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Arigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced.
The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform
(MP/SOFT method Y. Wu and V. S. Batista, J. Chem. Phyk21, 1676(2004] recently developed

for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT
propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution
operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The
expansion is implemented in dynamically adaptive coherent-state representations, generated by an
approach that combines the matching-pursuit algorithm with a gradient-based optimization method.
The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the
canonical model systems introduced by Tully for testing simulations of dual curve-crossing
nonadiabatic dynamics. ®005 American Institute of Physid©OI: 10.1063/1.1881132

I. INTRODUCTION the extended MP/ SOFT method are demonstrated as applied
to benchmark simulations of dual curve-crossing dynamics.
Nonadiabatic quantum dynamics is a ubiquitous phe-  The MP/SOFT methoi2has been recently introduced
nomenon in physical, chemical, and biological procesges. in an effort to develop a simple and rigorous time-dependent
Describing nonadiabatic quantum dynamics at the most funmethod for simulations of quantum processes in multidimen-
damental level of theory, however, requires solving thesjonal systems. The MP/SOFT methodology is based on the
coupled system of differential equations defined by the timerecursive application of the time-evolution operator, as de-
dependent Schrodinger equation. In recent years, much effofihed by the Trotter expansion to second-order accuracy, to
has been devoted to the development of numerically exagionorthogonal and dynamically adaptive coherent-state rep-
method$™° for wave-packet propagation based on the splitresentations generated according to the matching-pursuit
operator  Fourier-transform(SOFT) approaCH,G_ls the algorithm.39 The main advantage of this approach relative to
Chebyshev expansiori and the short iterative LancZdsl-  the standard grid-based SOFT method is that the coherent-
gorithms. While rigorous, these approaches are limited tgtate expansions allow for amalyticimplementation of the
systems with very few degrees of freedéeng., molecular  Trotter expansion, bypassing the exponential scaling problem
systems with less than 3 or 4 atonsince they require stor- associated with the fast-Fourier-transfoffFT) algorithm
age space and computational effort that scale exponentiallyf usual grid-based implementations. When compared to
with the number of coupled degrees of freedom. Such agther time-dependent methods based on coherent-state
exponential scaling problem has limited studies of nonadiaexpansiond’>*the MP/SOFT method has the advantage of
batic dynamics in complex molecular systems to approXiavoiding the usual need of solving a coupled system of dif-
mate methods built around semiclassical and mixederential equations for propagating expansion coefficients.
quantum-classical treatmerits®® However practical, these Further, the MP/SOFT method implements a successive or-
approximate approaches require a compromise between agrogonal decomposition scheme that overcomes the usual
curacy and feasibility and rely oad hoc approximations numerical difficulties due to overcompleteness introduced by
whose resulting consequences are often difficult to quantifyyonorthogonal basis functiodsThe main drawback of the
in applications to complexnonintegrablg dynamics. It is, MP/SOFT method is that it requires generating a new
therefore, essential to develop practical methods for numericoherent-state expansion of the time evolving state for each
cally exact simulations in order to validate approximate appropagation step. However, the underlying computational
proaches and provide new insights into the nature of quangsk can be trivially parallelized.
tum processes. This paper describes an extension of the To date, the capabilities of the MP/SOFT method have
recently developed matching-pursuit/split-operator Fourierheen demonstrated in application to simulations of adiabatic
transform (MP/SOFT method®** to simulations of nona- quantum dynamics, including simulations of tunneling dy-
diabatic quantum dynamics. The accuracy and efficiency ofamics in model systems with up to 20 coupled degrees of
freedom® In a recent development, the approach has been
¥Electronic mail: victor.batista@yale.edu generalized to provide accurate descriptions of thermal-
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equilibrium density matrices, finite-temperature time-between potential-energy surfaces. To keep the notation as
dependent expectation values, and time-correlatiosimple as possible, all expressions are written in mass-
functions>* There remains, however, the nontrivial questionweighted coordinates and atomic units, so that all degrees of
as to whether the MP/SOFT methodology can be easilfreedom have the same massandz=1.
implemented to model nonadiabatic processes. This paper The perturbation expansion, introduced by Ef, can
concludes the affirmative, that such a methodology can inbe approximated for sufficiently small propagation time in-
deed be effectively applied to simulations of nonadiabaticcrementsr as follows:
dynamics simply by describing nonadiabaticity according to
a short-time approximation of the time-evolution operator as
defined by the pertl_eration expapsion to first-, or secpnd— _ 27_2e_i|:|027/3|:|1e_i|:|027-/3|:|1e_i|:|027-/3+.”, 5)
order, accuracy. While the paper is focused only on validat-
ing the MP/SOFT methodology by performing rigorous com-where the first-order term in Eq41) has been evaluated ac-
parisons with benchmark calculations for reduced-cording to the “midpoint” approximatiofi.e., t;=7) and the
dimensional model systems, the results at least suggest tisecond-order term was evaluated according to the “center-of-
potential for application of the MP/SOFT method to the de-mass” approximatiori.e., t;=27/3 andt,=47/3). The ex-
scription of nonadiabatic dynamics in compl&e., nonin-  tension of the MP/SOFT method, introduced in this paper,
tegrabl¢ quantum dynamics. recursively implements the time-evolution operator, as de-

This paper is organized as follows. Section Il describedined in Eq.(5), to first, or second, order.
the extension of the MP/SOFT method to simulations of  In order to describe the MP/SOFT implementation of Eq.
nonadiabatic quantum dynamics according to the successiu®) to first-order accuracy, consider a two-level system
implementation of the time-evolution operator, as defined by=2) described by the time-dependent wave function,
a time-dependent perturbation theory expansion. Section Il o — ) )
presents the numerical results of a series of benchmark cal- [¥0G0) = (D11 + ealx;D]2), ®
culations of dual curve-crossing nonadiabatic dynamicsvhereg;(x;t) is the time-dependent wave-packet component
simulations. Section IV summarizes and concludes. associated with diabatic stdfe. Note that generalizations to
multiple-level systems, or higher order of perturbation theory
(e.g., second-order accuracyre straightforward.

The implementation of Eq5) to first order requires the

The generalization of the MP/SOFT method to nonadiafollowing steps:

batic dynamics is based on the recursive application of the .+ step [I]. Propagate the wave-packet components
time-evolution operator as defined by the standard perturba-  , (x;t) and g,(x;t) adiabatically for timer,

tion expansion,

e—il:|27' ~ —i|:|027' _ iZTe—il:loTﬂle—il:ioT

IIl. METHODS

[Fvio]
. " . . e (x;t+7) = e 2m™V10] 7, (x;1),
@ 1H27r = gmiHg27 _ If dtle-lHO(Zr—tl)Hle—|HOt1
0 (a2
2r t, ey(x;t+ 1) = e_'[jzjr_nJ'VZ(x)]T(pz(X;t). (7)
+(=i)? f dt, J dtye Moy, _
0 0 e Step [ll]. Mix the two wave-packet components,
: A (X5 t+7) and @y(x; t+7),
x e Moty giHoty 4 ... (1) el ) ande( )
P1X;t+ 1) = o1 (Xt + 7) = i27V(X) pp(X;t + 7),
with 7 a sufficiently short time increment for the evolution of

the system according to the Hamiltonian Xt + 1) = (Xt + 7) —i27V(X) @y (Xt + 7). (8)
H=Ho+Hy, 2 « Step[lll]. Propagate the mixed wave-packet compo-
whereH, andH; are defined in the basis set of diabatic states ~ Nents,¢;(x;t+7) and ¢(x;t+7), adiabatically for time
(e.g., electronic statgss follows: T,
~ n | p® .
-~ _p? . X;t+27 :e'[z +V1(X)]T 1T+ 7,
o= 2+ S VRIK, @  etrzmelm Akt
k=1 2
and @o(X;t+27) = e“[%nw*)]npg(x;t +7). (9
A non Step[lll] is, however, combined with stef] of the
Hi= > > Vo(R)[iXK. (4) next propagation time sliced for all but the last propa-
k=1j#k gation time increment.
Note that the unperturbed Hamiltonikly describes the adia- The mixing of wave-packet components in sféij can

batic dynamics of coordinates (e.g., nuclear coordinates pe implemented analytically whenever the couplingéx)
on the uncoupled potential-energy surfadgéx), while the  are Gaussiang.g., see the first two model systems in Sec.
perturbationH; introduces the nonadiabatic couplingg(x) 1) since ¢; and ¢, are coherent-state expansidng., see
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Eqg.(11)]. In general, however, mixing the wave-packet com- n ‘

ponentse; and ¢, requires expanding the target statgs @(x;t+ 1) = X ge VOTHx[Y,), (15)
and ¢ in matching-pursuit coherent-states expansiige =1

infra).

Steps[1] and[lll ] involve the adiabatic propagation of which can be reexpanded in coherent states, as in step

the wave-packet components according to the MP/SOFT [1].

implementation of the Trotter expansion, Note that, since stef?] is implemented analytically, the
" - underlying computational task necessary for nonadiabatic
1| 5o tVI®) |7 ViR T2 b reriViR) 712 ropagation is completely reduced to generating the
€ 'l2m e € '2m’e , (100  propag pietely g g

coherent-state expansions introduced in 84) and in the

as described in Ref. 38. Such an approach can be outlined &¥xing step.

follows: Coherent-state expansions are obtained by combining
the matching-pursuit algorithm with a gradient-based optimi-

 Step [1]. Decompose the target functiong (x;t) zation technique as follows:

=g V®724 (x:t), wherel=1, and 2, into a matching-

pursuit coherent-state expansion, » Step [11] Starting from an initial trial coherent state
|Xj>- optimize both the real and imaginary parts of the
n parameters;(k), p;(k), andy;(k) so that it locally maxi-
@ (x;1) = > (X[ x;- (11 mizes the overlap with the target staig (t)). Note that
=1 coherent-state parameteygk), x;(k), andp;(k) are ini-
. . tially chosen as defined by the basis elements of previ-
Here, (x| ;) areN-dimensional coherent states, ous representation(sr the initial statg and are allowed

to locally relax according to a steepest-descent optimi-

N . .
_ _ %K) _ ) zation process. The statg,) that locally maximizes the
Xy = £[1Aj(k)exp{ > [x(K) = x;(K)] overlap with the target state is the first basis function in
- the expansion on which the target state is projected as
. follows:
+ip;(K)[x(K) - Xj(k)]}, (12
@i () = calx2) + [er), (16)

where Aj(k) are normalization factors ang(k), x;(k), , _ ) )
and p;(k) are complex-valued parameters selected ac- WhereC_15<Xl|‘Pl () ande, is the residue after the first
cording to the matching-pursuit algorithm, as described ~ €xPpansion. Note that; is orthogonal tdy,) due to the

later in this section. The expansion coefficienfsare definition of c;.
def!r_wled as follows: ca=0ule) and ¢=(xl¢) « Step[1.2]. Replacing the target state lay, go to step
-3iedx [ xie for j=2-N. [1.1] to subdecompose; by its locally optimum match

« Step[2]. Apply the kinetic part of the Trotter expansion [x2) as follows:

to ¢/(x;t) by first Fourier transforming the coherent-
state expansion af/(x;t) to the momentum represen-
tation, then multiplying it by exjp-i(p?/2m)~], and fi-
nally inverse Fourier transforming the product back to
the coordinate representation to obtain

ler) = Colx2) + €2, (17)

wherec,= (x| &,). Similarly, |x,) is orthogonal tde;)
and hencele,| <|g4|.

Step[1.2] is repeated each time on the following residue.

n . . .
o - After n successive orthogonal projections, the norm of the
¢ G = zcj(xb(j% (13)  residue is smaller than a desired precision

n
where o= \/1-2 <o, (19
i=1

N
- [ m
xIx;) = HAj(k) mt i (k) and the resulting expansion is obtained.
= J

Note that the propagation scheme described in this sec-

Ej@ T (K) — x(k 2 tion is a natural generalization of the method described in

7K il (k) = x(k] pi(K) Ref. 38, since in the limiting case of adiabatic quantum dy-
5 oir - 29(K) namics[i.e., V.(x)=0] the two methods are identical. It is

—_—t+ — ! important to mention, however, that since the extension to

vk m nonadiabatic dynamics involves a perturbation expansion

(14) that does not conserve the norm of the wave packet, the

results may need to be renormalized at any desired time ac-
The time-evolved wave-function components are thus cording to the corresponding level of perturbation theory.

X ex

Downloaded 19 May 2005 to 130.132.58.224. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



114114-4 Wu, Herman, and Batista J. Chem. Phys. 122, 114114 (2005)

Ill. RESULTS 1.0 T T T T

This section demonstrates the capabilities of the gener- °-3‘_ )
alized MP/SOFT propagation scheme, introduced in Sec. I, 0.6
as applied to the canonical model systems introduced by

Tully to test dual curve-crossing nonadiabatic dynarﬁ?cs. 0.4+
These models are particularly suitable for benchmark calcu-

lations since they have been widely implemented in tests of

other propagation methods for simulations of nonadiabatic

dynamics, including approaches based on coherent-state
representation®>>The propagation scheme is still basically

a coherent-state version of the SOFT approach in the spirit of 0.8+
the original formulation, which has already been shown to be 0_6_'
accurate in earlier studié&® Therefore, the simulations ]
performed in this paper are essentially tests on the time- 0.4
dependent perturbation approximation as applied to different

0.2

0.0
1.0

Probability

0.2 4

nonadiabatic coupling models. ]

The first model is an example of weak coupling and 0.0 r . . .
involves single avoided crossing dynamics. The second and 50 100 150 200 250 300
third models involve dual avoided crossing and extended Initial Momentum (a.u.)

coupling, representing medium and strong coupling cases,

- . A . issi it () (M
respectively. Details of the model systems are readily availf': 1- Transmission probabilitigd” (upper pandlandP" (lower panel,
as a function of the initial wave-packet momentum, for the single avoided

able in Ref 22 and will not be discussed herg. crossing model introduced by E¢R2). Benchmark quantum calculations
The initial wave packet represents a particle of mass 0ofsolid line) are compared to MP/SOFT resulfilled circles obtained ac-

2000 amu. It is prepared to the left of the coupling region,cording to the perturbation expansion to first-order accuracy, as described in
with some initial momentum in the rightward direction and "® Xt
starts on the lower diabatic potential-energy surface. Specifi-
cally, the initial wave function is chosen to be Gaussian withthan 50 coherent statés<50). The results are shown to be
the two components in E@6) defined as independent of the integration time intervaso long asr is
s chosen to be sufficiently small.
1(x;0) = <1> e (112)(x = X *+ipo(x-xg)
™ A. Single avoided crossing

(x:0)=0 (19) The first model defines a problem of single avoided
P2 =5 crossing dynamics according to the following potential-

wherepy is the initial momentum ang= p§/200. Thus the €nergy surface_s and coupling functions defined in the diaba-
initial wave packet has an energy spread of abb0% of  UC representation:
its energy, as in Ref. 22. V;(x) =0.071 - exg— 1.6x)], x>0,

The simulations of nonadiabatic dynamics, based on the
method introduced in Sec. Il, are compared to full quantum- v, (x) = - 0.011 - exg1.6x)], x<O0,
mechanical calculations obtained according to the standard
grid-based SOFT approacfi*®Performance is measured by vV,(x) = - Vy(x),
examining the transmission and reflection probabiliﬁé@
and P(kR), as a function of the initial momentummy, (i.e., ki- V(x) = 0.005 exf— 1.0¢%). (22
netic energy. Here, the label&=1 and 2 correspond to the
two diabatic statefl) and|2), respectively. The transmission
and reflection probabilities are obtained as follows:

The initial wave packet is prepared, according to Eg.
(19), centered aky=-8.0 a.u. and with positive momentum
Po=5-30 a.u. The time-dependent Schrdédinger equation is

- o integrated until the wave packet completely leaves the inter-
P’ =lim f

t—oe

dxey(X; 1) @ilx;t), (200 action region and the transmission probabilities remain con-
stant. Both sets of calculations involve the propagation of the
initial wave packet for 3000 a.u., using an integration time
incrementr=10 a.u. Benchmark quantum-mechanical calcu-
fo lations implement a grid of 8192 points, extended over the

0

and

PR = lim

t—od _o

dxei(X; 1) @lX; ). (21)  x=-25.0 to 50.0 a.u. range.
Figure 1 compares transmission probabilitlég) (i.e.,
Excellent agreement between MP/SOFT and benchmarén the upper adiabatic stat@nd P(ZT> (i.e., on the lower adia-
grid-based calculations is demonstrated for all three moddbatic statg as a function of the initial wave-packet momen-
systems investigated. Results are obtained with rather efftum. Results obtained according to the MP/SOFT method
cient coherent-state representations, usually including fewdfilled circles, in conjunction with the perturbation expan-
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sion to first-order accuracy, are compared to grid-based 1.0 T T T T
guantum-mechanical calculatiofsolid line). ]

Figure 1 shows that the generalized MP/SOFT method,
introduced in Sec. Il, is able to reproduce the description of
single avoided crossing dynamics for the whole range of en-
ergy (i.e., initial momentunh investigated, in quantitative
agreement with benchmark quantum-mechanical calcula-
tions.

B. Dual avoided crossing

Probability

The model for dual avoided crossing dynamics is defined
in the diabatic representation according to the following
potential-energy surfaces and coupling functions:

Vi(x) =0,

Vy(x) == 0.1 exg— 0.28) + 0.05,

4 3 2 - 0 1
V(x) = 0.015 exj— 0.06¢%). (23) P
o .
The initial wave packet is prepared, according to Ed),

localized in the asymptotic negative region witky= FIG. 2. Transmission probabilitie" (upper panglandP.” (lower panel,
_ L - s a function of the initial wave-packet momentum, for the dual avoided
15.0au. and a positive momentum. The tIme_dependerﬁrossing model, introduced by E3). Benchmark quantum calculations

Schrédinger equation is integrated until the wave packefsolid line) are compared to MP/SOFT resulfiiled circles obtained ac-
completely leaves the interaction region and the transmissioeprding to the perturbation expansion to first-order accuracy, as described in

probability remains constant for all future times. Both sets ofthe text.
calculations involved propagation of the initial wave packet

for 3000 a.u., using an integration time incrementl a.u. In order to show that the agreement between MP/SOFT

Benchmark calculations implemented a grid of 8192 POINtS, 4 benchmark calculations applies not only to the long-time

extended in thex 35'0 to 35.0 a.u. range. While the asymptotic state but also to all intermediate times during the
strength of the couplings demanded a rather small propaga- . . .
2 ~ . Scattering event, Fig. 3 shows the time-dependent popula-
tion time increment=1 a.u., the efficiency of the propaga-

tion scheme could in principle be further improved by imple_tlons of both adiabatic states for a wave packet initially pre-

menting a variable time-step integrator as determined by thBared in the asymptotic negative region wigr ~15.0 a.u.

average strength of the nonadiabatic couplings and the initi nd po=25.0 a.u, The agrgement between' MP/SOFT and
momentum. enchmark calculations indicates that the first-order pertur-

It is important to note that this dual avoided Crossingbatlonal scheme is able to successfully describe not only the

model problem is significantly more challenging for a pertur_Stuckelberg oscillations but also the detailed evolution of

bational approach than the single avoided crossing moddime-dependent populations as determined by the quantum-
discussed in Sec. Il A, since in this case the coupling amMmechanical interferences due to the two curve crossings.

plitudes and the range of the couplings are larger. Further-

more, the model involves dual avoided crossing dynamics 10 ' .

with quantum interferences between the two crossings mani-

festing Stuckelberg oscillations. 054 i
Figure 2 compares transmission probabilitlég) (i.e.,

on the upper adiabatic statend P(ZT) (i.e., on the lower adia- Z 6. i

batic stat¢ as a function of the initial wave-packet momen- A

tum. Results obtained according to the MP/SOFT method o 0. )

(filled circles, in conjunction with the perturbation expan- &

sion to first-order accuracy, are compared to grid-based

quantum-mechanical calculatiofsolid line). The compari- 021 )

son shows that, once again, the results obtained according to

the generalized MP/SOFT method agree quantitatively with 002 1000 2000 3000 2000

benchmark quantum-mechanical calculations throughout the Time (a.u.)

entire range of energyi.e., initial momentum considered.
Note especially that the oscillatory transmission probabilitied™!G. 3. Time-dependent populations of both adiabatic states for a wave
are reproduced in excellent agreement with benchmark caP?cket initially prepared in the asymptotic negative region it

. . . -15.0 a.u. andy,=25.0 a.u. Benchmark quantum calculatigsslid line)
culations, even at low energies that have defied other methge compared to MP/SOFT resuifdled circles, obtained according to the

ods based on coherent-state representafﬁ)ns. perturbation expansion to first-order accuracy, as described in the text.
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1.0 —_— 1.0 —
0.8 7 0.8+ Upper Surface Adiabatic Population ]
0.6 - E 0.6 i
0.4 - 0.4 .
.M L
0.2 c i 0.2- 1
>
£ ] £ 00
£ 00 —_—— 3 0 —e———
€ S o5
a 10 T . . S 0 T T T T . .
e ] o Diabatic Transmission Probability
2 5a- i 0.4 on Upper Surface E
0.6 i 0.3
] ] 24 .
0.4- ] 0
] _ 1 0.1 .
0.2 v E
] ] 0.0 f T T
0.0 — T 0 1000 2000 3000 4000
10 15 20 25 30

Initial Momentum (a.u.) Time (a.u.)

o . FIG. 5. Time-dependent populations of the upper adiabatic $tatper
FIG. 4. Probabilities of transmissiofupper paneland reflection(lower  yanej and diabatic transmission probability on upper surfdoeer panel
pane), associated with the extended coupling with reflection model intro-fo the extended coupling with reflection model. The wave packet is initially
duced by Eq(24), for the upper diabatic state, as a functlo_n qf the initial prepared on the lowest-energy stdte., the first diabatic stalein the
wave-packet momentum. Benchmark quantum calculat(subd _Ilne) are asymptotic negative region witk,=-15.0 a.u. andy,=18.0 a.u. Bench-
compared to MP/SOFT resuliilled circles, obtained according to the  mark quantum calculationolid line) are compared to MP/SOFT results
second-order perturbation expansion, as described in the text. (filled circles, obtained according to the perturbation expansion to second-

order accuracy, as described in the text.

C. Extended coupling with reflection

The problem of extended coupling is an even more dif-reflection, benchmark calculations without absorbing poten-
ficult test for the perturbational implementation of the MP/tials required a rather large grid of 16 384 points extended
SOFT methodology. Here, the couplings between diabatiover thex=-150.0 to 200.0 a.u. range.
states do not go to zero in the asymptotic region. Further- Due to the strength and extension of the coupling poten-
more, the coupling amplitudes and the range of couplings argals, accurate calculations based on the MP/SOFT method
even larger than in the previous models. The diabatic potenaquired a perturbation expansion to second-order accuracy

tials are and a rather small integration time incremert0.2 a.u. Re-
Vo(x)=6X 1074, Vi(x)=-6X 1074 sults were obtained, as described in Sec. Il, by using the
midpoint approximation for the first order term and the
Ve(x) =0.1exg-0.%), x<0, center-of-mass approximation in the evaluation of the
second-order term in the perturbational expansion.
Ve(¥) =0.12 —exd-0.99], x> 0. (24) In order to show that the agreement between MP/SOFT

Since the diabatic states are close in energy, the transmissi@hd benchmark calculations is observed not only for the
and reflection probabilities are very similar for both diabaticasymptotic states but also for all intermediate times during
states. The adiabatic surfaces, on the other hand, showthe scattering event, Fig. 5 shows the time-dependent popu-
barrier for the upper state and one would thus expect somiations of the diabatic and upper adiabatic states for a wave
reflection for energies below this barrier. All these effects argpacket initially prepared on the lowest-energy stag, the
observed in the MP/SOFT calculations, in excellent agreefirst diabatic statein the asymptotic negative region with
ment with benchmark quantum-mechanical results. X=—15.0 a.u. angh=18.0 a.u. The agreement between MP/
Figure 4 shows the transmissidnpper paneland re-  goET and benchmark calculations indicates that the second-

Ilec(;iogn (Iowel_r panel dpqubtab(ijlitiesa zssoci:ltefd V;’ri]th the ex- order perturbational scheme is able to successfully describe
ended coupling model introduced by Eg4), for the upper not only the asymptotic transmission probabilities but also

diabatic state as a function of the initial wave-packet mo- . . . .
mentum P the detailed evolution of time-dependent populations as de-

fermined by the curves with extended couplings. For com-

Results are obtained by preparing the initial wave packet™""
centered ak,=-15.0 a.u. and with positive momentupg parison, note that the MP/SOFT scheme to second-order ac-

=10-30 a.u. As before, the time-dependent Schrodingefuracy in the perturbation expansion performs significantly
equation is integrated until the transmission probabilities rebetter than other methods based on coherent-state
main constant. Both sets of calculations involved propagaexpansior and requires expansions with much fewer basis
tion of the initial wave packet for 9000 a.u. Due to partial functions(e.g.,n j 100).
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IV. CONCLUDING REMARKS promising and should be applicable even to systems with
many degrees of freedom and multiple-coupled potential-

We have introduced a generalization of the MP/SOFTenergy surfaces. This, however, remains to be demonstrated
method to simulate nonadiabatic quantum dynamics. Thand is the subject of work in progress. Another aspect under
method is both rigorous and practical and involves a propaeurrent analysis involves exploring the implementation of
gation scheme that recursively applies the standard perturbéexible representations, in the spirit of recent wotke in
tion expansion of the time-evolution operator. The expansioran effort to reduce the coupling strength and, therefore, im-
is implemented in dynamically adaptive coherent-state repprove the numerical efficiency of the generalized MP/SOFT
resentations, generated by an approach that combines theethod in applications to model problems with strong cou-
matching-pursuit algorithm with a gradient-based optimizaplings.
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