Supplementary Material

Inclusion of Nuclear Quantum Effects for Simulations of Nonlinear Spectroscopy

Kenneth A. Jung,! Pablo E. Videla,"'® and Victor S. Batista®'?
Department of Chemistry, Yale University, P.O. Box 208107, New Haven,
CT 06520-8107

2)Electronic mail: pablo.videla@yale.edu

b)Electronic mail: victor.batista@yale.edu


mailto:pablo.videla@yale.edu
mailto:victor.batista@yale.edu

I. FOURIER RELATIONS OF TWO-TIME CORRELATION FUNCTIONS
A. Standard correlation function

The standard two-time correlation function for Hermitian operators A, Band C is given

by

1 .
(AB(t)O(t)) = ETT[@’BHAB(t)C(t’)]. (1)
Working in the basis of energy eigenstates of H (i.e. H |n) = E, |n)) it follows that
1 » o
(ABHC() = - > e 1Ay, B, Cogetiertetiont’ (2)
q,r,s

where O = (n| O |m) and wpy, = (E, — En)/h.
The double Fourier transform of the previous expression is given by

(AB(W)C(W) = % S PB4 By Cryb(w — wea) 0 — ), (3)

q7r7s

Enforcing the second delta function in Eq. (3) we have

/ + 1 —BEs /
(AB(w)C(w')) = P ~ qz e PE 0y A gy Brs0(w — wig )8 (w' — way), (4)
— " (O(W) AB(w)) . (5)

If instead we enforce both delta functions in (3) we get

/ 1
(AB(w)C(w')) = Pl +w>2 D e B CogAgrd(w — wrs) (W' — way), (6)
q,r,s
— et (B(W)O (W) A) (7)

Summarizing, in Fourier space the following relation holds between ’cyclic permutations’

of this standard two-time TCF
(AB(w)C(w)) = "' (C(w')AB(w)) (8)
=" (B(w)C(W)A), (9)
where w0 = w + w'.

Following a similar procedure for the correlation function (AC(#')B(t)), the following

relations can be found between cyclic permutations of the TCF:
(AC(W)B(w)) = e"(B(w)AC(W)) (10)
= e*ﬁh‘%é’(w/)é(w)fl). (11)
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Note that Egs. (8-9) and Eq. (10-11) relate all the possible standard two-time TCFs that
can be generated from the operators A, B(t) and C(t').

B. Double Kubo Transform

Following a similar procedure as before, it is possible to relate the DKT to the standard

TCF.! In particular, for the DKT defined by
1 B A M. PP Jir oA
(A; B(t); O(t") = 7 / d\ / dNTr [e_(ﬂ_A)HAe_(’\_’\ B e NCMH) ], (12)
0 0
working in the basis of energy eigenstates it follows that

o 1 (8 A , : -
<A; B(t); C(t)> = Z_ﬁ2 / d)\/ AN Z ¢ BEq+Mwqr+A ﬁwrsAqTBTSCSqe—i-zwrste—i-zwsqt _ (13)
0 0

q7T78

Performing the double Fourier transform and enforcing the delta functions, it follows that

(A; B(w); C(w") = Filw,w') Y e P14, B Cogd(w — wre) (0 — wag) (14)
q,r,S
= Fi(w,w') (AB(w)C (")), (15)
where

1 [P A Y

Fl(w,wl) — _2/ d)\/ d)\/ e—/\h(w—i-w )e-i-/\ hw (16)
5% Jo 0
1 e=Phw =B 1
= — . 1

B2h? ( W w'w * ww’> (17)

Similarly, for the DKT defined by (B(t); A; C(t')) a similar derivation gives the relation

(B(w); 4; C(w)) = Fa(w, w') (B(w)AC(W')) (18)
with , ,
N L e ho o= 1
Byw,w) = B2h? | ww W ww | (19)

II. PROPERTIES OF THE DOUBLE KUBO TRANSFORM

The DKT defined by Eq. (12) presents some interesting symmetries, that can be proved
by exploiting the symmetry of the integration limits and cyclic properties of the trace. Here,

we summarized them.



A. Stationary

The DKT is stationary with respect to an overall shift of the time origin. In fact, since

A ~

<A;B() CW) =5z / dA / AN’ A z‘)\h)B(t—i)\’h)C*(t’)> (20)
and

<A<—m)é(t iRt )> - %Tr[eﬂﬁA(-ime%ﬁtB(—M%)eéﬁfé(t’)}

= Tl e HI A iaR)e T B(—iX B KOt H Y
= (A(—t = AR B(-iNR)C(H — 1)) 21)
it follows that
(4B W) = (A-0):B: 0 —1) (22)

B. Cyclic permutations

The DKT is invariant to cyclic permutations of the argument. In fact, by making the
change of variables A = § — p and X = p/ — p, making use of the cyclic properties of the

trace and interchanging the order of integration it follows that

<A;B( elts 52 / dA / AN’ A Mh)é(t—z'xh)é(t')> (23)
-5 [ / A (Bt~ i) O~ iph) A) (24)

= / ! / du t—wh)é(t’—wh)fl> (25)

= (B(t:C(#): A). (26)

Following the same procedure, it also follows that:

(B Gy A) = (C); A Bw)). (27)



C. Complex conjugate

The complex conjugate of Eq. (12) is given by:
< :B(t);C( 62 / dA / dN é B(t + i) h)A(+i)\h)> (28)
- / du / ! B<t—w'h)A(—@'uh)é(t')> (29)

= / dy! / du t—wh)A(—mh)é(t’)> (30)
= (B AsC()), (31)

where the passage from Eq. (28) to Eq. (29) is achieved by using a change of variables
(u=p—Xand ¢/ = —X) and cyclic properties of the trace.
Since the operators only depend on the position and, hence, are chosen to be real in the

basis of eigenstates of H, it also follows that:

<A;B(t);é(t’)>* — %/ﬁdA/AdX Tr

62 / dA/ d)\/ quBrsAsqe-‘rzwrst -l—’qurt’ N hwgr )\ﬁw(h (33)
q r,s

_ﬁﬁ A {1 A 17 2 ]
C’(t’)e’)‘ HB(t)e™He M At (32)

/ 6 ~PEq —twsrt ,—twrqt’ /\ hwsy )xﬁw s
32 d)\ d)\ Aqusrere e s (34)
qrs
= (A B(=t);C(~t)). (35)

D. Symmetrized DKT

It is straightforward to show that the symmetrized DKT defined as

(AiBerCw) " = (ABE:CW)) + (B ACw)) (36)

is a real and even function of time. In fact, using Eq. (31) it follows that
(B C@)) " = (A B C)) + (A Bt C(t)) (37)
- zzre{ A,B(t);é(t')>} (38)

From Eq. (35) it also easy to show that

(i Bw:cw) " =



From the stationary of the DKT to an overall time shift Eq. (22) and the definition of
the symmetrized DKT Eq. (36) it follows that

<A; B(t): é(t')>sym _ <A; B(b); C’(t’)> v <B(t); A; C‘(t’)> (41)
— <A(—t); B;C(t — t)> + <B;/1(—t); C(t' — t)> (42)
= (B A=t Cw —n)"" (43)

which is the time version of the detail balance relation presented in the main text.
Finally, it is straightforward to show that when one of the operator is unity, the sym-
metrized DKT reduces to the simple Kubo transform.? For example, when B (t) = 1 this

follows from

(A;1;C ()™ = / d\ / ANTr[e~FVH e O (1)
+6—(B NYH J =N HC( )] (44)
=75 [/ d)\/ ANTrleFVH A= M (1)
+ /0 dN / / ANTr[e P fe=VH (1) (45)
1 /8 B A RA

=77 /0 d\ /0 AN Tr[e= =N Ae= M C ()] (46)

_ / ’ ANTr[e P VH fe M C(4)] (47)
ZB Jo

= (4;C(t)). (48)

Due to the relations given by Eq. (26-27) and Eq. (43) it is straightforward to generalize
this for the cases where A =1 or C(t') = 1

E. Asymmetrized DKT

Similar properties can be derived for the asymmetric DK'T defined by

(4
Using Eq. (31) it follows that the asymmetric DKT is a purely imaginary function
A A ~ asym A N A A A
(A:Bscw)) ™ = (ABw;C >> <A B(t): C(t)) (50)
— %S <A B(t) } (51)

w

(0" = (A By ) - (Bey 4 Cw)). (49)

>
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From Eq. (35) it also follows that asymmetric DKT is an odd function of time
— (4 By é( >> (& B(-t); C(-)) (52)
A , asym
< —t )> . (53)

N asym

(A BE):C(1))

II1. SYMMETRIZED DKT AND ASYMMETRIC DKT IN THE
HARMONIC LIMIT

The Fourier transform of the DKT in the energy representation is given by (see Egs.

(13-14))

KABC W, CL) Z/BQ ZeiﬁEquTBT qu/ / Eq E'r )\ (E'r Es)

qrs

X6 [w— (B, — Eg) /0] 6 [ — (B — Eq)/R], (54)

where we defined Kpc(w,w') = (A; B(w); C(w')) for notation simplicity.

For the case of a harmonic potential V' = %mQQQ:Q with eigenvalues E,, = h{2(n + %) we

have
~ efﬁhﬂ/2
KABC(w7 w/) = ZBQ Z eiﬁthAqursquIq,r,S<ﬁ){5 [w - (T - S>Q] 0 [w/ - (S - Q)Q] }7
qrs
(55)
where

qrs / d)\/ )\/ )\ﬁQ(q 7’ )\’EQT S) (56)

To proceed we expand each of the operators to second order in the coordinate , namely

X 1

A=A"+ Az + 5A”i:Q, (57)
A 1

B=B"+B%+ §B”§:2, (58)
. 1

C=C"4+C'2+ 50”552, (59)

where the primes represent derivatives with respect to the coordinate. When the matrix
elements of the operators inside Eq. (55) are expanded according to Eqgs. (57-59), the DKT
splits into different terms that depend on the order to which each element is taken. The
lowest order term that contribute to the DKT (and the response function) involves one z?

operator and two x operators®® and there will be three possible combinations, namely
f{ABc(w, w’) ~ IN{QH(W, u/) + f(121 (w, w’) + Kllg(u}, w’) (60)
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where the notation Kpy; denotes that A is replaced by 2, B with # and €' with 2. Note
that terms involving the (static) zero order terms A°, B, C°, Ky, K110, K101 and Koy in
principle contribute to the DKT, although they do not contribute to the response function.*?
Since these terms can be excluded from the DK'T by computing the time correlation function
of the fluctuations of the operators 121, B,C’, ie. AA=A- <A>, they will no longer
be considered here.®> Note that the response function R(t,#') defined in the main text is
unaffected by the substitution of all the operators by its fluctuations.

Using the fact that for a harmonic oscillator

/| R
Tij = —2mQ |:(Si’j+1 \/j + 1+ 6@',]'71\/3] ) <61)
and
h . - . -
xl = GTG) [5i7j+2\/] F 1G4+ 2465(2 + 1)+ 65j-av/GVG — 1} ; (62)

each term in Eq. (60) can be further expanded. For example, the first term

A//Blcle—ﬁhQ/Q

X / —BhQ /
Kon(w,w') = 27 ; e’ qmgrxrsxsq[q,r,s(ﬁ){d w—(r—5)Qfd[w — (s — q)¢] }
(63)
can be expanded as
- , ho \* A'B'Cle P12
Kon(w, ') = (2mQ> 2732 Ze_ﬁmq [5q,r+2\/7“+1\/7“—|—2+
qrs
Ogr—2V/ TV — 1+ 64, (2r + 1)]
% [ V5 T L s 1V/5] [ VA 1 0001V Lys(8)
x{é[w— (r—s)Qdw — (s —q)9] } (64)

There are only four cases in which Eq. (64) does not vanish. These cases and the corre-
sponding correlation functions are:

(1) g=r—2,s=q+1,r=s+1

I3 >2 A//Blclefﬁhﬂ/2(1 _6—6h9)2

A () = ( ™ e (g 1 2)(g + 1)5(w — Qo — Q)

om0 AGLOE q
A"B'C'ePIY2(] — e=AMY)2 2 )
(2m§2> AZ (3hAY)2 (1— e—/j’m)36<w —Q)o(w - Q)
A//B O/ .



s=q—1,r=s-1

h 2 A"B'Ce —,BEQ/2 eﬁhQ
) 42(5719 Z e (g = 1)d(w + Q)i + Q)

2
2 _ _
A"B'C’ BhQ/2 1 — BhQ 9 28182
( h ) Cle (1 — )" 2 S(w + Q)5(w + Q)

1Z(BhS)2 (1 — e Pha)3

0 )2 A'B'C!

SR D+ Q) (66)

3) g=r,s=q—1,r=s+1

(3
Kél)l(wa W,)

h 2 A//B/C/676h9/2 B _ ,BE,Q 1 - ,
(2mQ> 5 Z((ghg)z ) > e g (2g 4 1)8(w — Q)3 (w' + Q)
q
( B >2 A//B/C«/(eﬁhﬂ — BRQ — 1)(36—,%9 + 672559)
2

ms 2(BRQ)2(1 — e-Pr)2 Ow—Q)5(wW'+9Q)  (67)

4) qg=r,s=q+1,r=s5-1

. ho\? A'B/Cle P28 4 gRO) — 1)
K (w,0') = (g 4 1)(2g + 1 0)d(w —Q
) = (505) S S+ ) D3t 5 )

(B \PA'B'C' (e 4 BRQ — 1)(3¢M 4 1)
\2mQ 2(BR)2(1 — e Ph)2

d(w+ D)W — Q) (68)
The notation here is defined such that
Kon (w,w') = K} (w,0) + K57 (w,0') + K355 (w,0') + K3} (w, ). (69)

Similar manipulations can be made for the second and third terms in Eq. (60). Here we

summarize the results:

~ 7 )2 A'B"C'(1 1 RO eﬁh,Q)(36—2ﬁh,Q +e—5m)

Kzt ) = (2mQ 2B (1 — e Fh)2 d(w)d(w' + 70)
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i h )2A’B/’C’(l—6h9€_5ﬁ9_6_5h9)(3+ ) s — ) ()

K(2) N
121w, ) <2mQ 2(BRO)2(1 — e—Fha)2

d(w—20)6(w" + Q) (72)

KO (w.w) = (- 2 A'B"C"e="" [ cosh(BhQ) — 1]
e 2me (BROQ)2(1 — e~Fh2)2

o ,):( h )2A/B'/C/e—ﬁm[cosh(ﬁm)_1] S+ 2006 — Q) (73)

2me (BROQ)2(1 — e—0h0)2

h )2 A'B'C"(P1 — BRQ — 1) (3¢~ 4 ¢~20Mw)

2(BRQ)2(1 — e—P)2 o(w +Q)o(w') (74)

S(w— Q)W) (75)

~ ho\? AB'C"(e P + BRQ — 1)(3e~7" + 1)
2mQ 2(BhQ)2(1 — e—Ph2)?

R i 2 A'B'C"
K (w,o) = (2m Q) SR~ o +20) (76)

5(w + Q)3 — 29) (77)

B i 2 A'B'C"
(4) A
K112(W,W) - (2mQ> 2(ﬁhQ)2

Note that all relations presented above can be expressed as a prefactor F! Cf;}c)

(w,w’) multiply

by a set of delta functions

(w,0') = FD(w,w)d(w + nQ)d(w’ + m), (78)

abc

i@

abc

where the particular values of n, m depend on the particular term considered.
From the relations presented above it is straightforward to obtain the symmetrized and

asymmetric DKT for the harmonic reference potential. In fact, since (see Eq. 39)
Kipe(w.o') = Kape(w,w') + Kapo(—w, —w') (79)
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the symmetrized DKT is given by

Ko (w,0/) = R + R® + RO + R 4+ RO 4 RO (80)
where

R = (Fy] + F3) [0(w — Q)d(w' — Q) + 0w + Q)d(w' + Q)] (81)

R = (B + By [0(w — Q0w + Q) + 0(w + Q)d(w' — Q)] (82)

R = (Fiy) + Fi3) [0(w)d(w’ + Q) + 8(w)d(w’ — Q)] (83)

R = (F5) + Fiy)) [6(w — 22)5(w + Q) + 8(w + 22)6(w — Q)] (84)

R = (Ffiy + FD) [5(w + )5(w) + 8w — 2)8()], (85)

RD = (B3} + F{Y) [6(w — Q)3(w + 29) + 6(w + Q)5(w’ — 20)]. (86)

In the previous equations we suppressed the frequency dependence of the prefactors functions
for notation simplicity. Note that all six terms contribute to the symmetric DKT.

Similarly, since (see Eq. 52)
KU (w,w') = Kape(w, ') — Kapo(—w, —w'), (87)

the asymmetric DKT is given by

stggn(w’ W) = 7@ 4 70 4 1l o p@d) 4 fle) 4 () (88)
where
I = (Ffj) = Fi) [5(w — 9)3(w' — Q) + 8w + Q)d(w + Q)] =0, (89)
IV = (B = Fyi}) [b(w — Q)8(w' + Q) + 6(w + Q)3 — Q)] (90)
19 = (Fly] — Fi3) [(w)3(' + Q) + 3(w)d(w’ = Q)] (91)
ID = (F) — FEY [5(w — 2Q)8(w' + Q) + 6(w + 2Q)8(w’ — Q)] =0, (92)
19 = (Bl — F) [(w + Q)6(w) + 8(w — Q)d(w")] (93)
IV = (Ff = F) [6(w — 3(' +20) + §(w + Q)d(w' — 22)] = 0. (94)

Note that, due to the form of the prefactors, three terms are identically zero and do not

contribute to the asymmetric DKT and hence the response function. If we further consider
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not just K540 (w,w’) but Q_(w,w)K5H% (w,w'), the contribution of I®) to the overall re-
sponse function is also zero, since )_(w,w’) vanishes when w = —w’ (which is enforced by

the delta functions in ().

From the analysis presented below, in the harmonic limit four out of the six low-order

terms are zero for the Q_(w,w)K% Y% (w,w’) term and, hence, do not contribute to the

response. This analysis suggest that neglecting the contribution of the asymmetric DKT
to the response may not be a bad approximation and we choose to do so in the main text.
Although these relations were derived for a harmonic potential we expect this approximation

to be valid even for moderately anharmonic potentials.

IV. ADDITIONAL FIGURES COMPARING THE EXACT AND
APPROXIMATE SECOND ORDER RESPONSE FUNCTION
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FIG. 1. Top Left: Exact Response. Bottom Left: The approximate response. Top Right: A

projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection

at w = 1 comparing the exact and approximate response. The potential is defined as V(z) = %;1:2

with a temperature 8 = 1 with A = B = and C = 2.
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FIG. 2. Top Left: Exact Response. Bottom Left: The approximate response. Top Right: A
projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection
at w = 1 comparing the exact and approximate response. The potential is defined as V(z) = %:L‘Q

with a temperature 8 = 8 with A = B =% and C = 32
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FIG. 3. Top Left: Exact Response. Bottom Left: The approximate response. Top Right: A
projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection
at w = 1 comparing the exact and approximate response. The potential is defined as V(z) =

%xQ + %0‘773 + ﬁx‘i with a temperature S = 1 with A=B=C=3.
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FIG. 4. Top Left:

projection at w =0
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Exact Response. Bottom Left: The approximate response. Top Right: A

comparing the exact and approximate response. Bottom Right: A projection

at w = 1 comparing the exact and approximate response. The potential is defined as V(z) =

%xQ + %0‘773 + ﬁx‘i with a temperature § = 8 with A=B=C=3.
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FIG. 5. Top Left: Exact Response. Bottom Left: The approximate response. Top Right: A
projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection
at w = 2 comparing the exact and approximate response. The potential is defined as V(z) = %:L‘Q

with a temperature 8 = 1 with A = B=C =32
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FIG. 6. Top Left:
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Exact Response.

Bottom Left: The approximate response.

1500

0, w/)

w=

(2

4-1500

1-2000
12000

41500

=2,wl)

R®(w

Top Right: A

projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection

at w = 2 comparing the exact and approximate response. The potential is defined as V(z) = 52

with a temperature 8 = 8 with A = B=C =32
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FIG. 7. Top Left:
projection at w =0

at w = 1 comparing
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Exact Response. Bottom Left: The approximate response. Top Right: A

comparing the exact and approximate response. Bottom Right: A projection

the exact and approximate response. The potential is defined as V(x) = %.’LA

with a temperature 8 = 1 with A = B=C =32
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FIG. 8. Top Left: Exact Response. Bottom Left: The approximate response. Top Right: A
projection at w = 0 comparing the exact and approximate response. Bottom Right: A projection
at w = 2.5 comparing the exact and approximate response. The potential is defined as V' (z) = %.’LA

with a temperature 8 = 8 with A = B=C =32
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V. ADDITIONAL FIGURES COMPARING THE SYMMETRIZED DKT
AND RPMD APPROXIMATION
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FIG. 9. ¢ = 0 cut of the symmetrized DKT 2? auto-correlation for the quartic potential. Black

line: exact result, K*)"; ,(t,0). Red line: Classical result. Green line: RPMD result. Blue line:

2222

TRPMD result.
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VI. ADDITIONAL FIGURES COMPARING THE EXACT AND RPMD
APPROXIMATE SECOND ORDER RESPONSE FUNCTION
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FIG. 10. Top Left: Exact Response. Bottom Left: The RPMD approximate response. Top Right:
A projection at w = 0 comparing the exact and RPMD approximate response. Bottom Right:
A projection at w = 2 comparing the exact and RPMD approximate response. The potential is

defined as V(z) = 222 with a temperature 8 = 1 with A=B=C=32

21



500

1-500

0,w/)

wt
2

L
L

4-1000 —™

RO (w

{-1500
— Exact
—2f 1 — RPMD

11500
{1000 3
o

=

1500 <
Q)

-500

FIG. 11. Top Left: Exact Response. Bottom Left: The RPMD approximate response. Top Right:
A projection at w = 0 comparing the exact and RPMD approximate response. Bottom Right:
A projection at w = 2 comparing the exact and RPMD approximate response. The potential is

defined as V(z) = 222 with a temperature 8 = 8 with A=B=C=32
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FIG. 12. Top Left: Exact Response. Bottom Left: The RPMD approximate response. Top Right:
A projection at w = 0 comparing the exact and RPMD approximate response. Bottom Right:
A projection at w = 1 comparing the exact and RPMD approximate response. The potential is

defined as V(z) = 322 4+ a3 + 1i52? with a temperature 8 = 1 with A=B=iand C =i
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FIG. 13. Top Left: Exact Response. Bottom Left: The RPMD approximate response. Top Right:
A projection at w = 0 comparing the exact and RPMD approximate response. Bottom Right:
A projection at w = 1 comparing the exact and RPMD approximate response. The potential is

defined as V(z) = 322 4+ a3 + 1i;2? with a temperature 8 = 8 with A=B=iand C =i
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