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Matching-pursuit for simulations of quantum processes
Yinghua Wu and Victor S. Batista
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The matching-pursuit algorithm is implemented to develop an extension of the split-operator Fourier
transform method to a nonorthogonal, nonuniform and dynamically adaptive coherent-state
representation. The accuracy and efficiency of the computational approach are demonstrated in
simulations of deep tunneling and long time dynamics by comparing our simulation results with the
corresponding benchmark calculations. ©2003 American Institute of Physics.
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I. INTRODUCTION

Quantum dynamics simulation methods are extrem
useful computational tools to study a broad range of ato
and molecular processes. Direct methods for numeric
solving the time-dependent Schro¨dinger equation have be
come quite powerful due to recent advances in both meth
ology and computer technology.1 These methods usuall
combine spatial-grid representations~e.g., the discrete vari
able representation~DVR!/pseudospectral representation2,3!
with propagation schemes such as the split opera4

Chebychev,5 or short iterative Lanczos6 approaches. Unfor-
tunately, these techniques require storage space and co
tational effort that scaleexponentiallywith the number of
coupled degrees of freedom. These requirements limit
applicability of rigorous approaches to systems with ve
few degrees of freedom~e.g., molecular systems with up to
or 4 atoms!.7 Developing rigorous quantum dynamics sim
lation methods that are not limited by the exponential sca
problem is, therefore, one of the important challenges
modern computational chemistry. In this paper we introdu
one such method by combining the split-operator Four
transform ~SOFT! technique4,8 with a coherent-state repre
sentation generated according to the matching-pursuit~MP!
algorithm.9 One may think of this approach~called MP/
SOFT throughout this paper! as an exact quantum mechan
cal version of the time-sliced coherent-state propaga
method, recently developed10 and implemented11 according
to the Herman–Kluk semiclassical initial value represen
tion ~HK/SC-IVR!.12

Several authors, inspired primarily by Heller,13–15 have
considered overcoming the exponential scaling problem
developing propagation methods based on coherent-
representations. Work by Coalson and Karplus,16 Metiu and
Jackson17 and Kay18 is the earliest of this kind. More re
cently Ben-Nun and Martinez,19 as well as Shalashilin an
Jackson,20 Andersson21 and Shalashilin and Child22,23 have
developed approaches based on coherent-state expan
These are rigorous collocations schemes where the ex
sion coefficients are propagated by solving a coupled sys
6720021-9606/2003/118(15)/6720/5/$20.00
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of differential equations~i.e., the coupled system of differen
tial equations obtained by substituting the coherent-state
pansion into the time-dependent Schro¨dinger equation!.
Solving the system of differential equations is, however
computational task that becomes increasingly difficult as
number of coupled degrees of freedom in the system
creases. In addition, these primitive collocation metho
have the drawback of over-completeness in the represe
tion which usually leads to numerical difficulties.24 In con-
trast, the MP/SOFT method developed in this paper bypa
the need for solving a coupled system of differential eq
tions and implements a compact coherent-state expan
where the over-completeness is reduced by successive
thogonal projections. The main drawback of the MP/SO
approach is, however, that it requires generating a coher
state expansion of the time-evolved wave function for ea
propagation time step.

The paper is organized as follows: Section II describ
the MP/SOFT method as a generalization of the SO
method to a coherent-state representation. Section III
scribes the implementation of the MP algorithm to gener
rapidly convergent coherent-state expansions. Section
demonstrates the accuracy and efficiency of the MP/SO
method by comparing our simulation results for the desc
tion of deep tunneling and long time dynamics with the c
responding benchmark calculations. Section V summar
and concludes.

II. MPÕSOFT METHOD

The essence of the SOFT method is to time-slice ma
elements of the quantum mechanical propagator

K~xn ,tnux0 ,t0!5^xnue2 iĤ (tn2t0)/\ux0&, ~1!

by repeatedly inserting the resolution of identity

1̂5E dxux&^xu, ~2!

yielding
0 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



n

f

th

do

in
e
n
ac

n

te

f

on

e
-

bil-
ry
FFT
ry

the

s

y
ain

the

po-
and
er
the
state

get
the

e

6721J. Chem. Phys., Vol. 118, No. 15, 15 April 2003 Simulations of quantum processes
^xnue2 iĤ (tn2t0)/\ux0&5E dxn21 ...E dx1

3^xnue2( i /\)Ĥ(tn2tn21)uxn21&...

3^x1ue2( i /\)Ĥ(t12t0)ux0&, ~3!

where t0,t1,...,tn21,tn . For sufficiently thin time
slices ~i.e., when t5tk2tk21 is sufficiently small! each
finite-time propagator introduced by Eq.~3! can be approxi-
mated to second-order accuracy by the Trotter expansio

^x1ue2( i /\)Ĥtux0&'^x1ue2( i /\)V̂t/2FT21

3e2( i /\)
p2

2m tFTe2( i /\)V̂t/2ux0&, ~4!

whereĤ5(p2/2m)1V̂(x). Here, FT indicates the action o
the Fourier transform,

FT@ f #[~2p\!2N/2E
2`

`

dx8eip"x8 f ~x8!, ~5!

for anN-dimensional problem and FT21 indicates the action
of the inverse Fourier transform, analogously. To keep
notation as simple as possible we write all expressions
mass-weighted coordinates, so that all degrees of free
have the same massm.

The SOFT method implements the Trotter expansion,
troduced by Eq.~4!, according to a lattice approach. Th
wave function̂ xuC t& is usually represented in an equidista
spatial-grid and the Fourier transform is implemented
cording to the fast Fourier transform~FFT! algorithm.25 The
propagation of̂ xuC t& for a time-slicet entails the following
steps:

• Step~1!: Multiplication of the wave function̂xuC t& by
the potential energy part of the Trotter expansion:

^xuC̃ t&[^xue2 i /\V̂(x) t/2uC t&.

• Step~2!: Fourier transform to the momentum represe
tation:

^puC̃ t&[FT@^xuC̃ t&#.

• Step~3!: Multiplication of ^puC̃ t& by the kinetic energy
part of the Trotter expansion:

^puC5 t&[^pue2 i /\ P2/2m tuC̃ t&.

• Step ~4!: Inverse Fourier transform to the coordina
representation:

^xuC5 t&[FT21@^puC5 t&#.

• Step~5!: Multiplication by the potential energy part o
the Trotter expansion:

^xuC t1t&[^xue2 i /\V̂(x) t/2uC5 t&.

This step is, however, merged with step~1! of the next
propagation time slice for all but the last propagati
time increment.

It is important to note that a problem requiring an ord
O( l ) grid points~i.e., basis functions! for an accurate solu
tion of a one-dimensional problem requires an orderO( l N)
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grid points for the solution of a similar problem inN dimen-
sions. Spatial mapping techniques have been developed26 to
overcome this problem. However, in general, the applica
ity of the SOFT method is still limited to systems with ve
few degrees of freedom since both the storage and the
of multidimensional grids is prohibitive for other than ve
small values ofl andN.

The MP/SOFT method is developed by substituting
lattice representation of^xuC̃ t& by a coherent-state
expansion,

^xuC̃&5(
j 51

n

aj^xu j &, ~6!

whereaj are expansion coefficients,n is the number of terms
in the expansion and̂xu j & are N-dimensional coherent-state
defined as follows,

^xu j &[)
k51

N S g~k!

p D 1/4

e2 g(k)/2(x(k)2xj (k))2

3e( i /\)pj (k)(x(k)2xj (k)), ~7!

wherexj (k), pj (k) and g(k) are the translation, frequenc
modulation and scaling parameters, respectively. The m
advantage of expandinĝxuC̃ t&, instead of expanding
^xuC t&, is that such expansion allows one to compute
propagation steps~2!–~4! analytically even for multidimen-
sional problems. We, thus, obtain

^xuC5 &5(
j 51

n

aj^xu j̃ &, ~8!

where

^xu j̃ &[)
k51

N S g~k!

p D 1/4A m

m1 i t\g~k!

3expS S pj~k!

\g~k!
2 i ~x~k!2xj~k!! D 2

S 2

g j
1

i2t\

m D

2
pj~k!2

2g~k!\2D . ~9!

Note that the MP/SOFT approach overcomes the ex
nential scaling problem associated with both the storage
the FFT of multidimensional wave functions. The Fouri
transforms are analytically computed and, therefore,
computational task is reduced to generate a coherent-
expansion of̂ xuC̃ t& for each propagation time-slice.

III. MATCHING-PURSUIT EXPANSION

A popular approach to expand an N-dimensional tar
state^xuC̃& as a linear combination of coherent-states is
importance sampling Monte Carlo~MC! technique, an ap-
proach usually implemented in conjunction with th
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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HK/SC-IVR.12 Coherent-state parametersxj (k) and pj (k)
are sampled from an infinitely dense set~labeled herein by
D) according to sampling functions defined in terms of t
coherent-state transform̂j uC̃&. The expansion coefficient
are defined asaj[^ j uC̃& and, therefore, the contribution o
each coherent-state to the expansion is proportional to
partial overlap with the target state. Such approach is usu
inefficient—i.e., it requires a large number of coherent-sta
~e.g.,n.104) for expanding even the simplest possible t
get state~e.g., a Gaussian wave function!. The inefficiency is
due to theinfinite redundancyintroduced by the continuou
representation of nonorthogonal coherent-states. Note
even when a target state could be represented by a s
basis function, it is infinitely ‘‘diluted’’ across the continuou
coherent-state representation by virtue of the definition of
expansion coefficientsaj . This problem poses a seriou
computational obstacle in the re-expansion procedure
quired by a time-sliced propagation method. In rec
work,10,11 we have implemented a discretization method
an effort to improve the efficiency of the re-expansion p
cedure as implemented in low-dimensional problems. In
section we introduce the MP algorithm, a more general
proach that drastically improves the efficiency of the
expansion procedure.

The MP algorithm can rapidly decompose the stateuC̃&
by successive approximations through orthogonal project
on elements ofD. Its implementation is described a
follows:

• Step ~1!: Generate a slightly over-complete setF of
coherent-states~i.e., a subset ofD) by importance sam-
pling MC. The sampling functions can be defined
terms of the coherent-state transform^ j uC̃&.

• Step ~2!: Select fromF the coherent-stateu1& that has
maximum overlap withuC̃& ~i.e., the best match! and
project out such component as follows,

uC̃&5c1u1&1u«1&, ~10!

wherec1[^1uC̃&. Note that the residual vectoru«1& is
orthogonal tou1&, due to the definition ofc1 .

• Step ~3!: Go to ~2!, replacinguC̃& by u«1&—i.e., sub-
decomposeu«1& by its projection along the direction o
its best matchu2&,
u«1&5c2u2&1u«2&, ~11!
wherec2[^2u«1&. Note that, sinceu«2& is orthogonal to
u2&, u«2u<u«1u.

Step~3! is repeated each time on the following residu
After n successive orthogonal projections, the norm of
residual vectoru«n& is smaller than a desired precisione,

u«nu5A12(
j 51

n

ucj u2,e, ~12!

and the resulting expansion is

^xuC̃&'(
j 51

n

^ j u« j 21&^xu j &, ~13!

where
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^ j u« j 21&5^ j uC̃&2 (
k50

j 21

^ j uk&^ku«k21&, ~14!

with u«0&5uC̃&. Note that although coherent-states are no
orthogonal basis functions, norm conservation is maintai
within a desired precision just as in a linear orthogonal
composition. In addition, coherent-states could be ortho
nalized relative to the previously selected coherent-state
implementing the Gram–Schmidt algorithm.27 The results
reported in Sec. IV, however, do not include such orthog
nalization procedure.

The implementation of the MP algorithm, as described
this section, requires the computation of matrix eleme

^ j ue2 i /\V̂(x) t/2uk̃& and ^ j ue2 i /\V̂(x) t/2uk&, where statesuk̃&
and uk& are the Gaussian functions introduced by Eqs.~7!
and~9!, respectively. In low dimensional problems these m
trix elements can be efficiently computed by numeric
quadrature~e.g., as implemented by Light and co-workers!.28

More generally, these matrix elements can be approxima
by analytic Gaussian integrals when the choice of width
rametersg allows for an expansion ofV̂(x) to second order
aroundx̄[(xj1xk)/2. Otherwise, the quadratic approxim
tion is useful for numerically computing the correspondi
integrals according to a variance-reduction MC techniq
~e.g., control-variates!.29

Independently of the approach chosen to evaluate

matrix elements^ j ue2 i /\V̂(x) t/2uk̃& and ^ j ue2 i /\V̂(x) t/2uk&,
the rate of convergence of the coherent-state expansion
pendsonly on the quality ofF ~i.e., the number of iterations
required by the MP algorithm dependsonly on whetherF
includes basis functions that overlap sufficiently well wi
the target state structures!. The rate of convergence of th
MP coherent-state expansion is, therefore,independentof the
dimensionality of the problem. In order to illustrate this im
portant aspect of the method consider the problem of
panding a multidimensional target state that overlaps v
well with one of the elements ofF, so well that the norm of
the residual vector generated by projecting out such elem
of F is smaller than a desired precision. Independently of
dimensionality of the problem, the MP coherent-state exp
sion will immediately converge after projecting out such
ement ofF since the truncation condition will be satisfied.
contrast, the rate of convergence of a MP expansion will
very slow ~even when expanding a1-dimensionaltarget
state! whenever the quality ofF is poor ~i.e., whenever the
basis functions inF have little overlap with the target state!.

IV. RESULTS

This section tests the accuracy and efficiency of
MP/SOFT method, introduced by Secs. II and III, as appl
to the simulation of electron tunneling between disjoint cla
sically allowed regions~i.e, ‘‘deep tunneling’’! in the one-
dimensional double-well model system described by the
lowing Hamiltonian:

H~x,p!5
p2

2m
1

1

16h
x42

1

2
x2, ~15!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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wherem51 a.u. andh51.3544 a.u. The model introduce
by Eq. ~15! is particularly interesting since it has so far d
fied the capabilities ofall SC-IVR methods, except whe
implemented according to a time-sliced approach.10

We examine the dynamics of the system by propaga
a wave packet̂xuc t&, initially centered atx0522.5 a.u.,

^xuc0&5p21/4exp~2 1
2 @x2x0#2!. ~16!

The algorithm is implemented in terms of coherent-st
basis functions with uniform widthsg51.0 a.u. The over-
complete basis setF is regenerated after each propagati
time-slice by implementing an importance sampling M
method. Sampling functions are defined in terms of
coherent-states involved in the previous propagation tim
slice. Simulations results are obtained by truncating
coherent-state expansion according to a cutoff paramete
51024 for the norm of the residual vector. Benchmark c
culations are performed according to the standard grid-ba
SOFT method, using an extended grid with 256 points. T
time-slice interval for both the SOFT and the MP/SOF
method ist51.0 a.u.

Figure 1 compares the time evolved wave function o
tained according to the MP/SOFT propagation meth
~dashed lines! to the corresponding benchmark calculatio
~solid lines!. Both the efficiency and accuracy of the met
odology are illustrated in Fig. 1 in terms of both the sm
number of basis functions required for convergence
5119 at t5100 a.u. and n585 at t5300 a.u., respectively!
and the quantitative agreement with benchmark calculatio
The small deviations in the probability amplitude could
removed by further decreasing the value of the cutoff para
eter e. Note that the number of basis functions required
the MP/SOFT method (n580– 120) favorably compares t
the number of grid points~i.e., 256 grid points! required by
benchmark quantum mechanical calculations.

In order to analyze the accuracy of the method throu
out the whole simulation time, we report calculations of t
time-dependent electron tunneling probabilityP(t), defined
as the probability of finding the electron on the right ofx
50,

FIG. 1. Comparison of the time evolved wave function at 100 and 300
respectively, vs benchmark grid-based calculations.
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P~ t !5^c tuhuc t&, ~17!

where the step functionh(x)51 for x.0, and 0 otherwise.
Figure 2 shows the evolution ofP(t) as a function of

time. The final time (t5480 a.u.) represents about 120 v
brational periods for a state that oscillates in the bottom
one of the wells. The comparison presented in Fig. 2 sho
that the results obtained according to MP/SOFT propaga
method quantitatively agree with benchmark calculatio
through out the whole propagation time, even after seve
tunneling events~i.e., barrier recrossing events!.

Having validated the MP/SOFT method in terms of
capability to produce accurate results, the remaining of
section analyzes its efficiency. Note that such analysis
cludes only expansions constructed with coherent-state

u,
FIG. 2. Comparison of the time-dependent electron tunneling probab
computed with MP/SOFT method~dashed line! vs benchmark calculations
~solid line!.

FIG. 3. Comparison of convergence rates for coherent-state expansion
representative time evolved wave function, obtained according to the
algorithm ~solid line! and the standard importance sampling MC approa
~dashed line!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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uniform widths—i.e., further optimization could still be po
sible by generating over-complete basis sets of coher
states with nonuniform widths.

Figure 3 compares the efficiency of the MP algorith
versus the standard importance sampling MC technique
expanding a representative target state~e.g., the time-evolved
wave function of a tunneling electron att5200.0 a.u.) in a
coherent-state representation. Convergence rates are
pared in terms of the norm of the residual vector,u«nu, as a
function of the numbern of coherent-states in the expansio
Figure 3 shows that the MP algorithm is able to generat
rapidly convergent coherent-state expansion. In contrast
standard importance sampling MC technique is hig
inefficient.

Figure 4 shows the number of coherent-states neces
to represent the time evolved wave function as a function
time according to the MP/SOFT propagation method. Th
results illustrate the efficiency of the propagation method
the description of the electron tunneling dynamics. It is i
portant to note that the size of the basis set fluctuates in
but its mean value remains approximately constant.

V. CONCLUDING REMARKS

We have shown in this paper how the MP/SOFT meth
can be implemented to simulate exact quantum dynam
according to a nonorthogonal, nonuniform and dynamica
adaptive representation. The method bypasses the nee
solving the coupled system of differential equations nec
sary to propagate expansion coefficients. Furthermore,
method overcomes the exponential scaling problem nat
of grid-based methods by analytically computing the Fou
Transforms required by the SOFT approach. We have d
onstrated that the MP/SOFT method accurately descr
electron tunneling dynamics in a one-dimensional model s
tem for propagation times that correspond to more than

FIG. 4. Number of coherent-states necessary to represent the time ev
wave function according to the MP algorithm along the electron tunne
dynamics.
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oscillation periods at the bottom of one of the wells. Qua
titative agreement with benchmark calculations was achie
in the description of both the time-evolved wave functi
and the time-dependent probability of electron tunnelin
Furthermore, we have demonstrated the efficiency of
MP/SOFT algorithm in terms of the small number
coherent-states necessary to propagate the time-depe
electron wave function even after several recrossing tun
ing events. We have shown that the efficiency of the M
coherent-state representation depends only on the quali
the over-complete basis set and is, therefore, independe
the dimensionality of the system. In future applications,
will implementation the MP/SOFT method on higher dime
sional problems.
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