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A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced.
The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform
sMP/SOFTd methodfY. Wu and V. S. Batista, J. Chem. Phys.121, 1676s2004dg recently developed
for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT
propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution
operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The
expansion is implemented in dynamically adaptive coherent-state representations, generated by an
approach that combines the matching-pursuit algorithm with a gradient-based optimization method.
The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the
canonical model systems introduced by Tully for testing simulations of dual curve-crossing
nonadiabatic dynamics. ©2005 American Institute of Physics. fDOI: 10.1063/1.1881132g

I. INTRODUCTION

Nonadiabatic quantum dynamics is a ubiquitous phe-
nomenon in physical, chemical, and biological processes.1,2

Describing nonadiabatic quantum dynamics at the most fun-
damental level of theory, however, requires solving the
coupled system of differential equations defined by the time-
dependent Schrödinger equation. In recent years, much effort
has been devoted to the development of numerically exact
methods3–15 for wave-packet propagation based on the split-
operator Fourier-transformsSOFTd approach,16–18 the
Chebyshev expansion,19 and the short iterative Lanczos20 al-
gorithms. While rigorous, these approaches are limited to
systems with very few degrees of freedomse.g., molecular
systems with less than 3 or 4 atomsd since they require stor-
age space and computational effort that scale exponentially
with the number of coupled degrees of freedom. Such an
exponential scaling problem has limited studies of nonadia-
batic dynamics in complex molecular systems to approxi-
mate methods built around semiclassical and mixed
quantum-classical treatments.21–35 However practical, these
approximate approaches require a compromise between ac-
curacy and feasibility and rely onad hoc approximations
whose resulting consequences are often difficult to quantify
in applications to complexsnonintegrabled dynamics. It is,
therefore, essential to develop practical methods for numeri-
cally exact simulations in order to validate approximate ap-
proaches and provide new insights into the nature of quan-
tum processes. This paper describes an extension of the
recently developed matching-pursuit/split-operator Fourier-
transformsMP/SOFTd method36–38 to simulations of nona-
diabatic quantum dynamics. The accuracy and efficiency of

the extended MP/ SOFT method are demonstrated as applied
to benchmark simulations of dual curve-crossing dynamics.

The MP/SOFT method36–38has been recently introduced
in an effort to develop a simple and rigorous time-dependent
method for simulations of quantum processes in multidimen-
sional systems. The MP/SOFT methodology is based on the
recursive application of the time-evolution operator, as de-
fined by the Trotter expansion to second-order accuracy, to
nonorthogonal and dynamically adaptive coherent-state rep-
resentations generated according to the matching-pursuit
algorithm.39 The main advantage of this approach relative to
the standard grid-based SOFT method is that the coherent-
state expansions allow for ananalytic implementation of the
Trotter expansion, bypassing the exponential scaling problem
associated with the fast-Fourier-transformsFFTd algorithm
of usual grid-based implementations. When compared to
other time-dependent methods based on coherent-state
expansions,40–53 the MP/SOFT method has the advantage of
avoiding the usual need of solving a coupled system of dif-
ferential equations for propagating expansion coefficients.
Further, the MP/SOFT method implements a successive or-
thogonal decomposition scheme that overcomes the usual
numerical difficulties due to overcompleteness introduced by
nonorthogonal basis functions.7 The main drawback of the
MP/SOFT method is that it requires generating a new
coherent-state expansion of the time evolving state for each
propagation step. However, the underlying computational
task can be trivially parallelized.

To date, the capabilities of the MP/SOFT method have
been demonstrated in application to simulations of adiabatic
quantum dynamics, including simulations of tunneling dy-
namics in model systems with up to 20 coupled degrees of
freedom.38 In a recent development, the approach has been
generalized to provide accurate descriptions of thermal-adElectronic mail: victor.batista@yale.edu
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equilibrium density matrices, finite-temperature time-
dependent expectation values, and time-correlation
functions.54 There remains, however, the nontrivial question
as to whether the MP/SOFT methodology can be easily
implemented to model nonadiabatic processes. This paper
concludes the affirmative, that such a methodology can in-
deed be effectively applied to simulations of nonadiabatic
dynamics simply by describing nonadiabaticity according to
a short-time approximation of the time-evolution operator as
defined by the perturbation expansion to first-, or second-
order, accuracy. While the paper is focused only on validat-
ing the MP/SOFT methodology by performing rigorous com-
parisons with benchmark calculations for reduced-
dimensional model systems, the results at least suggest the
potential for application of the MP/SOFT method to the de-
scription of nonadiabatic dynamics in complexsi.e., nonin-
tegrabled quantum dynamics.

This paper is organized as follows. Section II describes
the extension of the MP/SOFT method to simulations of
nonadiabatic quantum dynamics according to the successive
implementation of the time-evolution operator, as defined by
a time-dependent perturbation theory expansion. Section III
presents the numerical results of a series of benchmark cal-
culations of dual curve-crossing nonadiabatic dynamics
simulations. Section IV summarizes and concludes.

II. METHODS

The generalization of the MP/SOFT method to nonadia-
batic dynamics is based on the recursive application of the
time-evolution operator as defined by the standard perturba-
tion expansion,

e−iĤ2t = e−iĤ02t − iE
0

2t

dt1e
−iĤ0s2t−t1dĤ1e

−iĤ0t1

+ s− id2E
0

2t

dt2E
0

t2

dt1e
−iĤ0s2t−t2dĤ1

3 e−iĤ0st2−t1dĤ1e
−iĤ0t1 + ¯, s1d

with t a sufficiently short time increment for the evolution of
the system according to the Hamiltonian

Ĥ = Ĥ0 + Ĥ1, s2d

whereĤ0 andĤ1 are defined in the basis set of diabatic states
se.g., electronic statesd as follows:

Ĥ0 =
p̂2

2m
+ o

k=1

n

Vksx̂duklkku, s3d

and

Ĥ1 = o
k=1

n

o
jÞk

n

Vcsx̂du jlkku. s4d

Note that the unperturbed HamiltonianĤ0 describes the adia-
batic dynamics of coordinatesx se.g., nuclear coordinatesd
on the uncoupled potential-energy surfacesVksxd, while the

perturbationĤ1 introduces the nonadiabatic couplingsVcsxd

between potential-energy surfaces. To keep the notation as
simple as possible, all expressions are written in mass-
weighted coordinates and atomic units, so that all degrees of
freedom have the same massm and"=1.

The perturbation expansion, introduced by Eq.s1d, can
be approximated for sufficiently small propagation time in-
crementst as follows:

e−iĤ2t < e−iĤ02t − i2te−iĤ0tĤ1e
−iĤ0t

− 2t2e−iĤ02t/3Ĥ1e
−iĤ02t/3Ĥ1e

−iĤ02t/3 + ¯, s5d

where the first-order term in Eq.s1d has been evaluated ac-
cording to the “midpoint” approximationsi.e., t1=td and the
second-order term was evaluated according to the “center-of-
mass” approximationsi.e., t1=2t /3 and t2=4t /3d. The ex-
tension of the MP/SOFT method, introduced in this paper,
recursively implements the time-evolution operator, as de-
fined in Eq.s5d, to first, or second, order.

In order to describe the MP/SOFT implementation of Eq.
s5d to first-order accuracy, consider a two-level systemsn
=2d described by the time-dependent wave function,

uCsx;tdl = w1sx;tdu1l + w2sx;tdu2l, s6d

wherew jsx ; td is the time-dependent wave-packet component
associated with diabatic stateu jl. Note that generalizations to
multiple-level systems, or higher order of perturbation theory
se.g., second-order accuracyd, are straightforward.

The implementation of Eq.s5d to first order requires the
following steps:

• Step fIg. Propagate the wave-packet components
w1sx ; td andw2sx ; td adiabatically for timet,

w18sx;t + td = e−iF p̂2

2m
+V1sx̂dGtw1sx;td,

w28sx;t + td = e−iF p̂2

2m
+V2sx̂dGtw2sx;td. s7d

• Step fII g. Mix the two wave-packet components,
w18sx ; t+td andw28sx ; t+td,

w19sx;t + td = w18sx;t + td − i2tVcsxdw28sx;t + td,

w29sx;t + td = w28sx;t + td − i2tVcsxdw18sx;t + td. s8d

• Step fIII g. Propagate the mixed wave-packet compo-
nents,w19sx ; t+td andw29sx ; t+td, adiabatically for time
t,

w1sx;t + 2td = e−iF p̂2

2m
+V1sx̂dGtw19sx;t + td,

w2sx;t + 2td = e−iF p̂2

2m
+V2sx̂dGtw29sx;t + td. s9d

Step fIII g is, however, combined with stepfIg of the
next propagation time sliced for all but the last propa-
gation time increment.

The mixing of wave-packet components in stepfII g can
be implemented analytically whenever the couplingsVcsxd
are Gaussiansse.g., see the first two model systems in Sec.
III d sincew18 and w28 are coherent-state expansionsfi.e., see
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Eq. s11dg. In general, however, mixing the wave-packet com-
ponentsw18 and w28 requires expanding the target statesw19
andw29 in matching-pursuit coherent-states expansionssvide
infrad.

StepsfIg and fIII g involve the adiabatic propagation of
the wave-packet components according to the MP/SOFT
implementation of the Trotter expansion,

e−iF p̂2

2m
+V1sx̂dGt < e−iVisx̂dt/2e−i

p̂2

2m
te−iVisx̂dt/2, s10d

as described in Ref. 38. Such an approach can be outlined as
follows:

• Step f1g. Decompose the target functionswl8sx ; td
;e−iVsx̂dt/2wlsx ; td, where l =1, and 2, into a matching-
pursuit coherent-state expansion,

wl8sx;td < o
j=1

n

cjkxux jl. s11d

Here,kx ux jl areN-dimensional coherent states,

kxux jl ; p
k=1

N

AjskdexpH−
g jskd

2
fxskd − xjskdg2

+ ipjskdfxskd − xjskdgJ , s12d

whereAjskd are normalization factors andg jskd, xjskd,
and pjskd are complex-valued parameters selected ac-
cording to the matching-pursuit algorithm, as described
later in this section. The expansion coefficientscj are
defined as follows: c1;kx1uwl8l and cj ;kx j uwl8l
−ok=1

j−1ckkx j uxkl for j =2−N.

• Stepf2g. Apply the kinetic part of the Trotter expansion
to wl8sx ; td by first Fourier transforming the coherent-
state expansion ofwl8sx ; td to the momentum represen-
tation, then multiplying it by expf−isp2/2mdtg, and fi-
nally inverse Fourier transforming the product back to
the coordinate representation to obtain

wl9sx;td = o
j=1

n

cjkxux̃ jl, s13d

where

kxux̃ jl ; p
k=1

N

AjskdÎ m

m+ itg jskd

3 exp1H
pjskd
g jskd

− ifxjskd − xskdgJ2

2

g jskd
+

2it

m

−
pjskd

2g jskd2 .

s14d

The time-evolved wave-function components are thus

wlsx;t + td = o
j=1

n

cje
−iVsxdt/2kxux̃ jl, s15d

which can be reexpanded in coherent states, as in step
f1g.

Note that, since stepf2g is implemented analytically, the
underlying computational task necessary for nonadiabatic
propagation is completely reduced to generating the
coherent-state expansions introduced in Eq.s11d and in the
mixing step.

Coherent-state expansions are obtained by combining
the matching-pursuit algorithm with a gradient-based optimi-
zation technique as follows:

• Step f1.1g. Starting from an initial trial coherent state
ux jl, optimize both the real and imaginary parts of the
parametersxjskd, pjskd, andg jskd so that it locally maxi-
mizes the overlap with the target stateuwl8stdl. Note that
coherent-state parametersg jskd, xjskd, andpjskd are ini-
tially chosen as defined by the basis elements of previ-
ous representationssor the initial stated and are allowed
to locally relax according to a steepest-descent optimi-
zation process. The stateux1l that locally maximizes the
overlap with the target state is the first basis function in
the expansion on which the target state is projected as
follows:

uwl8stdl = c1ux1l + u«1l, s16d

wherec1;kx1uwl8stdl and«1 is the residue after the first
expansion. Note that«1 is orthogonal toux1l due to the
definition of c1.

• Stepf1.2g. Replacing the target state by«1, go to step
f1.1g to subdecompose«1 by its locally optimum match
ux2l as follows:

u«1l = c2ux2l + u«2l, s17d

wherec2;kx2u«2l. Similarly, ux2l is orthogonal tou«1l
and hence,u«2uø u«1u.

Step f1.2g is repeated each time on the following residue.
After n successive orthogonal projections, the norm of the
residue is smaller than a desired precision«,

u«nu =Î1 − o
j=1

n

cj
2 ø «, s18d

and the resulting expansion is obtained.
Note that the propagation scheme described in this sec-

tion is a natural generalization of the method described in
Ref. 38, since in the limiting case of adiabatic quantum dy-
namicsfi.e., Vcsxd=0g the two methods are identical. It is
important to mention, however, that since the extension to
nonadiabatic dynamics involves a perturbation expansion
that does not conserve the norm of the wave packet, the
results may need to be renormalized at any desired time ac-
cording to the corresponding level of perturbation theory.
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III. RESULTS

This section demonstrates the capabilities of the gener-
alized MP/SOFT propagation scheme, introduced in Sec. II,
as applied to the canonical model systems introduced by
Tully to test dual curve-crossing nonadiabatic dynamics.22

These models are particularly suitable for benchmark calcu-
lations since they have been widely implemented in tests of
other propagation methods for simulations of nonadiabatic
dynamics, including approaches based on coherent-state
representations.25,55The propagation scheme is still basically
a coherent-state version of the SOFT approach in the spirit of
the original formulation, which has already been shown to be
accurate in earlier studies.36–38 Therefore, the simulations
performed in this paper are essentially tests on the time-
dependent perturbation approximation as applied to different
nonadiabatic coupling models.

The first model is an example of weak coupling and
involves single avoided crossing dynamics. The second and
third models involve dual avoided crossing and extended
coupling, representing medium and strong coupling cases,
respectively. Details of the model systems are readily avail-
able in Ref. 22 and will not be discussed here.

The initial wave packet represents a particle of mass of
2000 amu. It is prepared to the left of the coupling region,
with some initial momentum in the rightward direction and
starts on the lower diabatic potential-energy surface. Specifi-
cally, the initial wave function is chosen to be Gaussian with
the two components in Eq.s6d defined as

w1sx;0d = S g

p
D1/4

e−sg/2dsx − x0d2+ip0sx−x0d,

w2sx;0d = 0, s19d

wherep0 is the initial momentum andg=p0
2/200. Thus the

initial wave packet has an energy spread of about610% of
its energy, as in Ref. 22.

The simulations of nonadiabatic dynamics, based on the
method introduced in Sec. II, are compared to full quantum-
mechanical calculations obtained according to the standard
grid-based SOFT approach.16–18Performance is measured by
examining the transmission and reflection probabilitiesPk

sTd

and Pk
sRd, as a function of the initial momentump0 si.e., ki-

netic energyd. Here, the labelsk=1 and 2 correspond to the
two diabatic statesu1l andu2l, respectively. The transmission
and reflection probabilities are obtained as follows:

Pk
sTd = lim

t→`
E

0

`

dxwksx;td*wksx;td, s20d

and

Pk
sRd = lim

t→`
E

−`

0

dxwksx;td*wksx;td. s21d

Excellent agreement between MP/SOFT and benchmark
grid-based calculations is demonstrated for all three model
systems investigated. Results are obtained with rather effi-
cient coherent-state representations, usually including fewer

than 50 coherent statessnø50d. The results are shown to be
independent of the integration time intervalt so long ast is
chosen to be sufficiently small.

A. Single avoided crossing

The first model defines a problem of single avoided
crossing dynamics according to the following potential-
energy surfaces and coupling functions defined in the diaba-
tic representation:

V1sxd = 0.01f1 − exps− 1.6xdg, x . 0,

V1sxd = − 0.01f1 − exps1.6xdg, x , 0,

V2sxd = − V1sxd,

Vcsxd = 0.005 exps− 1.0x2d. s22d

The initial wave packet is prepared, according to Eq.
s19d, centered atx0=−8.0 a.u. and with positive momentum
p0=5–30 a.u. The time-dependent Schrödinger equation is
integrated until the wave packet completely leaves the inter-
action region and the transmission probabilities remain con-
stant. Both sets of calculations involve the propagation of the
initial wave packet for 3000 a.u., using an integration time
incrementt=10 a.u. Benchmark quantum-mechanical calcu-
lations implement a grid of 8192 points, extended over the
x=−25.0 to 50.0 a.u. range.

Figure 1 compares transmission probabilitiesP1
sTd si.e.,

on the upper adiabatic stated andP2
sTd si.e., on the lower adia-

batic stated, as a function of the initial wave-packet momen-
tum. Results obtained according to the MP/SOFT method
sfilled circlesd, in conjunction with the perturbation expan-

FIG. 1. Transmission probabilitiesP1
sTd supper paneld andP2

sTd slower paneld,
as a function of the initial wave-packet momentum, for the single avoided
crossing model introduced by Eq.s22d. Benchmark quantum calculations
ssolid lined are compared to MP/SOFT resultssfilled circlesd obtained ac-
cording to the perturbation expansion to first-order accuracy, as described in
the text.
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sion to first-order accuracy, are compared to grid-based
quantum-mechanical calculationsssolid lined.

Figure 1 shows that the generalized MP/SOFT method,
introduced in Sec. II, is able to reproduce the description of
single avoided crossing dynamics for the whole range of en-
ergy si.e., initial momentumd investigated, in quantitative
agreement with benchmark quantum-mechanical calcula-
tions.

B. Dual avoided crossing

The model for dual avoided crossing dynamics is defined
in the diabatic representation according to the following
potential-energy surfaces and coupling functions:

V1sxd = 0,

V2sxd = − 0.1 exps− 0.28xd + 0.05,

Vcsxd = 0.015 exps− 0.06x2d. s23d

The initial wave packet is prepared, according to Eq.s19d,
localized in the asymptotic negative region withx0=
−15.0 a.u. and a positive momentum. The time-dependent
Schrödinger equation is integrated until the wave packet
completely leaves the interaction region and the transmission
probability remains constant for all future times. Both sets of
calculations involved propagation of the initial wave packet
for 3000 a.u., using an integration time incrementt=1 a.u.
Benchmark calculations implemented a grid of 8192 points,
extended in thex=−35.0 to 35.0 a.u. range. While the
strength of the couplings demanded a rather small propaga-
tion time incrementt=1 a.u., the efficiency of the propaga-
tion scheme could in principle be further improved by imple-
menting a variable time-step integrator as determined by the
average strength of the nonadiabatic couplings and the initial
momentum.

It is important to note that this dual avoided crossing
model problem is significantly more challenging for a pertur-
bational approach than the single avoided crossing model
discussed in Sec. III A, since in this case the coupling am-
plitudes and the range of the couplings are larger. Further-
more, the model involves dual avoided crossing dynamics
with quantum interferences between the two crossings mani-
festing Stuckelberg oscillations.56

Figure 2 compares transmission probabilitiesP1
sTd si.e.,

on the upper adiabatic stated andP2
sTd si.e., on the lower adia-

batic stated, as a function of the initial wave-packet momen-
tum. Results obtained according to the MP/SOFT method
sfilled circlesd, in conjunction with the perturbation expan-
sion to first-order accuracy, are compared to grid-based
quantum-mechanical calculationsssolid lined. The compari-
son shows that, once again, the results obtained according to
the generalized MP/SOFT method agree quantitatively with
benchmark quantum-mechanical calculations throughout the
entire range of energysi.e., initial momentumd considered.
Note especially that the oscillatory transmission probabilities
are reproduced in excellent agreement with benchmark cal-
culations, even at low energies that have defied other meth-
ods based on coherent-state representations.25

In order to show that the agreement between MP/SOFT
and benchmark calculations applies not only to the long-time
asymptotic state but also to all intermediate times during the
scattering event, Fig. 3 shows the time-dependent popula-
tions of both adiabatic states for a wave packet initially pre-
pared in the asymptotic negative region withx0=−15.0 a.u.
and p0=25.0 a.u. The agreement between MP/SOFT and
benchmark calculations indicates that the first-order pertur-
bational scheme is able to successfully describe not only the
Stuckelberg oscillations but also the detailed evolution of
time-dependent populations as determined by the quantum-
mechanical interferences due to the two curve crossings.

FIG. 2. Transmission probabilitiesP1
sTd supper paneld andP2

sTd slower paneld,
as a function of the initial wave-packet momentum, for the dual avoided
crossing model, introduced by Eq.s23d. Benchmark quantum calculations
ssolid lined are compared to MP/SOFT resultssfilled circlesd obtained ac-
cording to the perturbation expansion to first-order accuracy, as described in
the text.

FIG. 3. Time-dependent populations of both adiabatic states for a wave
packet initially prepared in the asymptotic negative region withx0=
−15.0 a.u. andp0=25.0 a.u. Benchmark quantum calculationsssolid lined
are compared to MP/SOFT resultssfilled circlesd, obtained according to the
perturbation expansion to first-order accuracy, as described in the text.
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C. Extended coupling with reflection

The problem of extended coupling is an even more dif-
ficult test for the perturbational implementation of the MP/
SOFT methodology. Here, the couplings between diabatic
states do not go to zero in the asymptotic region. Further-
more, the coupling amplitudes and the range of couplings are
even larger than in the previous models. The diabatic poten-
tials are

V2sxd = 6 3 10−4, V1sxd = − 63 10−4,

Vcsxd = 0.1 exps− 0.9xd, x , 0,

Vcsxd = 0.1f2 − exps− 0.9xdg, x . 0. s24d

Since the diabatic states are close in energy, the transmission
and reflection probabilities are very similar for both diabatic
states. The adiabatic surfaces, on the other hand, show a
barrier for the upper state and one would thus expect some
reflection for energies below this barrier. All these effects are
observed in the MP/SOFT calculations, in excellent agree-
ment with benchmark quantum-mechanical results.

Figure 4 shows the transmissionsupper paneld and re-
flection slower paneld probabilities, associated with the ex-
tended coupling model introduced by Eq.s24d, for the upper
diabatic state as a function of the initial wave-packet mo-
mentum.

Results are obtained by preparing the initial wave packet
centered atx0=−15.0 a.u. and with positive momentump0

=10–30 a.u. As before, the time-dependent Schrödinger
equation is integrated until the transmission probabilities re-
main constant. Both sets of calculations involved propaga-
tion of the initial wave packet for 9000 a.u. Due to partial

reflection, benchmark calculations without absorbing poten-
tials required a rather large grid of 16 384 points extended
over thex=−150.0 to 200.0 a.u. range.

Due to the strength and extension of the coupling poten-
tials, accurate calculations based on the MP/SOFT method
required a perturbation expansion to second-order accuracy
and a rather small integration time incrementt=0.2 a.u. Re-
sults were obtained, as described in Sec. II, by using the
midpoint approximation for the first order term and the
center-of-mass approximation in the evaluation of the
second-order term in the perturbational expansion.

In order to show that the agreement between MP/SOFT
and benchmark calculations is observed not only for the
asymptotic states but also for all intermediate times during
the scattering event, Fig. 5 shows the time-dependent popu-
lations of the diabatic and upper adiabatic states for a wave
packet initially prepared on the lowest-energy statesi.e., the
first diabatic stated in the asymptotic negative region with
x0=−15.0 a.u. andp0=18.0 a.u. The agreement between MP/
SOFT and benchmark calculations indicates that the second-
order perturbational scheme is able to successfully describe
not only the asymptotic transmission probabilities but also
the detailed evolution of time-dependent populations as de-
termined by the curves with extended couplings. For com-
parison, note that the MP/SOFT scheme to second-order ac-
curacy in the perturbation expansion performs significantly
better than other methods based on coherent-state
expansions25 and requires expansions with much fewer basis
functionsse.g.,n ¡ 100 d.

FIG. 4. Probabilities of transmissionsupper paneld and reflectionslower
paneld, associated with the extended coupling with reflection model intro-
duced by Eq.s24d, for the upper diabatic state, as a function of the initial
wave-packet momentum. Benchmark quantum calculationsssolid lined are
compared to MP/SOFT resultssfilled circlesd, obtained according to the
second-order perturbation expansion, as described in the text.

FIG. 5. Time-dependent populations of the upper adiabatic statesupper
paneld and diabatic transmission probability on upper surfaceslower paneld
for the extended coupling with reflection model. The wave packet is initially
prepared on the lowest-energy statesi.e., the first diabatic stated in the
asymptotic negative region withx0=−15.0 a.u. andp0=18.0 a.u. Bench-
mark quantum calculationsssolid lined are compared to MP/SOFT results
sfilled circlesd, obtained according to the perturbation expansion to second-
order accuracy, as described in the text.
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IV. CONCLUDING REMARKS

We have introduced a generalization of the MP/SOFT
method to simulate nonadiabatic quantum dynamics. The
method is both rigorous and practical and involves a propa-
gation scheme that recursively applies the standard perturba-
tion expansion of the time-evolution operator. The expansion
is implemented in dynamically adaptive coherent-state rep-
resentations, generated by an approach that combines the
matching-pursuit algorithm with a gradient-based optimiza-
tion method.

We have shown that the generalization of the method to
nonadiabatic dynamics simulations still preserves the struc-
ture of the original MP/SOFT formulation, which is basically
a coherent-state version of the SOFT approach. As men-
tioned in Refs. 36–38, the main advantage of the MP/SOFT
approach relative to the standard grid-based SOFT method is
that the coherent-state representations allow for ananalytic
evaluation of the Trotter expansion, bypassing the exponen-
tial scaling problem associated with the FFT algorithm of
usual grid-based implementations. When compared to other
time-dependent methods based on coherent-state expansions,
the method developed here has the advantage of avoiding the
usual need of propagating expansion coefficients by solving
a coupled system of differential equations. The main draw-
back of the generalized MP/SOFT method is that it requires
generating a new coherent-state expansion of the time evolv-
ing state for each propagation step. The underlying compu-
tational task, however, can be trivially distributed on a par-
allel computer architecture. In addition, since the method is
based on a perturbation expansion, the norm of the wave
packet is not conserved and results need to be renormalized
at any desired time according to the corresponding level of
perturbation theory.

Relative to the original MP/SOFT formulation, which
has already been shown to be accurate and efficient even in
systems with many degrees of freedom,38 the computational
overhead necessary for including nonadiabatic effects is mi-
nor, specially when the approach is implemented according
to the perturbation expansion to first-order accuracy. The
computational overhead simply involves adiabatic propaga-
tion of the wave-packet components of each diabatic state
and mixing the time-evolved wave packets at the end of each
propagation time increment.

We have demonstrated the accuracy and efficiency of the
generalized MP/SOFT propagation method as applied to the
model systems introduced by Tully for testing simulations of
dual curve-crossing dynamics with nonadiabatic couplings of
different strengths, including a model of single avoided
crossing, dual avoided crossing dynamics with manifested
Stuckelberg oscillations, and a model of extended coupling
with wave-packet reflection. Excellent agreement between
MP/SOFT and benchmark grid-based calculations was dem-
onstrated for all three model systems. Furthermore, results
were obtained with rather efficient coherent state representa-
tions, often including fewer than 50 coherent statessn
ø50d.

Based on the benchmark calculations reported in this
paper, we conclude that the method developed here is quite

promising and should be applicable even to systems with
many degrees of freedom and multiple-coupled potential-
energy surfaces. This, however, remains to be demonstrated
and is the subject of work in progress. Another aspect under
current analysis involves exploring the implementation of
flexible representations, in the spirit of recent works,57,58 in
an effort to reduce the coupling strength and, therefore, im-
prove the numerical efficiency of the generalized MP/SOFT
method in applications to model problems with strong cou-
plings.
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