE1 CPH2 -0.13 !
                                 \backslash /
ATOM 2HE1 HR1 0.23 !
                                1FE(2+)
                           / \
GROUP
              !
ATOM 3ND1 NR1 -0.12 !
                            5HD2
                                  / \
                                          4HD2
ATOM 3HD1 H
              0.31!
                           /
                                  5HB1 5CD2--5NE2
ATOM 3CG CPH1 0.33 !
                                          4NE2--4CD2 4HB1
ATOM 3CB CT2 -0.11 !
                        | //
                              ATOM 3HB1 HA2 0.09 ! -----5CB--5CG
                                   4CG--4CB-----
ATOM 3HB2 HA2 0.09 !
                         | \rangle
                              /
                                             4CE1--4ND1 4HB2
GROUP
              1
                   5HB2 5ND1--5CE1
ATOM 3NE2 NR2 -0.07 !
                                    /
                            ١
                                        ATOM 3CD2 CPH1 -0.38 !
                            5HD1
                                  5HE1 4HE1 4HD1
ATOM 3HD2 HR3 0.24 !
ATOM 3CE1 CPH2 -0.13 !
ATOM 3HE1 HR1 0.23 !
GROUP
              !
ATOM 4ND1 NR1 -0.12 !
ATOM 4HD1 H
              0.31!
ATOM 4CG CPH1 0.33 !
ATOM 4CB CT2 -0.11 !
ATOM 4HB1 HA2 0.09 !
ATOM 4HB2 HA2
                0.09!
GROUP
              !
ATOM 4NE2 NR2 -0.07 !
ATOM 4CD2 CPH1 -0.38 !
ATOM 4HD2 HR3 0.24 !
ATOM 4CE1 CPH2 -0.13 !
ATOM 4HE1 HR1 0.23 !
              !
GROUP
ATOM 5ND1 NR1 -0.12 !
              0.31!
ATOM 5HD1 H
ATOM 5CG CPH1 0.33 !
ATOM 5CB CT2 -0.11 !
ATOM 5HB1 HA2 0.09 !
```

ATOM 5HB2 HA2 0.09 ! GROUP 1 ATOM 5NE2 NR2 -0.07 ! ATOM 5CD2 CPH1 -0.38 ! ATOM 5HD2 HR3 0.24 ! ATOM 5CE1 CPH2 -0.13 ! ATOM 5HE1 HR1 0.23 ! BOND 2NE2 1FE2P 3NE2 1FE2P 4NE2 1FE2P 5NE2 1FE2P ANGL 1FE2P 2NE2 2CD2 1FE2P 2NE2 2CE1 1FE2P 3NE2 3CD2 1FE2P 3NE2 3CE1 1FE2P 5NE2 5CD2 1FE2P 5NE2 5CE1 ANGL 1FE2P 4NE2 4CD2 1FE2P 4NE2 4CE1 Iferric FeHis without bicarbonate PRES FE4H3 3.00 ! Connect non-heme iron (3+) to four histidines ! Order: 1-FE2P, 2-HSD, 3-HSD, 4-HSD, 5-HSD GROUP ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch ATOM 1FE3P FE3NH2 0.12 ! GROUP ! ATOM 2ND1 NR1 -0.26 ! 2HD1 2HE1 3HE1 3HD1 ATOM 2HD1 H 0.41! ATOM 2CG CPH1 0.35 ! / ATOM 2CB CT2 -0.09 ! 2HB1 2ND1--2CE1 3CE1--3ND1 3HB1 ATOM 2HB1 HA2 0.09 ! | / || \setminus | ATOM 2HB2 HA2 0.09 ! -----2CB--2CG || 3CG-3CB-----GROUP ! \\ || ATOM 2NE2 NR2 0.03 ! 2HB2 2CD2--2NE2 3NE2--3CD2 3HB2 ATOM 2CD2 CPH1 -0.40 ! ATOM 2HD2 HR3 0.32 ! 2HD2 \ / 3HD2 ATOM 2CE1 CPH2 -0.09 ! $\backslash /$ ATOM 2HE1 HR1 0.27 ! 1FE(3+) GROUP ! / \ ATOM 3ND1 NR1 -0.26 ! 5HD2 / \ 4HD2 ATOM 3HD1 H / \ 0.41! ATOM 3CG CPH1 0.35 ! 5HB1 5CD2--5NE2 4NE2--4CD2 4HB1 ATOM 3CB CT2 -0.09 ! | // // / ATOM 3HB1 HA2 0.09 ! -----5CB--5CG 4CG--4CB-----ATOM 3HB2 HA2 0.09! $| \rangle$ / GROUP ! 5HB2 5ND1--5CE1 4CE1--4ND1 4HB2 ATOM 3NE2 NR2 0.03 ! \ / ATOM 3CD2 CPH1 -0.40 ! 5HD1 5HE1 4HE1 4HD1 ATOM 3HD2 HR3 0.32 ! ATOM 3CE1 CPH2 -0.09 ! ATOM 3HE1 HR1 0.27 ! ! GROUP ATOM 4ND1 NR1 -0.26 ! ATOM 4HD1 H 0.41! ATOM 4CG CPH1 0.35 ! ATOM 4CB CT2 -0.09 ! ATOM 4HB1 HA2 0.09 !

ATOM 4HB2 HA2 0.09 ! GROUP 1 ATOM 4NE2 NR2 0.03 ! ATOM 4CD2 CPH1 -0.40 ! ATOM 4HD2 HR3 0.32 ! ATOM 4CE1 CPH2 -0.09 ! ATOM 4HE1 HR1 0.27 ! GROUP i ATOM 5ND1 NR1 -0.26 ! ATOM 5HD1 H 0.41! ATOM 5CG CPH1 0.35 ! ATOM 5CB CT2 -0.09 ! ATOM 5HB1 HA2 0.09 ! ATOM 5HB2 HA2 0.09! GROUP 1 ATOM 5NE2 NR2 0.03 ! ATOM 5CD2 CPH1 -0.40 ! ATOM 5HD2 HR3 0.32 ! ATOM 5CE1 CPH2 -0.09 ! ATOM 5HE1 HR1 0.27 ! BOND 2NE2 1FE3P 3NE2 1FE3P 4NE2 1FE3P 5NE2 1FE3P ANGL 1FE3P 2NE2 2CD2 1FE3P 2NE2 2CE1 1FE3P 3NE2 3CD2 1FE3P 3NE2 3CE1 ANGL 1FE3P 4NE2 4CD2 1FE3P 4NE2 4CE1 1FE3P 5NE2 5CD2 1FE3P 5NE2 5CE1 !ferrous HemeHis, Set 1 0.00 ! bis-HIS heme link PRES HEHI2 ! Order: 1-HEME, 2-HSD, 3-HSD GROUP ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch FE2H 0.24 ! ATOM 1FE ATOM 1NA NPH -0.18! ATOM 1NB NPH -0.18! ATOM 1NC NPH -0.18! 102A 101A 102D 101D ATOM 1ND NPH -0.18! \\// \\ // 1CGD ATOM 1C1A CPA 0.12! 1CGA ATOM 1C2A CPB -0.06 ! ATOM 1C3A CPB -0.06 ! HBA1--1CBA--HBA2 1HA 1HBD1-1CBD-1HBD2 ATOM 1C4A CPA 0.12 ! ATOM 1C1B CPA 0.12 ! HAA1--1CAA-HAA2 __1CHA__1HAD1-1CAD-1HAD2 ATOM 1C2B CPB -0.06 ! / ATOM 1C3B CPB -0.06 ! 1C2A---C1A 1C4D--1C3D ATOM 1C4B CPA 0.12! ATOM 1C1C CPA 0.12 ! 1HMA1 /1HMD1 ATOM 1C2C CPB -0.06 ! 1HMA2-1CMA--1C3A 1NA (2NE2) 1ND 1C2D--1CMD-1HMD2 ATOM 1C3C CPB -0.06 ! 1HMA3/ \ /\ 2-HSD /\ / \1HMD3 C4A \ | / 1C1D ATOM 1C4C CPA 0.12! ATOM 1C1D CPA 0.12! $/ \langle | / \rangle$ \ ATOM 1C2D CPB -0.06 ! / $\langle | \rangle$ \ ATOM 1C3D CPB -0.06 ! 1HB--1CHB 1FE(2+) CHD--1HD

```
ATOM 1C4D CPA 0.12 ! \ / | \ /
       ! \ / | \ /
GROUP
ATOM 1CHA CPM -0.10 ! 1C1B / | \ 1C4C 1HAC
ATOM 1HA HA 0.10 ! 1HMB1\ / \/ 3-HSD \/ \ /
            ! 1HMB2-1CMB--1C2B 1NB (3NE2) 1NC 1C3C-1CAC 1HBC1
GROUP
ATOM 1CHB CPM -0.10 ! 1HMB3/ | | | \\ /
ATOM 1HB HA 0.10 ! | | 1CBC
            !
                  1C3B--1C4B 1C1C--1C2C \
GROUP
ATOM 1CHC CPM -0.10 ! | \__1CHC__/ |
                                           1HBC2
ATOM 1HC HA 0.10 !
                     1CAB | 1CMC--1HMC3
                // \ 1HC / |
GROUP
            !
                     1CBB 1HAB 1HMC1 1HMC2
ATOM 1CHD CPM -0.10 !
ATOM 1HD HA 0.10!
                    / \
GROUP
            ! 1HBB1 1HBB2
ATOM 2ND1 NR1 -0.40 !
ATOM 2HD1 H 0.42 !
ATOM 2CG CPH1 -0.09 !
                      2HD1 2HE1
ATOM 2CB CT2 -0.11 !
                     ATOM 2HB1 HA2 0.09 !
ATOM 2HB2 HA2 0.09 !
                     2HB1 2ND1--2CE1
                     | / ||
      ! -----2CB--2CG ||
GROUP
ATOM 2NE2 NR2 -0.70 ! | \\ ||
ATOM 2CD2 CPH1 0.22 !
                      2HB2 2CD2--2NE2
                      ATOM 2HD2 HR3 0.10 !
ATOM 2CE1 CPH2 0.25 !
                        2HD2 \
ATOM 2HE1 HR1 0.13 !
                          1-HEME(1FE)
                        \ 3HD2
GROUP
      !
ATOM 3ND1 NR1 -0.40 !
                             ATOM 3HD1 H 0.42 !
                             3NE2--3CD2 3HB1
ATOM 3CG CPH1 -0.09 !
                             ATOM 3CB CT2 -0.11 !
                             || 3CG--3CB-----
ATOM 3HB1 HA2 0.09 !
                             || / |
ATOM 3HB2 HA2 0.09 !
                             3CE1--3ND1 3HB2
            !
GROUP
                         / |
ATOM 3NE2 NR2 -0.70 !
                            3HE1 3HD1
ATOM 3CD2 CPH1 0.22 !
ATOM 3HD2 HR3 0.10 !
ATOM 3CE1 CPH2 0.25 !
ATOM 3HE1 HR1 0.13 !
BOND 1FE 2NE2 1FE 3NE2
ANGL 1FE 2NE2 2CD2 1FE 2NE2 2CE1
ANGL 2NE2 1FE 1NA 2NE2 1FE 1NB 2NE2 1FE 1NC 2NE2 1FE 1ND
ANGL 1FE 3NE2 3CD2 1FE 3NE2 3CE1
ANGL 3NE2 1FE 1NA 3NE2 1FE 1NB 3NE2 1FE 1NC 3NE2 1FE 1ND
DELETE ANGLE 1NA 1FE 1NC 1NB 1FE 1ND
DIHE 2CD2 2NE2 1FE 1NA 3CD2 3NE2 1FE 1NA
```

!ferric HemeHis

PRES HEHI3 1.00 ! bis-HIS hematin link ! Order: 1-HEME, 2-HSD, 3-HSD GROUP ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch ATOM 1FE FE3H 0.40! NPH -0.17! ATOM 1NA ATOM 1NB NPH -0.17! NPH -0.17! 102D 101D ATOM 1NC 102A 101A ATOM 1ND NPH -0.17! \\// \\// ATOM 1C1A CPA 0.18! 1CGA 1CGD ATOM 1C2A CPB -0.05 ! ATOM 1C3A CPB -0.05 ! HBA1--1CBA--HBA2 1HA 1HBD1-1CBD-1HBD2 0.18! ATOM 1C4A CPA ATOM 1C1B CPA 0.18 ! HAA1--1CAA-HAA2 __1CHA__ 1HAD1-1CAD-1HAD2 ATOM 1C2B CPB -0.05 ! $/ \setminus /$ ATOM 1C3B CPB -0.05 ! 1C2A---C1A 1C4D--1C3D ATOM 1C4B CPA 0.18! ATOM 1C1C CPA 0.18 ! 1HMA1\ | | /1HMD1 ATOM 1C2C CPB -0.05 ! 1HMA2-1CMA--1C3A 1NA (2NE2) 1ND 1C2D--1CMD-1HMD2 ATOM 1C3C CPB -0.05 ! 1HMA3/ \ /\ 2-HSD /\ / \1HMD3 C4A \ | / 1C1D ATOM 1C4C CPA 0.18! $/ \langle | / \rangle$ ATOM 1C1D CPA 0.18 ! ATOM 1C2D CPB -0.05 ! \ ATOM 1C3D CPB -0.05 ! 1HB--1CHB 1FE(3+) CHD--1HD ATOM 1C4D CPA 0.18 ! \ //\ / GROUP ! / | \ \ / ATOM 1CHA CPM -0.10 ! 1C1B / | \ 1C4C 1HAC ATOM 1HA HA 0.10 ! 1HMB1 / \ / 3-HSD \ / \ / ! 1HMB2-1CMB--1C2B 1NB (3NE2) 1NC 1C3C-1CAC 1HBC1 GROUP ATOM 1CHB CPM -0.10 ! 1HMB3/ | | ATOM 1HB HA 0.10 ! | | 1CBC ! 1C1C--1C2C \ GROUP 1C3B--1C4B ATOM 1CHC CPM -0.10 ! __1CHC__/ | 1HBC2 ATOM 1HC HA 0.10 ! 1CMC--1HMC3 1CAB // \ GROUP 1HC / | ļ ATOM 1CHD CPM -0.10 ! 1CBB 1HAB 1HMC1 1HMC2 ATOM 1HD HA 0.10! /GROUP ! 1HBB1 1HBB2 ATOM 2ND1 NR1 -0.32 ! ATOM 2HD1 H 0.40! ATOM 2CG CPH1 -0.05 ! 2HD1 2HE1 ATOM 2CB CT2 -0.09 ! / ATOM 2HB1 HA2 0.09 ! 2HB1 2ND1--2CE1 ATOM 2HB2 HA2 0.09 ! | / || ! -----2CB--2CG || GROUP ATOM 2NE2 NR2 -0.70 ! | \\ || ATOM 2CD2 CPH1 0.22 ! 2HB2 2CD2--2NE2 ATOM 2HD2 HR3 0.10 ! ATOM 2CE1 CPH2 0.25 ! 2HD2 \

ATOM 2HE1 HR1 0.13 ! 1-HEME(1FE) GROUP ! 3HD2 \ ATOM 3ND1 NR1 -0.32 ! \ L ATOM 3HD1 H 0.40! 3NE2--3CD2 3HB1 ATOM 3CG CPH1 -0.05 ! // / ATOM 3CB CT2 -0.09 ! 3CG--3CB-----ATOM 3HB1 HA2 0.09 ! / | 3CE1--3ND1 3HB2 ATOM 3HB2 HA2 0.09 ! GROUP 1 / ATOM 3NE2 NR2 -0.70 ! 3HE1 3HD1 ATOM 3CD2 CPH1 0.22 ! ATOM 3HD2 HR3 0.10 ! ATOM 3CE1 CPH2 0.25 ! ATOM 3HE1 HR1 0.13 ! BOND 1FE 2NE2 1FE 3NE2 ANGL 1FE 2NE2 2CD2 1FE 2NE2 2CE1 ANGL 2NE2 1FE 1NA 2NE2 1FE 1NB 2NE2 1FE 1NC 2NE2 1FE 1ND ANGL 1FE 3NE2 3CD2 1FE 3NE2 3CE1 ANGL 3NE2 1FE 1NA 3NE2 1FE 1NB 3NE2 1FE 1NC 3NE2 1FE 1ND DELETE ANGLE 1NA 1FE 1NC 1NB 1FE 1ND DIHE 2CD2 2NE2 1FE 1NA 3CD2 3NE2 1FE 1NA !ferrous HemeHis, Set 2 PRES HEHIO 0.00 ! bis-HIS heme link using CHARMM HEME and HSD charges ! Order: 1-HEME, 2-HSD, 3-HSD ! do NOT use AUTOgenerate ANGLes DIHEdrals after this patch ATOM 1FE FE2H0 0.24 ! BOND 1FE 2NE2 1FE 3NE2 ANGL 1FE 2NE2 2CD2 1FE 2NE2 2CE1 ANGL 2NE2 1FE 1NA 2NE2 1FE 1NB 2NE2 1FE 1NC 2NE2 1FE 1ND ANGL 1FE 3NE2 3CD2 1FE 3NE2 3CE1 ANGL 3NE2 1FE 1NA 3NE2 1FE 1NB 3NE2 1FE 1NC 3NE2 1FE 1ND DELETE ANGLE 1NA 1FE 1NC 1NB 1FE 1ND DIHE 2CD2 2NE2 1FE 1NA 3CD2 3NE2 1FE 1NA

END

read para card flex append * Parameters for bis-HIS heme and non-heme iron complexes *

ATOMS

MASS -1 FE2H0 55.84700 ! heme iron
MASS -1 FE2H 55.84700 ! heme iron
MASS -1 FE3H 55.84700 ! hematin iron
MASS -1 FE2NH1 55.84700 ! ferrous non-heme iron in his-bicarbonate system
MASS -1 FE3NH1 55.84700 ! ferrous non-heme iron in his-bicarbonate system
MASS -1 FE2NH2 55.84700 ! ferrous non-heme iron in his-only system

MASS -1 FE3NH2 55.84700 ! ferric non-heme iron in his-only system

BONDS

```
!bis-HIS heme/hematin
NPH FE2H0 270.200 2.040 ! optimised, from all36 prot heme: NPH FE
NR2 FE2H0 80.000
                    2.110 ! optimised, from all36 prot heme: NR2 FE
NPH FE2H 270.200
                    2.040 ! optimised, from all36_prot_heme: NPH FE
                   2.110 ! optimised, from all36 prot heme: NR2 FE
NR2 FE2H 80.000
NPH FE3H 270.000
                   2.030 ! optimised, from all36_prot_heme: NPH FE
                    2.080 ! optimised, from all 36 prot heme: NR2 FE
NR2 FE3H 80.000
Inon-heme iron with bicarbonate and histidines
                     1.960 ! optimised, from all 36 prot heme: NR2 FE
NR2 FE2NH1 140.000
OC
   FE2NH1 100.000 1.995 ! optimised, from all 36 prot heme: OM FE
NR2 FE3NH1 140.000
                     1.960 ! optimised, from all 36 prot heme: NR2 FE
OC FE3NH1 100.000 1.890 ! optimised, from all36 prot heme: OM FE
OH1 CC 230.000 1.380 ! optimised, from all36 prot: OH1 CD
Inon-heme iron with only histidines
NR2 FE2NH2 140.000
                     1.940 ! optimised, from all 36 prot heme: NR2 FE
                     1.870 ! optimised, from all 36 prot heme: NR2 FE
NR2 FE3NH2 140.000
ANGLES
!bis-HIS heme/hematin
FE2H0 NR2 CPH1 25.000 135.00 ! optimised, from all36_prot_heme: FE NR2 CPH1
FE2H0 NR2 CPH2 20.000 138.00 ! optimised, from all36 prot heme: FE NR2 CPH2
NPH FE2H0 NPH 14.390 90.00 ! taken from all36 prot heme: NPH FE NPH
FE2H0 NPH CPA 96.150 128.05 ! taken from all36 prot heme: FE NPH CPA
NR2 FE2H0 NPH 65.000 90.00 ! taken from all36 prot heme: NR2 FE NPH
FE2H NR2 CPH1 25.000 135.00 ! optimised, from all36 prot heme: FE NR2 CPH1
FE2H NR2 CPH2 25.000 137.00 ! optimised, from all36 prot heme: FE NR2 CPH2
NPH FE2H NPH 14.390 90.00 ! taken from all36 prot heme: NPH FE NPH
FE2H NPH CPA 96.150 128.05 ! taken from all36_prot_heme: FE NPH CPA
NR2 FE2H NPH 65.000 90.00 ! taken from all36_prot_heme: NR2 FE NPH
FE3H NR2 CPH1 25.000 135.00 ! optimised, from all36 prot heme: FE NR2 CPH1
FE3H NR2 CPH2 25.000 137.00 ! optimised, from all36 prot heme: FE NR2 CPH2
NPH FE3H NPH 14.390 90.00 ! taken from all36 prot heme: NPH FE NPH
FE3H NPH CPA 96.150 128.05 ! taken from all36 prot heme: FE NPH CPA
NR2 FE3H NPH 65.000 90.00 ! taken from all36 prot heme: NR2 FE NPH
Inon-heme iron with bicarbonate and histidines
FE2NH1 NR2 CPH1 25.000 123.70 ! optimised, from all36 prot heme: FE
                                                                    NR2 CPH1
FE2NH1 NR2 CPH2 25.000 127.60 ! optimised, from all36 prot heme: FE
                                                                    NR2
                                                                         CPH2
OC FE2NH1 OC
                 0.000 101.50 ! optimised, from all36_prot:
                                                          0C CC
                                                                   OC
FE2NH1 OC CC 40.000 85.00 ! optimised, from all36 cgenff: CG2O6 OG302 CG321
FE3NH1 NR2 CPH1 25.000 122.70 ! optimised, from all36_prot_heme: FE
                                                                   NR2 CPH1
FE3NH1 NR2 CPH2 25.000 125.00 ! optimised, from all36 prot heme: FE
                                                                    NR2 CPH2
OC
   FE3NH1 OC
                 0.000 101.50 ! optimised, from all 36 prot:
                                                          OC CC
                                                                   OC
FE3NH1 OC CC 40.000 98.00 ! optimised, from all36 cgenff: CG2O6 OG302 CG321
Н
    OH1 CC 55.000 113.30 ! optimised, from all36 prot:
                                                       н
                                                            OH1 CD
OH1 CC OC 50.000 123.00 210.00 2.26200 ! taken from all36 prot: OH1 CD
                                                                            OB
```

Inon-heme iron with only histidines

FE2NH2 NR2CPH125.000124.00 ! optimised, from all36_prot_heme: FENR2CPH1FE2NH2 NR2CPH225.000125.80 ! optimised, from all36_prot_heme: FENR2CPH2FE3NH2 NR2CPH125.000127.00 ! optimised, from all36_prot_heme: FENR2CPH1FE3NH2 NR2CPH225.000124.00 ! optimised, from all36 prot_heme: FENR2CPH1

DIHEDRALS

!bis-HIS heme/hematin NPH FE2H0 NR2 CPH1 0.1900 4 0.00 ! optimised, from all36_prot_heme: X FE NR2 X

0.0700 2 180.00 ! optimised, from all 36 prot heme: X FE NR2 X NPH FE2H NR2 CPH1 NPH FE2H NR2 CPH1 0.0400 3 180.00 ! optimised, from all 36 prot heme: X FE NR2 X 0.1400 4 0.00 ! optimised, from all36 prot_heme: X FE NR2 X NPH FE2H NR2 CPH1 0.1000 2 180.00 ! optimised, from all36 prot heme: X FE NR2 X NPH FE3H NR2 CPH1 0.0700 3 180.00 ! optimised, from all 36 prot heme: X FE NR2 X NPH FE3H NR2 CPH1 NPH FE3H NR2 CPH1 0.5500 4 0.00 ! optimised, from all 36 prot heme: X FE NR2 X FE2HO NPH X 0.0000 2 0.00 ! taken from all36 prot heme: X FE NPH X Х 0.0000 2 0.00 ! taken from all 36 prot heme: X FE NPH X Х FE2H NPH X 0.0000 2 0.00 ! taken from all36_prot_heme: X FE NPH X Х FE3H NPH X Inon-heme iron with bicarbonate and histidines 2.2000 2 180.00 ! optimised, from all36_prot: H OH1 CA CA OC CC OH1 H 3.0000 2 180.00 ! optimised, from all 36_prot: FE2NH1 OC CC OH1 X CD OH1 X OC 0.5000 2 180.00 ! optimised, from all36 prot heme: X FE NPH X FE2NH1 OC CC 3.0000 2 180.00 ! optimised, from all 36 prot: X CD OH1 X FE3NH1 OC CC OH1 0.0000 2 180.00 ! optimised, from all36 prot heme: X FE NPH X FE3NH1 OC CC OC CC OC FE2NH1 OC 0.0000 2 0.00 ! taken from all36 prot heme: X FE NPH X 0.0000 2 0.00 ! taken from all36 prot heme: X FE NPH X CC OC FE3NH1 OC

IMPROPER

!bis-HIS heme/hematin

 NPH
 CPA
 CPA
 FE2H0
 137.4000
 0
 0.00 ! taken from all36_prot_heme: NPH
 CPA
 CPA
 CPA
 CPA
 FE2H
 137.4000
 0
 0.00 ! taken from all36_prot_heme: NPH
 CPA
 CPA

NONBONDED nbxmod 5 atom cdiel fshift vatom vdistance vfswitch cutnb 14.0 ctofnb 12.0 ctonnb 10.0 eps 1.0 e14fac 1.0 wmin 1.5 FE2H0 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE2H 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE3H 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE2NH1 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE3NH1 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE2NH2 0.01 0.00 0.65 ! taken from all36_prot_heme: FE FE3NH2 0.01 0.00 0.65 ! taken from all36_prot_heme: FE

END

RETUrn

S9. Partial charges for S1 and S2 states

Residue	Atom Name	S 1	S ₂	Bonded Metal
	N	-0.412722	-0.353957	
	Н	0.287283	0.277665	
	CA	-0.037046	-0.080858	
	HA	0.098351	0.100847	
	СВ	-0.153619	-0.122125	
D170	HB2	0.070464	0.079061	
0170	HB3	0.070464	0.079061	
	CG	0.710785	0.638044	
	OD1	-0.729252	-0.679346	Ca
	OD2	-0.622624	-0.540711	Mn4
	С	0.634896	0.668528	
	0	-0.571203	-0.571515	
	N	-0.421232	-0.380459	
	Н	0.258161	0.241925	
	CA	-0.160303	-0.202430	
	HA	0.126136	0.131927	
	СВ	-0.050677	-0.016391	
	HB2	0.036657	0.025893	
	HB3	0.036657	0.025893	
E189	CG	-0.012791	-0.004925	
	HG2	0.048654	0.049166	
	HG3	0.048654	0.049166	
	CD	0.735867	0.735911	
	OE1	-0.686968	-0.670056	Са
	OE2	-0.766089	-0.762824	Mn1
	С	0.740758	0.770375	
	0	-0.628308	-0.630089	
	N	-0.437188	-0.383396	
	Н	0.307659	0.292661	
	CA	0.032564	0.012182	
	HA	0.080944	0.092749	
L227	СВ	-0.157182	-0.159734	
п э 52	HB2	0.091730	0.099545	
	HB3	0.091730	0.099545	
	CG	0.004364	0.012728	
	ND1	-0.083474	-0.067646	
	HD1	0.270322	0.283781	

Table S2. Partial charges for the OEC and all its ligands. The ligand atoms bonded directly to metals are shown in green and their connecting metal is given in the right column.

	CE1	-0.033089	-0.055960	
	HE1	0.182721	0.192610	
	NE2	-0.098682	-0.061086	Mn1
	CD2	-0.143965	-0.162103	
	HD2	0.167712	0.158607	
	C	0.313613	0.299999	
	0	-0.414947	-0.408191	
	N	-0.330458	-0.338321	
	Н	0.272439	0.276193	
	CA	-0.019977	-0.035829	
	HA	0.042048	0.056299	
	CB	0.087030	0.070535	
	HB2	0.016571	0.016967	
	HB3	0.016571	0.016967	
E333	CG	0.006747	-0.024022	
	HG2	0.004191	0.030919	
	HG3	0.004191	0.030919	
	CD	0.693254	0.763389	
	OE1	-0.649638	-0.611164	Mn3
	OE2	-0.714770	-0.645159	Mn4
	С	0.623419	0.677359	
	0	-0.561559	-0.567986	
	N	-0.495232	-0.449089	
	Н	0.299107	0.292504	
	CA	0.016452	-0.004732	
	HA	0.101167	0.100816	
	СВ	-0.053892	-0.047024	
5242	HB2	0.058547	0.061306	
D342	HB3	0.058547	0.061306	
	CG	0.651884	0.640522	
	OD1	-0.520575	-0.524538	Mn2
	OD2	-0.680678	-0.658547	Mn1
	С	0.448128	0.529629	
	0	-0.565479	-0.564081	
	N	-0.106031	-0.040830	
	Н	0.042673	0.032321	
	CA	-0.082924	-0.098928	
A 7 4 4	HA	0.135341	0.143041	
A344	СВ	-0.056605	-0.059893	
	HB1	0.039255	0.046474	
	HB2	0.039255	0.046474	
	HB3	0.039255	0.046474	

	С	0.555560	0.502720	
	0	-0.547306	-0.491117	Ca
	OXT	-0.402547	-0.401111	Mn2
	N	-0.477690	-0.415963	
	Н	0.307245	0.292691	
	CA	-0.122279	-0.163075	
	HA	0.136732	0.140240	
	СВ	0.006709	0.038969	
	HB2	0.009947	0.007447	
	HB3	0.009947	0.007447	
E354	CG	0.003582	-0.025190	
	HG2	0.021200	0.035502	
	HG3	0.021200	0.035502	
	CD	0.722695	0.664836	
	OE1	-0.605705	-0.568448	Mn2
	OE2	-0.659950	-0.577666	Mn3
	С	0.711064	0.752817	
	0	-0.611401	-0.593413	
	Ca	1.518360	1.395880	
	Mn1	1.204720	1.193870	
	Mn2	1.194920	1.244060	
	Mn3	1.664330	1.520380	
050	Mn4	1.518050	1.397600	
UEC	01	-0.705061	-0.675102	Ca, Mn1, & Mn2
	02	-0.655159	-0.613125	Ca, Mn2, & Mn3
	O3	-0.759029	-0.752491	Mn1, Mn2, & Mn3
	04	-0.763103	-0.639714	Mn3 & Mn4
	O5	-1.007389	-0.903511	Ca, Mn3, & Mn4
	0	-0.947418	-0.791523	Mn4
W1	H1	0.475156	0.420592	
	H2	0.447678	0.417292	
	0	-0.800687	-0.748772	Mn4
W2	H1	0.401290	0.413316	
	H2	0.454604	0.446788	
	0	-0.883468	-0.819177	Ca
W3	H1	0.465729	0.452215	
	H2	0.404244	0.394640	
	0	-0.780993	-0.766078	Са
W4	H1	0.374077	0.377802	
	H2	0.416107	0.418535	

S10. Bond Parameters for S_1 and S_2 states

Metal	Residue-Atom	S₁ (Å)	S₂ (Å)
Mn4	D170-OD2	2.1717	2.4105
Mn4	E333-OE2	2.1180	1.8488
Ca	OEC-O1	2.4456	2.4205
Ca	OEC-O2	2.6725	2.7167
Ca	OEC-O5	2.5174	2.5805
Са	WAT4-O	2.4438	2.4631
Ca	WAT3-O	2.4811	2.4561
Mn1	OEC-O1	1.8467	1.8500
Mn1	OEC-O3	1.8795	1.8916
Mn2	OEC-O1	1.8403	1.8340
Mn2	OEC-O2	1.7661	1.7896
Mn2	OEC-O3	1.8697	1.8767
Mn3	OEC-O2	1.8418	1.7992
Mn3	OEC-O5	1.7987	1.8048
Mn3	OEC-O3	2.0290	1.9853
Mn3	OEC-O4	1.7903	1.8108
Mn4	WAT2-O	2.0283	2.0825
Mn4	WAT1-O	2.1008	1.9542
Mn4	OEC-O5	1.9067	1.9147
Mn4	OEC-O4	1.8351	1.7851
Са	D170-0D1	2.4773	2.5980
Са	E189-OE1	2.8023	2.6871
Са	A344-O	2.5091	2.5999
Mn1	E189-OE2	1.9218	1.8756
Mn1	H332-NE2	2.0146	1.9524
Mn1	D342-OD2	2.1645	2.1517
Mn2	D342-OD1	2.0533	2.0264
Mn2	A344-OXT	1.9067	1.9712
Mn2	E354-OE1	1.9966	2.0097
Mn3	E333-OE1	1.9587	1.9006
Mn3	E354-OE2	2.0647	2.0518

Table S3. Bond parameters connecting the OEC and its ligands. Bonds are based on optimized QM/MM structures and held rigidly with a universal force constant of 1000 kcal/(mol*Å²).

S11. Angle Parameters for $S_1 \mbox{ and } S_2 \mbox{ states }$

Atom 1	Atom 2	Atom 3	S ₁ (°)	S ₂ (°)
D170-OD2	Mn4	E333-OE2	158.59	163.32
D170-OD2	Mn4	WAT2-O	88.59	81.21
D170-OD2	Mn4	WAT1-O	84.10	81.22
D170-OD2	Mn4	OEC-O5	104.54	94.42
D170-OD2	Mn4	OEC-O4	98.34	100.01
E333-OE2	Mn4	WAT2-O	82.53	87.98
E333-OE2	Mn4	WAT1-O	76.72	86.97
E333-OE2	Mn4	OEC-O5	95.31	97.63
E333-OE2	Mn4	OEC-O4	92.90	93.52
WAT2-O	Mn4	OEC-O5	92.47	86.80
WAT2-O	Mn4	OEC-O4	170.78	166.22
WAT1-O	Mn4	WAT2-O	91.43	94.12
WAT1-O	Mn4	OEC-O5	170.59	175.34
WAT1-O	Mn4	OEC-O4	95.32	99.64
A344-C	A344-O	Ca	133.25	131.57
A344-C	A344-OXT	Mn2	125.19	125.51
D170-CG	D170-OD2	Mn4	141.57	143.74
E333-CD	E333-OE2	Mn4	120.78	121.84
D170-CG	D170-OD1	Ca	110.91	109.44
E189-CD	E189-OE1	Ca	129.63	128.54
E189-CD	E189-OE2	Mn1	128.39	130.25
D342-CG	D342-OD2	Mn1	121.40	123.42
D342-CG	D342-OD1	Mn2	126.14	124.48
E354-CD	E354-OE1	Mn2	121.06	120.54
E333-CD	E333-OE1	Mn3	126.62	127.75
E354-CD	E354-OE2	Mn3	127.94	128.10
H332-CE1	H332-NE2	Mn1	121.73	121.09
Ca	OEC-O1	Mn1	111.80	110.23
Ca	OEC-O1	Mn2	104.84	106.17
Ca	OEC-O2	Mn2	98.60	96.57
Са	OEC-O2	Mn3	99.36	100.07
Са	OEC-O5	Mn3	106.45	105.00
Ca	OEC-O5	Mn4	109.57	118.93
Ca	WAT4-O	HW	119.15	120.19
Ca	WAT3-O	HW	123.16	122.36
Mn1	OEC-01	Mn2	96.03	96.54
Mn1	H332-NE2	H332-CD2	127.50	127.61

Table S4. Angle parameters connecting the OEC and its ligands. Angles are based on optimized QM/MM structures and held rigidly with a universal force constant of 200 kcal/(Rad*Å²).

Mn1	OEC-O3	Mn2	93.94	93.70
Mn1	OEC-O3	Mn3	113.48	115.97
Mn2	OEC-O2	Mn3	100.31	100.27
Mn2	OEC-O3	Mn3	90.48	90.96
Mn3	OEC-O5	Mn4	93.49	94.83
Mn3	OEC-O4	Mn4	96.25	99.26
Mn4	WAT2-O	WAT2-HW	114.62	114.09
Mn4	WAT1-O	WAT1-HW	120.00	120.24
D170-OD1	Ca	E189-OE1	148.64	148.27
D170-OD1	Ca	A344-O	79.01	75.22
D170-OD1	Ca	OEC-O1	142.20	139.58
D170-OD1	Ca	OEC-O2	83.93	82.03
D170-OD1	Ca	OEC-O5	99.29	96.02
D170-OD1	Ca	WAT4-O	97.11	93.54
D170-OD1	Ca	WAT3-O	79.96	78.09
E189-OE1	Ca	A344-O	112.56	113.47
E189-OE1	Ca	OEC-O1	68.22	70.30
E189-OE1	Ca	OEC-O2	127.29	129.70
E189-OE1	Ca	OEC-O5	94.86	100.24
E189-OE1	Ca	WAT4-O	64.30	65.92
E189-OE1	Ca	WAT3-O	71.64	74.07
A344-0	Ca	OEC-O1	74.77	75.44
A344-O	Ca	OEC-O2	68.60	68.70
A344-O	Ca	OEC-O5	129.52	128.62
A344-O	Ca	WAT4-O	67.21	65.52
A344-0	Ca	WAT3-O	135.69	132.14
OEC-O2	Ca	OEC-O1	61.40	61.64
OEC-O2	Mn2	OEC-O1	93.18	93.72
OEC-O5	Ca	OEC-O1	77.82	81.34
OEC-O5	Ca	OEC-O2	61.12	59.93
OEC-O5	Mn3	OEC-O2	93.06	94.60
OEC-O5	Mn3	OEC-O3	93.92	97.21
OEC-O5	Mn3	OEC-O4	84.11	81.75
OEC-O5	Mn4	OEC-O4	79.93	79.43
WAT4-O	Ca	OEC-O1	97.28	98.94
WAT4-O	Ca	OEC-O2	134.68	133.55
WAT4-O	Ca	OEC-O5	158.64	164.72
WAT3-O	Ca	OEC-01	137.41	142.14
WAT3-O	Ca	OEC-O2	145.97	144.27
WAT3-O	Са	OEC-O5	92.14	92.90
WAT3-O	Ca	WAT4-O	77.33	77.43
E189-OE2	Mn1	OEC-O1	95.96	94.98

E189-OE2	Mn1	H332-NE2	84.62	87.62
E189-OE2	Mn1	D342-OD2	91.80	93.50
E189-OE2	Mn1	OEC-O3	173.63	171.71
H332-NE2	Mn1	OEC-O1	179.26	177.30
H332-NE2	Mn1	D342-OD2	90.82	92.91
H332-NE2	Mn1	OEC-O3	96.39	94.88
D342-OD2	Mn1	OEC-O1	89.63	87.65
D342-OD2	Mn1	OEC-O3	94.47	94.27
OEC-O3	Mn1	OEC-O1	82.98	82.44
OEC-O3	Mn2	OEC-O1	83.43	83.28
OEC-O3	Mn2	OEC-O2	87.59	85.65
OEC-O3	Mn3	OEC-O2	80.98	82.24
D342-OD1	Mn2	OEC-O1	89.95	90.41
D342-OD1	Mn2	OEC-O2	175.86	174.52
D342-OD1	Mn2	OEC-O3	95.47	98.43
D342-OD1	Mn2	A344-OXT	83.18	82.30
D342-OD1	Mn2	E354-OE1	84.68	85.05
A344-OXT	Mn2	OEC-O1	96.02	96.13
A344-OXT	Mn2	OEC-O2	93.79	93.66
A344-OXT	Mn2	OEC-O3	178.55	179.05
A344-OXT	Mn2	E354-OE1	91.19	88.95
E354-OE1	Mn2	OEC-O1	170.45	172.69
E354-OE1	Mn2	OEC-O2	92.59	91.20
E354-OE1	Mn2	OEC-O3	89.22	91.71
E333-OE1	Mn3	OEC-O2	167.59	169.77
E333-OE1	Mn3	OEC-O5	96.07	94.16
E333-OE1	Mn3	OEC-O3	90.00	91.43
E333-OE1	Mn3	E354-OE2	84.15	85.98
E333-OE1	Mn3	OEC-O4	94.99	85.85
E354-OE2	Mn3	OEC-O2	86.25	85.53
E354-OE2	Mn3	OEC-O5	176.59	177.25
E354-OE2	Mn3	OEC-O3	82.68	85.53
E354-OE2	Mn3	OEC-O4	99.27	95.52
OEC-O4	Mn3	OEC-O2	94.30	100.63
OEC-O4	Mn3	OEC-O3	174.80	176.99

References

- (1) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal Structure of Oxygen-Evolving Photosystem II at a Resolution of 1.9 Å. *Nature* **2011**, *473* (7345), 55–60. https://doi.org/10.1038/nature09913.
- (2) Matta, D. Role of Protonation State Changes and Hydrogen Bonding Around the Oxygen Evolving Complex of Photosystem II, CUNY Academic Works, 2021. https://academicworks.cuny.edu/gc_etds/4159.