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The matching-pursuit algorithm is implemented to develop an extension of the split-operator Fourier
transform method to a nonorthogonal, nonuniform and dynamically adaptive coherent-state
representation. The accuracy and efficiency of the computational approach are demonstrated in
simulations of deep tunneling and long time dynamics by comparing our simulation results with the
corresponding benchmark calculations. 2003 American Institute of Physics.
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I. INTRODUCTION of differential equationsi.e., the coupled system of differen-
tial equations obtained by substituting the coherent-state ex-
Quantum dynamics simulation methods are extremelypansion into the time-dependent Sadtirmer equatioh
useful computational tools to study a broad range of atomiGolving the system of differential equations is, however, a
and molecular processes. Direct methods for numericallgomputational task that becomes increasingly difficult as the
solving the time-dependent Schiinger equation have be- number of coupled degrees of freedom in the system in-
come quite powerful due to recent advances in both methoctreases. In addition, these primitive collocation methods
ology and computer technologyThese methods usually have the drawback of over-completeness in the representa-
combine spatial-grid representatiofesg., the discrete vari- tion which usually leads to numerical difficultiésin con-
able representatiofDVR)/pseudospectral representafion  trast, the MP/SOFT method developed in this paper bypasses
with propagation schemes such as the split opefatorthe need for solving a coupled system of differential equa-
Chebychev, or short iterative Lancz8sapproaches. Unfor- tions and implements a compact coherent-state expansion
tunately, these techniques require storage space and compuhere the over-completeness is reduced by successive or-
tational effort that scalexponentiallywith the number of thogonal projections. The main drawback of the MP/SOFT
coupled degrees of freedom. These requirements limit thapproach is, however, that it requires generating a coherent-
applicability of rigorous approaches to systems with verystate expansion of the time-evolved wave function for each
few degrees of freedoite.g., molecular systems with up to 3 propagation time step.
or 4 atoms.” Developing rigorous quantum dynamics simu- The paper is organized as follows: Section Il describes
lation methods that are not limited by the exponential scalinghe MP/SOFT method as a generalization of the SOFT
problem is, therefore, one of the important challenges immethod to a coherent-state representation. Section Il de-
modern computational chemistry. In this paper we introducescribes the implementation of the MP algorithm to generate
one such method by combining the split-operator Fourierfapidly convergent coherent-state expansions. Section IV
transform (SOFT) techniqué® with a coherent-state repre- demonstrates the accuracy and efficiency of the MP/SOFT
sentation generated according to the matching-putsdit)  method by comparing our simulation results for the descrip-
algorithm?® One may think of this approactcalled MP/ tion of deep tunneling and long time dynamics with the cor-
SOFT throughout this papeas an exact quantum mechani- responding benchmark calculations. Section V summarizes
cal version of the time-sliced coherent-state propagatio@nd concludes.
method, recently develop&dand implementeld according
to the Herman—KIluk semiclassical initial value representa-
tion (HK/SC-IVR).*? IIl. MP/SOFT METHOD
Several authors, inspired primarily by Hellér® have
considered overcoming the exponential scaling problem by The essence of the SOFT method is to time-slice matrix
developing propagation methods based SE; coherent-stagéements of the quantum mechanical propagator
representations. Work by Coalson and Karplubetiu and it
Japéksoi"n7 and Kay? is tk)lle earliest of this kind. More re- K (X talXo,t) = (Xple™ 070" xg), (@)
cently Ben-Nun and MartineZ, as well as Shalashilin and by repeatedly inserting the resolution of identity
Jacksorf® Anderssoftt and Shalashilin and Chitd?® have
developed approaches based on coherent-state expansions. i:f dx|x)(x|, 2
These are rigorous collocations schemes where the expan-
sion coefficients are propagated by solving a coupled systeryielding
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- grid points for the solution of a similar problem ik dimen-
<Xn|e_'H(t“_t°)m|Xo>=J an—l--'J dx, sions. Spatial mapping techniques have been deveibped
X overcome this problem. However, in general, the applicabil-
X (Xq|e” (MHE =ty 1y ity of the SOFT method is still limited to systems with very
. few degrees of freedom since both the storage and the FFT
><<><1|(37('”1)”“1710)|><o>, 3) of multidimensional grids is prohibitive for other than very

.- A small values of andN.
where to<t;<...<t, <t,. For sufficiently thin time . .
slices (i.(:a., tvhen T=ntkl—tkn—1 is sufficiently ysmau each The MP/SOFT method is developed by substituting the
finite-time propagator introduced by E) can be approxi- lattice representation of(x|W,) by a coherent-state
mated to second-order accuracy by the Trotter expansion €Xpansion,

~ ~ n
<Xl|e—(u/ﬁ)H7|Xo>~<Xl|e—(u/h)VT/ZFT—l <X|{I‘,>:]Zl aj<X|j>, (6)

2
. p . o
x e () zm TETe~ (V2% ) - (4) wherea; are expansion coefficients,is the number of terms
in the expansion an¢k|j) are N-dimensional coherent-states

whereH = (p®/2m) +V(x). Here, FT indicates the action of ot 2 follows

the Fourier transform,

v\ )
* P iV= AN = v(K)/2(x(k) = x; (K))
Fﬂf]s(zwﬁ)‘N’zf dx’elPX f(x"), (5) Sy kﬂl( 17) € J
><e(i/ﬁ)pj(k)(x(k)_xj(k)), 7

for anN-dimensional problem and FT indicates the action
of the inverse Fourier transform, analogously. To keep thavherex;(k), p;(k) and y(k) are the translation, frequency
notation as simple as possible we write all expressions imodulation and scaling parameters, respectively. The main
mass-weighted coordinates, so that all degrees of freedoguvantage of expandindx|ﬁ/t>, instead of expanding
have the same masgs. (x|W¥,), is that such expansion allows one to compute the

The SOFT method implements the Trotter expansion, inpropagation step&)—(4) analytically even for multidimen-
troduced by Eq.4), according to a lattice approach. The sjonal problems. We, thus, obtain

wave function{x|¥,) is usually represented in an equidistant

n
spatial-grid and the Fourier transform is implemented ac- A N
cording to the fast Fourier transfor(RFT) algorithm?® The x1¥) ,Zl ai(x[]), (8)
propagation of x| ¥,) for a time-slicer entails the following
steps: where
N . A V(S m
« Step(1): Multiplication of the wave functiofx| V) by =11 [—= e
the potential energy part of the Trotter expansion: k=11 ™ m-+irhy(k)
<x|{1'ft>z<x|e—i/hv(x) T/2|\pt>, p;(K) xR —x (k) 2
: fiy(k) :
e Step(2): Fourier transform to the momentum represen- X exp .
tation: £+ |27-ﬁ)
(pl¥)=FT[(x| T )]. i m
« Step(3): Multiplication of (p|¥,) by the kinetic energy (k)2
part of the Trotter expansion: _ P , )
2y(k)h

~ s 2 ~
(plP)=(ple /i Pefam T¥y).

e Step (4): Inverse Fourier transform to the coordinate

S Note that the MP/SOFT approach overcomes the expo-
representation:

- - nential scaling problem associated with both the storage and
X W )=FT'[(p|¥)]. the FFT of multidimensional wave functions. The Fourier
transforms are analytically computed and, therefore, the
computational task is reduced to generate a coherent-state

expansion of(x|‘Tq> for each propagation time-slice.

e Step(5): Multiplication by the potential energy part of
the Trotter expansion:
MW ) =(xle” VI T,
This step is, however, merged with stelp of the next
propagation time slice for all but the last propagation
time increment. A popular approach to expand an N-dimensional target

It is important to note that a problem requiring an orderstate(x@) as a linear combination of coherent-states is the
O(l) grid points(i.e., basis functionsfor an accurate solu- importance sampling Monte CaridMC) technique, an ap-
tion of a one-dimensional problem requires an or@gt") proach usually implemented in conjunction with the

Ill. MATCHING-PURSUIT EXPANSION

Downloaded 04 Apr 2003 to 130.132.58.224. Redistribution subject to AlIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



6722 J. Chem. Phys., Vol. 118, No. 15, 15 April 2003 Y. Wu and V. S. Batista

HK/SC-IVR* Coherent-state parametexs(k) and p;(k) it
are sampled from an infinitely dense $ketbeled herein by (Jlej—y=(jl¥)— > (k)(Klex_1), (14
D) according to sampling functions defined in terms of the k=0
coherent-state transforij|¥). The expansion coefficients with |eo)=|¥). Note that although coherent-states are non-
are defined aajz<j|ﬁf> and, therefore, the contribution of orthogonal basis functions, norm conservation is maintained
each coherent-state to the expansion is proportional to it&ithin a desired precision just as in a linear orthogonal de-
partial overlap with the target state. Such approach is usuallgomposition. In addition, coherent-states could be orthogo-
inefficient—i.e., it requires a large number of coherent-stategalized relative to the previously selected coherent-states by
(e.g.,n>10% for expanding even the simplest possible tar-implementing the Gram-Schmidt algoritfihThe results
get statge.g., a Gaussian wave functjoihe inefficiency is  reported in Sec. IV, however, do not include such orthogo-
due to theinfinite redundancyintroduced by the continuous nalization procedure.
representation of nonorthogonal coherent-states. Note that The implementation of the MP algorithm, as described in
even when a target state could be represented by a singleis section, requires the computation of matrix elements
basis function, it is infinitely “diluted” across the continuous (j|e™ V() T/2|”‘k> and <j|e—i/ﬁv(x) ™|k), where state{k)
coherent-state representation by virtue of the definition of theind |k) are the Gaussian functions introduced by EG3.
expansion coefficient®;. This problem poses a serious and(9), respectively. In low dimensional problems these ma-
computational obstacle in the re-expansion procedure rerix elements can be efficiently computed by numerical
quired by a time-sliced propagation method. In recenfquadraturde.g., as implemented by Light and co-workefs
work,'> we have implemented a discretization method inMore generally, these matrix elements can be approximated
an effort to improve the efficiency of the re-expansion pro-by analytic Gaussian integrals when the choice of width pa-
cedL_Jre as ir_nplemented in Iow-dime_nsional problems. In thi?ameters;z allows for an expansion d¥(x) to second order
section we introduce the MP algorithm, a more general aparoundx=(x;+x,)/2. Otherwise, the quadratic approxima-
proach that drastically improves the efficiency of the re-tjon is yseful for numerically computing the corresponding
expansion procedure. ~ integrals according to a variance-reduction MC technique
The MP algorithm can rapidly decompose the state (e.g., control-variates®
by successive approximations through orthogonal projections  Independently of the approach chosen to evaluate the
on elements ofD. Its implementation is described as matrix elements(j|e” i15V(X) T’2|T<> and (jle” i1HV(x) T/2| K),

follows: the rate of convergence of the coherent-state expansion de-

pendsonly on the quality ofF (i.e., the number of iterations

required by the MP algorithm dependsly on whetherF

includes basis functions that overlap sufficiently well with

terms of the coherent-state transf Ofm{f’% the target state structur)es'_l'he_ rate of convergence of the
MP coherent-state expansion is, therefandependentf the

* Step(2): Select fromF the coherent-statdl) that has  gimensionality of the problem. In order to illustrate this im-

maximum overlap with¥) (i.e., the best matohand  portant aspect of the method consider the problem of ex-

» Step (1): Generate a slightly over-complete sgtof
coherent-state§.e., a subset oD) by importance sam-
pling MC. The sampling functions can be defined in

project out such component as follows, panding a multidimensional target state that overlaps very
[P)y=cy|1)+]ey), (10)  well with one of the elements of, so well that the norm of

wherec,;=(1|T). Note that the residual vectde,) is the residual vector generated by projecting out such element
orthogonal to1), due to the definition o€ . of Fis smaller than a desired precision. Independently of the

L _ dimensionality of the problem, the MP coherent-state expan-
* Step(3): Go to (2), replacing|¥) by [e;)—i.e., sub-  sjon will immediately converge after projecting out such el-
decomposge ) by its projection along the direction of ement of since the truncation condition will be satisfied. In

its best match2), contrast, the rate of convergence of a MP expansion will be
e =C2l2)+|e2), (11 very slow (even when expanding a-dimensionaltarget
wherec,;=(2[e;). Note that, sincgs,) is orthogonal to  statg whenever the quality of is poor (i.e., whenever the
12), |2 <|e. basis functions iF have little overlap with the target state

Step(3) is repeated each time on the following residue.
After n successive orthogonal projections, the norm of the

residual vectote,) is smaller than a desired precisien IV. RESULTS
" 5 This section tests the accuracy and efficiency of the
lenl= 1—;1 |Cj| <€, (12 MP/SOFT method, introduced by Secs. Il and Ill, as applied
to the simulation of electron tunneling between disjoint clas-
and the resulting expansion is sically allowed regiongi.e, “deep tunneling) in the one-
N dimensional double-well model system described by the fol-
~ . . lowing Hamiltonian:
KT~ (le;-1)(xli), (13 J
=1 2
H(x ):p—+ix4— 1x2 (15)
where LT 167 27
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FIG. 1. Comparison of the time evolved wave function at 100 and 300 a.u,
respectively, vs benchmark grid-based calculations. FIG. 2. Comparison of the time-dependent electron tunneling probability
computed with MP/SOFT metho@lashed lingvs benchmark calculations
(solid line).

wherem=1 a.u. andn=1.3544 a.u. The model introduced
by Eq. (15) is particularly interesting since it has so far de-
fied the capabilities ofll SC-IVR methods, except when P(t)={(|h| ¢, 17
implemented according to a time-sliced appro#th.
We examine the dynamics of the system by propagatingere the step functioh(x) =1 for x>0, and 0 otherwise.
a wave packegx|y), initially centered ako=—2.5 a.u., Figure 2 shows the evolution d¥(t) as a function of
(X| o) =7 Y4exp — L[x—xo]?). (16) timg. The fin.al time (=480 a.u.) representg about 120 vi-
brational periods for a state that oscillates in the bottom of
The algorithm is implemented in terms of coherent-stateone of the wells. The comparison presented in Fig. 2 shows
basis functions with uniform widthg=1.0 a.u. The over- that the results obtained according to MP/SOFT propagation
complete basis set is regenerated after each propagationmethod quantitatively agree with benchmark calculations
time-slice by implementing an importance sampling MCthrough out the whole propagation time, even after several
method. Sampling functions are defined in terms of theunneling eventsi.e., barrier recrossing eveints
coherent-states involved in the previous propagation time-  Having validated the MP/SOFT method in terms of its
slice. Simulations results are obtained by truncating theapability to produce accurate results, the remaining of this
coherent-state expansion according to a cutoff parameter section analyzes its efficiency. Note that such analysis in-
=10"* for the norm of the residual vector. Benchmark cal-cludes only expansions constructed with coherent-states of
culations are performed according to the standard grid-based
SOFT method, using an extended grid with 256 points. The
time-slice interval for both the SOFT and the MP/SOFT

methqd isT=1.0 a.u. - - A - Importance Sampling
Figure 1 compares the time evolved wave function ob- ] Ta, LA

tained according to the MP/SOFT propagation method

(dashed linesto the corresponding benchmark calculations 0.1-

(solid lines. Both the efficiency and accuracy of the meth- ] .

odology are illustrated in Fig. 1 in terms of both the small ]

number of basis functions required for convergence (n= T /

=119 at =100 a.u. and &85 at =300 a.u., respectively  «" ]

and the quantitative agreement with benchmark calculations  0-01 -\

The small deviations in the probability amplitude could be ] (80,0.002)

removed by further decreasing the value of the cutoff param- Matching Pursuit\

eter e. Note that the number of basis functions required by 1

the MP/SOFT methodn(=80-120) favorably compares to 1E-3- -

the number of grid pointsi.e., 256 grid pointsrequired by e

benchmark quantum mechanical calculations. 1 10 100 1000 10000
In order to analyze the accuracy of the method through Number of Basis Functions, n

out the whole simulation time, we report calculations of the _ )

tme-dependient leciron tunneling probabiR(r). defined 12,3 Competeen f cocrencs e o et s mosnsine ol

as the probability of finding the electron on the right>of  4gorithm (solid line) and the standard importance sampling MC approach
=0, (dashed ling

(32000,0.04)
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180 oscillation periods at the bottom of one of the wells. Quan-

] titative agreement with benchmark calculations was achieved
o 160 1 in the description of both the time-evolved wave function
O 1404 and the time-dependent probability of electron tunneling.
'g 1 Furthermore, we have demonstrated the efficiency of the
Z 120'_ MP/SOFT algorithm in terms of the small number of
o 100 coherent-states necessary to propagate the time-dependent
8 804 electron wave function even after several recrossing tunnel-
E ] ing events. We have shown that the efficiency of the MP
E 60+ coherent-state representation depends only on the quality of
A 40 the over-complete basis set and is, therefore, independent of
E 1 the dimensionality of the system. In future applications, we
= 20'_ will implementation the MP/SOFT method on higher dimen-

0 . T . T . T . T . sional problems.
0 100 200 300 400 500
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