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The computation and interpretation of nonlinear vibrational spectroscopy is of vital importance for
understanding a wide range of dynamical processes in molecular systems. Here, we introduce an
approach to evaluate multi-time response functions in terms of multi-time double symmetrized Kubo
transformed thermal correlation functions. Furthermore, we introduce a multi-time extension of ring
polymer molecular dynamics to evaluate these Kubo transforms. Benchmark calculations show that the
approximations are useful for short times even for nonlinear operators, providing a consistent improve-
ment over classical simulations of multi-time correlation functions. The introduced methodology thus
provides a practical way of including nuclear quantum effects in multi-time response functions of
non-linear optical spectroscopy. Published by AIP Publishing. https://doi.org/10.1063/1.5036768

I. INTRODUCTION

Recent developments in nonlinear spectroscopy are of
vital importance for understanding and interpreting intricate
dynamic processes in liquids, including mode-coupling and
mechanisms of energy transfer commonly masked by spectral
broadening.1,2 The advantage of nonlinear optical spectro-
scopies is to decongest the spectrum by dispersing different
components along multiple spectroscopic axes. However, the
complexity of the systems often precludes a straightforward
interpretation of the spectral features. Computations thus pro-
vide a valuable approach for the correct assignment of the
spectroscopic signals.

Under the perturbative formalism, the different forms of
non-linear spectroscopy are cast in terms of response functions
which are multi-time correlation functions (multi-TCF’s) of
operators evaluated at different times.3 Although recent work
on tensor decomposition schemes4–6 has been encouraging for
the exact quantum mechanical evaluation of small coupled sys-
tems, the full quantum mechanical calculations of TCF’s are
still intractable for large systems comprising many degrees
of freedom.7 Therefore, there is great interest in the develop-
ment and implementation of approximate methods based on
classical molecular dynamics.

Significant advances have been made to formulate clas-
sical theories of nonlinear spectroscopy using the quantum-
classical correspondence between commutators and Poisson
brackets.8–11 However, these methods often rely upon com-
puting a stability matrix that can be numerically challenging
to obtain for complex systems since they involve a measure
of the sensitivity of dynamical variables to the initial condi-
tions. As an alternative, Keyes et al. developed an approach
based on a classical multi-TCF,12–14 making use of the con-
nection between the real and imaginary parts of the TCF for a
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harmonic system in the classical limit. These methodologies
have been successfully applied to the description of different
types of non-linear spectroscopies,8–15 but they address only
the classical limit.

It is well established that nuclear quantum effects (NQE)
due to zero-point energy fluctuations and tunneling can play
crucial roles, even at room temperature, and modulate a wide
variety of thermodynamic and dynamical properties of poly-
atomic systems.16–26 Therefore, incorporation of NQE along
with dynamics based on accurate potential energy surfaces is
essential for proper descriptions of the infrared, Raman, and
sum frequency generation spectra.27,28

Semiclassical methodologies such as the Herman-Kluck
(HK) semiclassical initial value representation (SC-IVR)29

have been applied to computations of nonlinear spectroscopy
based on linear response theory.30 Furthermore, the linearized
SC-IVR (LSC-IVR) approach,31 obtained as the linearized
approximation of the SC-IVR,32 has been used for simu-
lations of infrared spectroscopy,33,34 although the method
neglects interference effects and does not in general pre-
serve quantum statistics. Methods based on the path-integral
formalism that preserve the quantum Boltzmann distribu-
tion, such as Centroid Molecular Dynamics (CMD),35,36 Ring
Polymer Molecular Dynamics (RPMD),37 or the planetary
model,38 provide a balance between accuracy and computa-
tional overhead.23,27,28,39–41 Very recently, it has been shown
that these methods are approximations of the general Boltz-
mann conserving Matsubara dynamics.42–44 Another promis-
ing methodology is the path integral Liouville dynamics of
Liu45 that gave good results for the linear IR spectra of several
gas phase systems.46 An outstanding challenge is to extend
these methodologies for computation of non-linear response
functions.

In this paper, we address multi-time response functions
evaluated in terms of multi-time Kubo transforms.2 We focus
on second-order responses that can be expressed as differences
of two-time correlation functions of the form 〈A(0)B(t)C(t ′)〉
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(see Sec. II B),3 which are relevant to vibrational spectroscopy
such as 2D-Raman and 2D-THz-Raman spectroscopy.47–49 By
expressing the response functions in the frequency domain,
it is possible to rewrite them in terms of the real (symmet-
ric) and imaginary (asymmetric) parts of the corresponding
double Kubo transformed (DKT) correlation functions. The
main contribution to the response can be expressed only
in terms of the symmetric DKT, invoking a harmonic ref-
erence potential with operators expanded to second order
in the harmonic variable. An advantage of this approach is
that the symmetric DKT exhibits the same symmetries as
those of classical two-time correlation functions and, hence,
is amenable to semiclassical approximations that preserve
the Boltzmann distribution. Here, we show that the evalua-
tion of the symmetrized DKT by a multi-time extension of
Ring Polymer Molecular Dynamics (RPMD) provides a con-
sistent improvement over classical simulations of multi-time
correlation functions at short times even for nonlinear oper-
ators. The resulting extension of RPMD for evaluation of
these multi-time correlation functions provides an approxi-
mate way of including NQE in calculations of the second-order
response function. Hence, we anticipate it might be valuable
for simulations of non-linear spectroscopy of condensed phase
systems.

The paper is organized as follows: Sec. II A introduces
the DKT along with its symmetries. Section II B presents
the relation of the DKT to the second-order response in the
frequency domain. The extension of the RPMD methodol-
ogy for the evaluation of the two-time symmetrized DKT is
presented in Sec. II C. The accuracy of the proposed approxi-
mations is numerically tested on model potentials in Sec. III.
In Sec. IV, we summarize the most important conclusions,
potential applications, and future work.

II. MULTI-TIME CORRELATION FUNCTIONS
A. The double Kubo transform

The DKT of three Hermitian position-dependent opera-
tors Â, B̂, and Ĉ is defined as50

〈
A; B(t); C(t ′)

〉
=

1

Z β2

∫ β

0
dλ

∫ λ

0
dλ ′Tr[e−(β−λ)Ĥ

× Âe−(λ−λ′)Ĥ B̂(t)e−λ
′Ĥ Ĉ(t ′) ], (1)

where Ω̂(t) = e+iĤt/~Ω̂e−iĤt/~ represents a Heisenberg-evolved
operator, Z is the partition function,

Z = Tr[e−βĤ ], (2)

and β = 1/kT is the inverse temperature.
The standard TCF of three operators,〈

AB(t)C(t ′)
〉
=

1
Z

Tr[e−βĤ ÂB̂(t)Ĉ(t ′)], (3)

can be obtained from the DKT, according to the following
relation in the frequency domain:50〈

A; B(ω); C(ω′)
〉
= F1(ω,ω′)

〈
AB(ω)C(ω′)

〉
, (4)

where

〈
A; B(ω); C(ω′)

〉
=

∫ ∞
−∞

dt
∫ ∞
−∞

dt ′e−iωte−iω′t′〈A; B(t); C(t ′)
〉
(5)

is the double Fourier transform of the DKT (with a similar
definition for the standard TCF 〈AB(ω)C(ω′)〉) and

F1(ω,ω′) =
1

β2~2

(
e−β~ω

ωω
−

e−β~ω
′

ω′ω
+

1
ωω′

)
, (6)

with ω = ω + ω′ (see the supplementary material).
Equation (4) shows that the standard and Kubo correla-

tion functions are indeed quantum mechanically equivalent.
However, the DKT has considerably more symmetry than
the standard TCF. In particular, by exploiting the symme-
try of the integration limits in Eq. (1) and cyclic properties
of the trace, it can be shown that (see the supplementary
material)〈

A; B(t); C(t ′)
〉
=

〈
B(t); C(t ′); A

〉
=

〈
C(t ′); A; B(t)

〉
, (7)

〈
A; B(t); C(t ′)

〉∗
=

〈
B(t); A; C(t ′)

〉
, (8)

and 〈
A; B(t); C(t ′)

〉∗
=

〈
A; B(−t); C(−t ′)

〉
. (9)

We note that only the symmetry property described by Eq. (9)
holds for the standard correlation function.

The DKT is a complex function with real and imag-
inary parts related to symmetrized and asymmetric linear
combinations as follows:

Ksym
ABC(t, t ′) ≡

〈
A; B(t); C(t ′)

〉sym

≡
〈
A; B(t); C(t ′)

〉
+

〈
B(t); A; C(t ′)

〉
=

1

Z β2

∫ β

0
dλ

∫ λ

0
dλ ′ Tr

[
e−(β−λ)Ĥ

(
Âe−(λ−λ′)Ĥ B̂(t)

+ B̂(t)e−(λ−λ′)Ĥ Â
)
e−λ

′Ĥ Ĉ(t ′)
]

= 2<{
〈
A; B(t); C(t ′)

〉
} (10)

and

Kasym
ABC (t, t ′) ≡

〈
A; B(t); C(t ′)

〉asym

≡
〈
A; B(t); C(t ′)

〉
−

〈
B(t); A; C(t ′)

〉
=

1

Z β2

∫ β

0
dλ

∫ λ

0
dλ ′ Tr

[
e−(β−λ)Ĥ

(
Âe−(λ−λ′)Ĥ B̂(t)

− B̂(t)e−(λ−λ′)Ĥ Â
)
e−λ

′Ĥ Ĉ(t ′)
]

= 2i={
〈
A; B(t); C(t ′)

〉
}. (11)

Interestingly, the symmetrized DKT defined by Eq. (10) shares
the formal properties and symmetries with classical two-time
correlation functions.

We focus on the symmetrized DKT that is a real even
function of time and satisfies the following time domain ver-
sion of detailed balance (see the supplementary material for
the proof):〈

A(0); B(t); C(t ′)
〉sym
=

〈
B(0); A(−t); C(t ′ − t)

〉sym. (12)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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When any of the operators Â, B̂, or Ĉ is the unity operator, 1̂,
the symmetrized DKT reduces to the single Kubo transform
of linear response theory (see the supplementary material for
the proof),51

〈
A; B(t); 1̂

〉sym
=

1
Z β

∫ β

0
dλTr[e−(β−λ)Ĥ Âe−λĤ B̂(t)]. (13)

The symmetrized DKT [Eq. (10)] has been discussed in the
context of CMD, as a way of computing one-time correla-
tions functions of non-linear operators,50 and has been related
to a path-integral expression of the vibrational energy relax-
ation for single-mode excitations.52 In Sec. II B, we will show
that it is also related to the second-order response function of
nonlinear spectroscopy.

B. Double Kubo transform and second-order
response

We focus on the second-order response function,

R(t, t ′) = −
1

~2
Tr

{
Ĉ(t ′)

[
B̂(t),

[
Â, e−βĤ

] ]}
, (14)

which is related to several forms of nonlinear vibrational
spectroscopy.47–49 For example, when Â = B̂ = Ĉ = Π̂,
with Π̂ being a component of the polarizability tensor, the
response R(t, t ′) is relevant to two-dimensional Raman spec-
troscopy.12,15,47,53–59 If, on the other hand, Â = Π̂ and B̂ = Ĉ
= µ̂ (µ̂ being a component of the dipole operator), then
Eq. (14) reduces to a particular scheme of two-dimensional
terahertz-Raman spectroscopy.47–49,60

Expanding the commutators of Eq. (14), we find that
R(t, t ′) involves a linear combination of four two-time standard
correlation functions. Thus, it can be written in the frequency
domain as follows:

R̃(ω,ω′) = −
1

~2

[〈
AB(ω)C(ω′)

〉
+

〈
C(ω′)B(ω)A

〉
−

〈
AC(ω′)B(ω)

〉
−

〈
B(ω)C(ω′)A

〉]
. (15)

Using the Fourier relations between the different standard
TCF’s (see the supplementary material),12 the previous result
can be re-expressed as follows:

R̃(ω,ω′) = −
1

~2
(1 − e−β~ω)

[〈
AB(ω)C(ω′)

〉
− eβ~ω

〈
B(ω)AC(ω′)

〉]
, (16)

where ω = ω + ω′. Now, using Eq. (4), we can substitute the
standard TCF’s by their corresponding DKT’s to obtain

R̃(ω,ω′) = Q1(ω,ω′)
〈
A; B(ω); C(ω′)

〉
+ Q2(ω,ω′)

〈
B(ω); A; C(ω′)

〉
, (17)

where

Q1(ω,ω′) = −
1

~2

(
1 − e−β~ω

)
F1(ω,ω′)

= −β2 (1 − e−β~ω)ωω′ω

e−β~ωω′ − e−β~ω′ω + ω
(18)

and

Q2(ω,ω′) =
1

~2

(1 − e−β~ω)e−β~ω

F2(ω,ω′)

= β2 (1 − e−β~ω)eβ~ωωω′ω

eβ~ωω′ + e−β~ω′ω − ω
. (19)

It is straightforward to show that Eqs. (18) and (19) are
related through Q1(ω, ω′) = Q2(−ω, −ω′). Using Eqs. (8) and
(9), Eq. (17) gives

R̃(ω,ω′) = Q1(ω,ω′)
〈
A; B(ω); C(ω′)

〉
+ Q1(−ω,−ω′)

〈
A; B(−ω); C(−ω′)

〉
. (20)

By further decomposing the double Kubo transform and the Q
factors into their even and odd contributions, Eq. (20) can be
recast as

R̃(ω,ω′) = Q+(ω,ω′)K̃sym
ABC(ω,ω′) + Q−(ω,ω′)K̃asym

ABC (ω,ω′),

(21)

where

Q+(ω,ω′) =
1
2
[
Q1(ω,ω′) + Q1(−ω,−ω′)

]
(22)

and

Q−(ω,ω′) =
1
2
[
Q1(ω,ω′) − Q1(−ω,−ω′)

]
, (23)

with K̃sym
ABC(ω,ω′) and K̃asym

ABC (ω,ω′) defined as the double
Fourier transforms of the symmetric and asymmetric DKT’s
introduced by Eqs. (10) and (11).

Equation (21) and equivalently Eq. (20) express the
second-order response function R̃(ω,ω′) in terms of DKT’s
and are equivalent to Eq. (15) since no approximations have
yet been introduced. Equation (21) is thus a quantum mechan-
ically exact equation (within second-order perturbation the-
ory) and one of the main results of this paper. It provides a
novel approach for the evaluation of the nonlinear response
as well as a starting point to explore semiclassical approxi-
mations. The full quantum-mechanical evaluation of the dou-
ble Kubo transform is no easier than the evaluation of the
standard TCF. Hence, for practical applications of Eq. (21)
to real condensed-phase systems, approximations need to
be made.

Interestingly, the classical limits (~ → 0) of the prefac-
tors in Eq. (21), Q+ → β2ω̄2 and Q− → −2βω̄/~, imply that
the symmetric and asymmetric DKT’s must have a leading
order of ~0 and ~1.12 This result, along with the symmetry
properties found in Sec. II A, suggests that the symmetrized
DKT could be well approximated by using a semiclassical
methodology, whereas no simple (semi)classical-like ana-
log might exist for the asymmetric part. In fact, Sec. II C
shows that the symmetrized DKT can be evaluated by RPMD.
Therefore, if one can find an approximate relation between
the symmetrized and asymmetric DKT, Eq. (21) could be
applied for atomistic simulations of nonlinear vibrational
spectroscopy.

Recalling the definitions of the symmetric and asymmetric
DKT’s [Eqs. (10) and (11)], the problem at hand is equiv-
alent to finding a relation between the real and imaginary
parts of a two-time correlation function. For the single Kubo
transform, introduced by Eq. (13), a simple relation exists
between the real and imaginary parts since the single Kubo

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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transformed TCF is real. For multi-time correlation functions,
however, no exact relationship is known.12,61 Nevertheless,
an approximate connection can be established by expanding
the operators to second order for a harmonic reference poten-
tial, which is the simplest non-trivial system that produces
a second-order response, as shown in Ref. 12 (see the sup-
plementary material). Briefly, the operators Â, B̂, and Ĉ are
expanded to second order in the harmonic coordinate and
all the resulting terms of Ksym

ABC(ω,ω′) and Kasym
ABC (ω,ω′) are

compared.
For a harmonic potential, it can be shown that the first-

order contributions yield six terms. For K̃sym
ABC(ω,ω′), all six

of these terms contribute, while for K̃asym
ABC (ω,ω′), three out

of six terms are zero. When considering the full asymmet-
ric term Q−(ω,ω′)K̃asym

ABC (ω,ω′), an additional term vanishes
giving only two non-zero contributions to the response func-
tion. Therefore, for harmonic or nearly harmonic potentials,
Q+(ω,ω′)K̃sym

ABC(ω,ω′) gives the dominate contribution to the
second-order response. Hence, as a simple and practical
approximation, it is possible to express the Fourier transform
of the second-order response as

R̃(ω,ω′) ≈ Q+(ω,ω′)K̃sym
ABC(ω,ω′). (24)

The approximation introduced by Eq. (24) expresses the
response function solely in terms of the symmetrized DKT,
providing the second important result of this paper. Note
that in this expression, K̃sym

ABC(ω,ω′) is still a full quantum
mechanical object but for practical applications semi-classical
approximations need to be made.

C. RPMD approximation of the symmetrized
double Kubo transform

RPMD37,62 is a real time extension of the path integral
formulation of the partition function to evaluate thermal cor-
relation functions by classically evolving the ring polymer
construction of the Boltzmann operator.63 Formally, RPMD
approximates the Kubo transformed thermal correlation
function51 [Eq. (13)] by37,62

〈A(0); B(t)〉 ∼ lim
N→∞
〈A(0)B(t)〉RP

N , (25)

where

〈A(0)B(t)〉RP
N =

1
ZN (2π~)N

∫
dx0

∫
dp0e−βN HN (x0,p0)

×AN (x0)BN (xt). (26)

Here, N is the number of beads used to discretize the Boltz-
mann operator, βN = β/N, and x = {xi} and p = {pi} (1 ≤ i
≤ N) represent the position and momenta of the ith bead.64

ZN is the N-bead path-integral representation of the partition
function,

ZN =
1

(2π~)N

∫
dx0

∫
dp0e−βN HN (x0,p0), (27)

ON is the ring polymer representation of observable Ô,

ON (x) =
1
N

N∑
i=1

O(xi), (28)

and

HN (x, p) =
N∑
i

p2
i

2m
+

1
2

mω2
N (xi+1 − xi)

2 + V (xi) (29)

is the ring polymer Hamiltonian, where m is the physical mass
of the particle and ωN = 1/(βN~).

The exact path-integral representation of the Kubo trans-
form [Eq. (13)] is recovered by Eq. (25) in the limit of
t → 0.37 Also, for correlations of the form 〈Â; x̂(t)〉 with
Â = A(x̂), RPMD gives the exact result in the limit of harmonic
potentials as N → ∞.37 For general potentials, it is possible
to show that the accuracy of the approximation is of order t7

for linear and of order t3 for nonlinear operators.65,66 Finally,
the dynamics generated by the RPMD approximation preserve
the initial Boltzmann distribution, which is an appealing fea-
ture for any semiclassical approximation to avoid leakage of
energy between different modes.67

The RPMD methodology has been successfully applied
to a wide range of problems including rate theory,68–76 sim-
ulations of linear spectroscopy in water clusters77–80 and
bulk water,39,40,81,82 and in describing diffusion dynamics
of liquid systems21,83–85 to name a few examples. In recent
years, different efforts have been made to extend RPMD
to describe nonadiabatic dynamics86–89 and non-equilibrium
conditions.90 Very recently, Althorpe and co-workers have
shown that RPMD can be viewed as an approximation to a
more general type of quantum Boltzmann preserving classical
dynamics, known as Matsubara dynamics.42,43

However, so far, the formulation of RPMD has been
restricted to the evaluation of the single-time Kubo trans-
form.37 To compute the second-order response, given by
Eq. (24), an approximation to the two-time symmetrized DKT
is necessary. Here, we propose to approximate the two-time
symmetrized DKT by using the “natural” extension of RPMD
to two-times,〈

A(0); B(t); C(t ′)
〉sym
∼ lim

N→∞

〈
A(0)B(t)C(t ′)

〉RP
N , (30)

with〈
A(0)B(t)C(t ′)

〉RP
N =

1
ZN (2π~)N

∫
dx0

∫
dp0e−βN HN (x0,p0)

×AN (x0)BN (xt)CN (xt′), (31)

where CN (xt ′) corresponds to a third position-dependent
observable evaluated at time t ′.

In the short time limit (i.e., t → 0 and t ′ → 0), the
expression in Eq. (31) corresponds to the exact path-integral
representation of a symmetrized DKT correlation function, as
shown in Appendix A,

〈A(0)B(0)C(0)〉RP
N = lim

t,t′→0

〈
A(0); B(t); C(t ′)

〉sym, (32)

i.e., the RPMD expression is exact in this limit. Note also that
Eq. (31) reduces to the standard RPMD approximation in the
case of one of the operators equaling unity, just as Eq. (10)
reduces to the single Kubo transform in this case. It is straight-
forward to verify that the two-time extension of RPMD holds
the same symmetries as Eq. (10) and that classical dynam-
ics generated from Eq. (29) preserve the quantum Boltzmann
distribution.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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The approximation proposed in this paper is, then, to use
the classically evolved phase-space of ring polymers at time
t, t ′ > 0 to evaluate Eq. (31) as a short-time approximation to
the symmetrized DKT function which, in turn, can be related
to the second-order response function. A justification for this
approximation is the fact that RPMD is exact in two limiting
cases for two-time correlations. For a harmonic potential, it is
possible to prove that Eq. (31) is exact for all t and t ′ for corre-
lations of the form 〈A(x)x(t)x(t ′)〉RP

N as N →∞ (Appendix B).
On the other hand, in the high temperature (i.e., classical)
limit, the intrapolymer harmonic spring forces in Eq. (29)
become so large that the polymer collapses to a single point and
Eq. (31) reduces to a classical two-time correlation function.
In this classical limit, the operators in Eq. (10) become classi-
cal dynamical variables that commute with the Hamiltonian
and, after rearranging the exponentials and upon perform-
ing the integrals, the classical two-time correlation function
is obtained from Eq. (10). Hence, the proposed approximation
gives the correct results in the classical and harmonic limit, a
fact that is certainly encouraging. In Sec. III, we numerically
test this approximation for a series of benchmark model sys-
tems for which we can make direct comparisons to the exact
results.

We note that a similar connection, as the one introduced
by Eq. (32), has been recognized by Reichman et al. in the con-
text of CMD for the case of Â = B̂ = x̂ and was used for the
computation of single-time correlation functions of nonlinear
operators.50 However, to the best of our knowledge, this is the
first time that an explicit connection has been made between a
higher-order Kubo-transform and RPMD. This is also the first
time this formalism has been used to compute two-time cor-
relation functions in relation with the second-order response
function.

III. NUMERICAL TESTS

We report numerical calculations for simple one-
dimensional model potentials for both linear and non-linear
operators and direct comparisons to the corresponding exact
results to test the accuracy and capabilities of the two main
approximations proposed in this paper [i.e., Eqs. (24) and
(31)]. The results support that the response can be approx-
imated by the symmetrized DKT [Eq. (24)] and that RPMD
provides a reasonable approximation to the symmetrized DKT
[Eq. (31)].

The model systems include the harmonic potential
V (x) = 1

2 x2, the weakly anharmonic potential V (x) = 1
2 x2

+ 1
10 x3 + 1

100 x4, and the quartic potential V (x) = 1
4 x4 previ-

ously used to test CMD and RPMD.36,37 In all cases, m = 1
and atomic units are used.

The RPMD simulations were performed using the stan-
dard PIMD techniques91,92 in the normal mode representa-
tion,68 employing N = 32 beads for both β = 1 and β = 8
and using a time step of 0.05 a.u. The results correspond to
averages of a large number of simulations, resampling the
momenta between trajectories from a Maxwell-Boltzmann
distribution. We also test the performance of the thermostatted
version of RPMD (TRPMD) to model multi-time correlation

functions where Eq. (31) is evaluated using a Langevin ther-
mostat for the non-centroid degrees of freedom.40 Classical
results were obtained by setting N = 1 in Eq. (31). Exact results
corresponding to the DKT were obtained by the direct evalua-
tion of the trace of the DKT in a finite harmonic basis set. All
results were checked to be converged with respect to the basis
set size.

To perform the double Fourier transform, the TCF’s were
damped by the function f (t, t ′) = e−(t2+t′2)/τ2

with τ = 13 to
avoid numerical ripples due to the finite time Fourier trans-
form. Tests were performed to ensure that the results were
qualitatively insensitive to the choice of τ.

A. Response function

Figure 1, left panel, shows contour plots of the dou-
ble Fourier transform of the exact response function and the
approximate response function given by the symmetrized DKT
[Eq. (24)] for Â = B̂ = x̂ and Ĉ = x̂2 in an anharmonic poten-
tial at low temperatures (β = 8). As can be appreciated from
the figure, the spectrum obtained from the approximation is
in reasonably good agreement with the exact result, both in
terms of the position as well as in terms of the sign of the
peaks.

In order to get a more quantitative estimate of the accu-
racy of the approximations, the right panels of Fig. 1 represent
comparisons between cuts along ω = 0 (top panel) and ω = 1
(bottom panel). Note that, although the approximation cor-
rectly captures the sign and position of each peak at each
frequency, the intensity is either overestimated or underes-
timated. This result is not surprising, taking into consider-
ation that in our proposed approximation to the response,
we are neglecting contributions from the asymmetric DKT,
which can be either positive or negative. Nevertheless, the
overall performance is reasonable and should allow for a

FIG. 1. Top left: Exact response function Eq. (21). Bottom left: The approxi-
mate response as given in Eq. (24). Top right: A projection atω = 0 comparing
the exact and approximate response. Bottom right: A projection at ω = 1
comparing the exact and approximate response. The potential is defined as
V (x) = 1

2 x2 + 1
10 x3 + 1

100 x4 with a temperature β = 8 with Â = B̂ = x̂ and
Ĉ = x̂2.
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FIG. 2. Top left: Exact response Eq. (21). Bottom left: The approximate
response as given in Eq. (24). Top right: A projection at ω = 0 comparing
the exact and approximate response. Bottom right: A projection at ω = 1
comparing the exact and approximate response. The potential is defined as
V (x) = 1

2 x2 + 1
10 x3 + 1

100 x4 with a temperature β = 1 with Â = B̂ = x̂ and
Ĉ = x̂2.

qualitative interpretation of the spectra. Incorporating the con-
tributions from the asymmetric DKT is the subject of future
work which might enable quantitative comparisons with exact
results.

The previous analysis also holds for simulations of the
spectrum at high temperatures (β = 1). In general, the quali-
tative features of the spectrum are reproduced by the approxi-
mate response Eq. (24), but the intensities of the peaks are over-
estimated/underestimated. For example, in Fig. 2, we show the
results for the same system as in Fig. 1 but for β = 1. As can
be seen for ω = 0, the approximated response overlaps with
the exact result, but at ω = 1, the intensity is not as well repro-
duced, although all the qualitative features are exhibited in the
approximated spectrum.

Similar results also hold for different correlation func-
tions of harmonic/mildly anharmonic potentials, as shown in

the supplementary material. Note that the approximation gives
reasonable spectra even for a nonlinear correlation function
such as

〈
x2x2x2

〉
in a harmonic potential. For the quartic oscil-

lator, a very strongly anharmonic potential, the approximation
proposed in Eq. (24), starts to break down for nonlinear cor-
relation functions, as shown in Fig. S7 of the supplementary
material for

〈
x2x2x2

〉
. Interestingly, at low temperatures, the

approximation seems to still be valid, though at high temper-
atures the line shape is not fully reproduced. These results
are not surprising since Eq. (24) was derived from a harmonic
reference potential and highlights the limitation of the method-
ology to treat strongly anharmonic potentials. Note, however,
that since the proposed methodology is intended to be used
in condensed phases, these scenarios with highly nonlinear
potentials are not likely to be encountered.

B. Two-time RPMD

In Sec. III A, we have shown that the symmetrized DKT
provides a reasonable approximation to the exact second-order
response function of the model systems investigated. Here, we
test the approximation of evaluating the DKT by the two-time
RPMD expression introduced by Eq. (31). From the deriva-
tion discussed in Sec. II C and Appendix B, it is clear that
the RPMD approximation is exact for t = t ′ = 0 and in the
harmonic limit for B̂ = Ĉ = x̂, so we now turn our attention
to investigating how well this approximation works for finite
times and anharmonic potentials.

Figure 3 shows the results for the exact symmetrized
DKT [Eq. (10)] of the position auto-correlation for the weakly
anharmonic potential at β = 1 (left panel). We also present
heat maps of the difference between the exact and RPMD
(top right panel) and classical (bottom right panel) results.
In this high-temperature regime, both RPMD and classical
results are in good agreement with the exact results, as can
be appreciated from the small scale of the heat map in com-
parison to the magnitude of the exact TCF. Moreover, RPMD
and classical results agree with each other, as expected in
this high-temperature limit (see the discussion at the end of
Sec. II C).

FIG. 3. Left: Surface of Ksym
xxx (t, t′).

Right: Heat map of the difference
between the exact and RPMD (top)
and classical (bottom) results for the
position auto-correlation for the weakly
anharmonic potential. The temperature
corresponds to β = 1.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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FIG. 4. The same as Fig. 3, but for β = 8.

At lower temperatures (β = 8), the differences between
classical and RPMD are more significant, as can be appreci-
ated from the heat maps shown in Fig. 4 (note the scale in
comparison with the magnitude of the exact result). Never-
theless, it is worth noting that the RPMD results are in much
better agreement with the exact results than the classical results
which are off by∼60% in the zero time limit (t = t ′ = 0). Hence,
it is clear that RPMD provides an improvement over the purely
classical results in the low temperature regime.

Figure 5 shows a t ′ = 0 cut of the symmetrized DKT
position auto-correlation for both β = 1 and β = 8 that fur-
ther highlights the comparison of the RPMD approximation
and the classical results for the weakly anharmonic potential.
As already seen in Fig. 3, there is good agreement between

FIG. 5. t′ = 0 cut of the symmetrized DKT position auto-correlation for
the weakly anharmonic potential. Circles: exact result, Ksym

xxx (t, 0). Red line:
Classical result. Green line: RPMD result. Blue line: TRPMD result.

all methods for β = 1, being almost indiscernible from the
exact results. For the low temperature case, RPMD performs
much better than the classical simulations both in terms of
peak amplitudes and frequency of the oscillations for several
periods, until the thermal time tβ = β = 8 beyond which there is
dephasing and amplitude decay.37 In Fig. 5, we also include the
results obtained using the TRPMD methodology. For this par-
ticular potential and correlation function, we found that both
RPMD and TRPMD perform equally well, with small discrep-
ancies at longer times probably due to insufficient sampling.
These results show that TRPMD also provides a satisfactory
description of the DKT.

Figure 6 shows the results for the position auto-correlation
function evaluated at t ′ = 3, which allow for analysis of perfor-
mance along the t ′ axis. Here, it is also clear that RPMD and

FIG. 6. The same as Fig. 5, but for t′ = 3.
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TRPMD perform better than classical simulations and provide
good approximations to the exact results at high temperatures,
although the accuracy slightly degrades at lower temperatures.
Note that at time t = 0, the RPMD results do not necessarily
have to agree with Ksym(t = 0, t ′ , 0) although they are close
in this case.

Figure 7 shows the results of calculations of the correla-
tion function Ksym

x2x2x2 (t, t ′) for the harmonic potential at t ′ = 0,
allowing us to assess the capabilities of the method as applied
to non-linear operators. When evaluated at low temperatures,
this correlation function involving three non-linear operators
provides a difficult test for semiclassical methodologies. At
high temperatures (β = 1), both classical and RPMD results
agree reasonably well as compared to benchmark full quan-
tum calculations. At lower temperatures (β = 8), the classical
calculations show significant disagreement with full quantum
results, while the RPMD provides a better description of the
short time behavior. It is worth remarking that the RPMD
approximation captures the correct quantum Boltzmann statis-
tics even for this non-linear case, whereas other methodologies
are expected to fail.43 Note, however, that the RPMD results
exhibit contamination from the intrapolymer frequencies at
low temperatures, a well-known problem of RPMD known
as “spurious contamination.”40 The use of TRPMD “washes
out” the contamination, providing some improvement over
non-thermostatted RPMD.

For strongly anharmonic potentials, such as the quar-
tic oscillator, where coherences are important to describe
the dynamics, the performance and accuracy of the RPMD
approximation are expected to be poor since the methodology
completely neglects any quantum phase information.37 As an
example of this phenomena, in the supplementary material, we

FIG. 7. t′ = 0 cut of the symmetrized DKT x2 auto-correlation for the har-
monic potential. Black line: exact result, Ksym

x2x2x2 (t, 0). Red line: Classical
result. Green line: RPMD result. Blue line: TRPMD result.

present results for Ksym
x2x2x2 (t, t ′) for the quartic potential (Fig.

S9 of the supplementary material). Even at high temperatures,
it can be appreciated that the RPMD and classical results dif-
fer from the exact one after the first two oscillations. At low
temperatures, RPMD captures the correct zero-time value and
short time limit; although after the second oscillation, it is
completely decorrelated. Note, however, that the methodol-
ogy proposed here is tailored to be applied to condensed phase
systems where quantum coherences are expected to rapidly
be quenched by the environment and do not play a significant
role.

The results presented so far deal with the performance
of two-time RPMD to approximate the symmetrized DKT.
Results of the overall performance of RPMD to approxi-
mate the response function, namely, the combination of both
Eqs. (24) and (30), are presented in Figs. S10 and S11 of the
supplementary material for the correlation Â = B̂ = Ĉ = x̂2

in the harmonic potential and in Figs. S12 and S13 of the sup-
plementary material for Â = B̂ = x̂ and Ĉ = x̂2 in the weakly
anharmonic potential. For the case of the anharmonic poten-
tial, the results at high temperatures are indistinguishable from
the one presented in Fig. 2, whereas at low temperatures the
RPMD response is slightly less intense than the symmetrized
DKT response (Fig. 1). For the case of the nonlinear cor-
relation in the harmonic potential, the spectra are perfectly
reproduced by the RPMD approximation at high temperatures,
whereas the intensity of the peaks is underestimated at low tem-
peratures (as expected from the poor performance of RPMD
presented in Fig. 7). The overall conclusion of this analysis
is that the proposed RPMD approximation to the response
function works reasonably well when applied to harmonic or
weakly anharmonic potentials.

IV. CONCLUSIONS AND FINAL REMARKS

We have shown that multi-time response functions
〈A(t0)B(t)C(t ′)〉 of interest in simulations of nonlinear opti-
cal spectroscopy can be evaluated as linear combinations of
multi-time Kubo transforms. By using a harmonic reference
potential with operators expanded to second order in the har-
monic coordinate, we have shown that the main contributions
to the second-order response result from the symmetrized real
parts of the DKT’s.

We found that the evaluation of the symmetrized DKT by
using Ring Polymer Molecular Dynamics (RPMD) provides
results in better agreement with full quantum mechanical cal-
culations than the corresponding classical calculations, even
for non-linear operators. The improvement is significant in
the short-time limit, until the thermal time. Numerical tests
and comparisons to the exact response functions have shown
that the approximate approach correctly reproduces the qual-
itative features found in the spectra in terms of peak posi-
tion and signs for harmonic/weakly anharmonic potentials,
although the intensities of the peaks are not fully reproduced
likely due to the neglect of the asymmetric contributions. The
resulting methodology thus provides a practical approximate
approach to include nuclear quantum effects in the description
of multi-time response functions.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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It is important to point out that, while the two-time RPMD
extension introduced in this study does inherit all of the prop-
erties that make the RPMD methodology attractive, it also has
all the same flaws as the original formulations of RPMD. Par-
ticularly, its performance for nonlinear operators and/or highly
nonlinear potentials is quite poor except at very short times.
We also point out that the results reported in this paper are
based on simple model potentials for which exact quantum
mechanical results can be computed. It would be interesting
in future work to see how well the proposed methodology
performs when applied to calculations of spectra of con-
densed phase systems. In particular, it would be interesting
to study the 2D Raman or terahertz-Raman spectrum of liquid
water where nuclear quantum effects are known to be of vital
importance.

We have provided a practical approach for the incorpora-
tion of nuclear quantum effects in the calculation of second-
order response functions. However, there is certainly room
for improvements. For example, the approximation proposed
in Eq. (24) neglects the contribution of the asymmetric part
of the double Kubo transform. We anticipate incorporating the
asymmetric part would improve the intensities of the peaks and
would thus bring the approximation in semi-quantitative agree-
ment with full quantum calculations for the model systems
investigated. On the other hand, one could seek to improve
the approximation to the symmetrized DKT rather than using
the RPMD approximation of Eq. (31). In addition, it would
be worth exploring the multi-time formulation of Matsubara
dynamics42,43 and the corresponding multi-time approxima-
tions that stem from it. Finally, while the work presented here
deals only with the second-order response, this framework
could, in principle, be extended to higher orders of the response
function and generalized to the simulation of other types of
spectroscopies. Work on all of these directions is currently
underway.

SUPPLEMENTARY MATERIAL

See supplementary material for a detailed description of
the derivation of Eq. (24) and additional figures comparing
the performance of this approximation with the exact response.
Also included are the Fourier relationships of both the standard
and Kubo transformed two-time TCF’s.
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APPENDIX A: PROOF OF EQ. (32)

To prove the relation given in Eq. (32), it is useful to
rewrite the integrand of Eq. (31) (in the t, t ′→ 0 limit) as

AN (x)BN (x)CN (x) =
1

N3

N∑
i

N∑
j

N∑
k

A(xi)B(xj)C(xk) (A1)

=
1

N2

N∑
i

N∑
j

A(xi)B(xj)C(x1) (A2)

=
1

N2

N∑
i

i∑
j

[
A(xi)B(xj) + B(xi)A(xj)

]
C(x1),

(A3)

where we have used the invariance of the beads to cyclic
permutation within the integral.

The RPMD approximation now reads

〈A(0)B(0)C(0)〉RP
N =

1

ZN N2

N∑
i

i∑
j

[
1

(2π~)N

∫
dx0

×

∫
dp0e−βN HN (x0,p0)

×
(
A(xi)B(xj) + B(xi)A(xj)

)
C(x1)

]
.

(A4)

Upon performing the momentum integrals, it follows that

〈A(0)B(0)C(0)〉RP
N =

1

ZN N2

N∑
i

i∑
j



(
mN
2π β

)N/2∫
dx0e−βN UN (x)

×
(
A(xi)B(xj) + B(xi)A(xj)

)
C(x1)


, (A5)

where

UN (x) =
N∑
i

1
2

mω2
N (xi+1 − xi)

2 + V (xi). (A6)

The Boltzmann factor can be discretized according to the
indices of the summations to give

〈A(0)B(0)C(0)〉RP
N

=
1

ZN N2

N∑
i

i∑
j



(
mN
2π β

)N/2 ∫
dx1 · · · dxN e−(N−i)βN UN (x)

×
(
A(xi)e

−(i−j)βN UN (x)B(xj)e
−jβN UN (x)

+ B(xi)e
−(i−j)βN UN (x)A(xj)e

−jβN UN (x)
)
C(x1)


. (A7)

Taking the infinite bead limit, undoing the path integral
discretization, and relabeling the beads indices, it is possible
to express the previous equation as

〈A(0)B(0)C(0)〉RP
N =

1

ZN2

N∑
i

i∑
j

∫
dx1 〈x1 |e

−(N−i)βN Ĥ (Âe−(i−j)βN Ĥ B̂e−jβN Ĥ + B̂e−(i−j)βN Ĥ Âe−jβN Ĥ ) |x1〉C(x1) (A8)

=
1

ZN2

N∑
i

i∑
j

Tr[e−(N−i)βN Ĥ (Âe−(i−j)βN Ĥ B̂e−jβN Ĥ + B̂e−(i−j)βN Ĥ Âe−jβN Ĥ )Ĉ], (A9)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-031824
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where it is understood that the operators Â, B̂, and Ĉ are
functions solely of x̂.

Realizing that the sums in Eq. (A9) are simply the
Riemann approximations of an iterated integral, we have that

〈A(0)B(0)C(0)〉RP
N = 〈A(0); B(0); C(0)〉 + 〈B(0); A(0); C(0)〉

(A10)

= 〈A(0); B(0); C(0)〉sym, (A11)

which completes the proof of Eq. (32).

APPENDIX B: HARMONIC LIMIT
OF THE TWO-TIME RPMD

Hamilton’s equations of motion applied to Eq. (29) yield
the classical equation of motion for the centroid for the har-
monic potential V = 1

2 mω2x2, namely, xN (t) = xN (0) cos(ωt)

+ pN (0)
mω sin(ωt). Taking Â as an arbitrary function of x, the

RPMD approximation to 〈A(0); x(t); x(t ′)〉sym,〈
A(0)x(t)x(t ′)

〉RP
N =

1
ZN (2π~)N

∫
dx0

∫
dp0e−βN HN (x0,p0)

× AN (x0)xN (xt)xN (xt′), (B1)

can be shown to be

1
2
〈Ax(0)x(0)〉RP

N
{
cos

[
ω(t + t ′)

]
+ cos

[
ω(t − t ′)

] }
+

1

2m2ω2

× 〈Ap(0)p(0)〉RP
N

{
cos

[
ω(t − t ′)

]
− cos

[
ω(t + t ′)

] }
(B2)

=
B1 − B2

2
cos

[
ω(t + t ′)

]
+

B1 + B2

2
cos

[
ω(t − t ′)

]
, (B3)

where B1 = 〈Ax(0)x(0)〉RP
N and B2 = 〈Ap(0)p(0)〉RP

N /(m2ω2).
The exact correlation function 〈A(0); x(t); x(t ′)〉sym can be

cast in similar form through the use of

x̂(t) =

√
~

2mω
(â†eiωt + âe−iωt), (B4)

where â†(â) is the creation (annihilation) operator in the
harmonic oscillator basis and the time dependence of these
operators comes from solving ˙̂a = i/~[Ĥ, â]. The result
is

~

mωZ β2
R

{ ∫ β

0
dλ

∫ λ

0
dλ ′Tr[e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ â†e−λ

′Ĥ â†]eiω(t+t′) + Tr[e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ â†e−λ
′Ĥ â]eiω(t−t′)

+ Tr[e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ âe−λ
′Ĥ â†]eiω(t′−t) + Tr[e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ âe−λ

′Ĥ â]e−iω(t+t′)}
= (C1 + C4) cos

[
ω(t + t ′)

]
+ (C2 + C3) cos

[
ω(t − t ′)

]
(B5)

with

C1 =
~

mω

〈
Â; â†; â†

〉
, (B6)

C2 =
~

mω

〈
Â; â†; â

〉
, (B7)

C3 =
~

mω

〈
Â; â; â†

〉
, (B8)

C4 =
~

mω

〈
Â; â; â

〉
. (B9)

To prove that the RPMD correlation function is exact in this
limit, it is now a matter of proving that 1

2 (B1 − B2) = C1 + C4

and 1
2 (B1 + B2) = C2 + C3 for N →∞.
It is straightforward to show that

C1 + C4 =
2~

mωZ β2
<

∫ β

0
dλ

∫ λ

0
dλ ′Tr

×
[
e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ âe−λ

′Ĥ â
]
, (B10)

which upon using â =
√

mω
2~ x̂ + i√

2~mω
p̂ can be rewritten as

C1 + C4 =
1

Z β2

∫ β

0
dλ

∫ λ

0
dλ ′Tr[e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ x̂e−λ

′Ĥ x̂

−
1

m2ω2Z β2

∫ β

0
dλ

∫ λ

0
dλ ′Tr

×
[
e−(β−λ)Ĥ Âe−(λ−λ′)Ĥ p̂e−λ

′Ĥ p̂
]

(B11)

=

{〈
Â; x̂(0); x̂(0)

〉
−

1

m2ω2

〈
Â; p̂(0); p̂(0)

〉}
(B12)

=
1
2

{〈
Â; x̂(0); x̂(0)

〉sym
−

1

m2ω2

〈
Â; p̂(0); p̂(0)

〉sym
}

(B13)

=
1
2

{
〈Ax(0)x(0)〉RP

N→∞ −
1

m2ω2
〈Ap(0)p(0)〉RP

N→∞

}
,

(B14)

which proves C1 + C4 =
1
2 (B1 − B2) as N →∞. Using similar

steps, it is easy to show that C2 + C3 =
1
2 (B1 + B2). This com-

pletes the proof that two-time RPMD is exact for correlations
of the form 〈A(0); x(t); x(t ′)〉sym.
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