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A rigorous and practical methodology for evaluating thermal-equilibrium density matrices,
finite-temperature time-dependent expectation values, and time-correlation functions is described.
The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method
to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the
evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically
adaptive coherent-state representations. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1848513g

I. INTRODUCTION

Rigorous and practical quantum-mechanical methods for
computations of equilibrium and dynamical properties of
complex systemsse.g., systems with many degrees of
freedomd have yet to be established. This paper introduces
one such method as an extension of the recently
developed matching-pursuit/split-operator-Fourier-transform
sMP/SOFTd method1–3 to calculations of thermal-equilibrium
averages and finite-temperature time-dependent expectation
values and time-correlation functions.

In recent years, there has been significant progress in the
development of numerically exact methods4–16 for quantum
dynamics propagation based on the SOFT approach,17–19 the
Chebyshev expansion,20 or the short iterative Lanczos21 al-
gorithms. These rigorous approaches, however, are limited to
systems with very few degrees of freedomse.g., molecular
systems with less than three or four atomsd since they require
storage space and computation effort that scale exponentially
with the number of coupled degrees of freedom. Such an
exponential scaling problem has limited studies of thermal
correlation functions of complex systems to approximate
methods built around semiclassical approximations,22–24

mixed quantum-classical treatments,25,26 centroid molecular
dynamics,27–29analytic-continuation of imaginary-time path-
integral Monte Carlo data,30,31 or the self-consistent mode-
coupling theory.32,33 However practical, these approximate
approaches require a compromise between accuracy and fea-
sibility and rely onad hocapproximations whose resulting
consequences are often difficult to quantify in applications to
complexsnonintegrabled dynamics. It is, therefore, essential
to develop practical methods for rigorous computations of
time-correlation functions of complex systems. Such meth-
ods would allow one to validate approximate approaches and
provide new insights into the nature of quantum processes.

The MP/SOFT method1–3 has been recently introduced
in an effort to develop a simple and rigorous time-dependent
method for simulations of quantum processes in multidimen-
sional systems. The MP/SOFT methodology is based on the
recursive application of the time-evolution operator, as de-
fined by the Trotter expansion to second-order accuracy, in

nonorthogonal and dynamically adaptive coherent-state rep-
resentations generated according to the matching-pursuit
algorithm.34 The main advantage of this approach relative to
the standard grid-based SOFT method is that the coherent-
state expansions allow for ananalytic implementation of the
Trotter expansion, bypassing the exponential scaling problem
associated with the fast-Fourier-transform algorithm of usual
grid-based implementations. When compared to other time-
dependent methods based on coherent-state expansions,35–49

the MP/SOFT method has the advantage of avoiding the
usual need of propagating expansion coefficients by solving
a coupled system of differential equations. Further, the
MP/SOFT method implements a successive orthogonal de-
composition scheme that overcomes the usual numerical dif-
ficulties due to overcompleteness introduced by nonorthogo-
nal basis functions.8 The main drawback of the MP/SOFT
method is that it requires generating a new coherent-state
expansion of the time evolving state for each propagation
step, although the underlying computational task can be trivi-
ally parallelized.

The capabilities of the MP/SOFT method for simulations
of quantum dynamics in multidimensional systems have al-
ready been demonstrated as applied to simulations of tunnel-
ing dynamics in model systems with up to 35 coupled de-
grees of freedom.2,50 There is, however, the nontrivial
question as to whether such an approach can be efficiently
implemented to provide accurate descriptions of thermal-
equilibrium density matrices, finite-temperature time-
dependent expectation values and time-correlation functions.
This paper shows that the MP/SOFT methodology can in-
deed be effectively applied to computations of thermal cor-
relation functions simply by combining the imaginary-time
propagation of equilibrium density matrices with the evalu-
ation of Heisenberg time-evolution operators via real-time
propagation in dynamically adaptive coherent-state represen-
tations. While the paper is focused only on validating the
MP/SOFT methodology by performing rigorous comparisons
with benchmark calculations for reduced dimensional model
systems, the results at least demonstrate the potentiality of
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the MP/SOFT method as applied to the description of ther-
mal correlation functions of complexsi.e., nonintegrabled
quantum systems.

The paper is organized as follows. Section II describes
the generalization of the MP/SOFT method to calculations of
finite-temperature equilibrium density matrices by
imaginary-time integration of the Bloch equation and the cal-
culation of thermal correlation functions through evaluation
of Heisenberg time-evolution operators via real-time propa-
gation. Section III describes the implementation of the
MP/SOFT method, as generalized in Sec. II, to the descrip-
tion of finite-temperature time-dependent expectation values
and thermal correlation functions for a model system that
allows for rigorous comparisons with benchmark calcula-
tions. Section IV summarizes and concludes.

II. METHODS

Consider the problem of computing thermal correlation
functions,

Cstd = kAs0dBstdl = Z−1 Trfe−bĤ0ÂeiĤ1tB̂e−iĤ1tg, s1d

where k¯l indicates the Boltzmann ensemble average at

temperatureT=1/skBbd, with kB the Boltzmann constant;Â

and B̂ are quantum-mechanical operators associated with
measurements of observables at time 0 andt, respectively;

Z=Trfe−bĤ0g is the canonical partition function; andĤj

=−¹x
2/ s2md+Vjsx̂d is the Hamiltonian of the system of inter-

est with N degrees of freedom interacting according to the
potentialVjsx̂d. An example is the correlation functionCstd
for a system evolving on the excited state potential energy
surfaceV1sx̂d, as would result from a photoexcitation process
after the initial preparation at thermal equilibrium in the
ground state potential energy surfaceV0sx̂d. To keep the no-
tation as simple as possible, all expressions are written in
mass-weighted coordinates and atomic units so that all de-
grees of freedom have the same massm and"=1.

Note that Eq.s1d provides an expression for computing
not only time-dependent thermal correlation functions
but also thermal-equilibrium ensemble averageskAl
=Z−1 Trfe−bĤ0Âg, when B̂=1, and finite-temperature time-
dependent ensemble averages,

kBstdl = Z−1 Trfe−bĤ0eiĤ1tB̂e−iĤ1tg, s2d

when Â=1.
Thermal correlation functionsCstd are obtained accord-

ing to the following symmetrized form of Eq.s1d:

Cstd = Z−1E dxE dx8E dx9kxue−sb/2dĤ0ux8lAsx8d

3 kx8ueiĤ1tB̂e−iĤ1tux9lkx9ue−sb/2dĤ0uxl. s3d

The computational task necessary to obtainCstd, according
to Eq. s3d, requires obtaining the matrix elementsAsx8d
3kx8ue−sb/2dĤ0uxl andkx9ue−sb/2dĤ0uxl and the subsequent real-

time propagation for timet, according toĤ1. The matrix
elements are computed, as described below by imaginary-

time integration of the Bloch equation according toĤ0. The
extension of the MP/SOFT method, introduced in this paper,
involves the numerically exact treatment of both the real-
and imaginary-time propagation steps as described below for
the imaginary-time propagation. The real-time propagation is
analogously performed by simply implementing the variable
transformationb→−it /" from imaginary to real time.

The Boltzmann-operator matrix elements are obtained
by solving the Bloch equation,51

H ]

]b
−

1

2m
¹x

2 + V0sxdJrsx,x8;bd = 0, s4d

for rsx ,x8 ;bd;kxue−bĤ0ux8l subject to the initial condition
given by the high-temperature approximation,

rsx,x8;ed = S m

2pe
D1/2

e−se/2dfV0sxd+V0sx8dge−sm/2edsx − x8d2, s5d

wheree defines a sufficiently high temperatureT=1/skBed.
Equations4d is formally integrated as follows:

rsx,x8;bd =E dx9rsx,x9;b − edrsx9,x8;ed, s6d

where the propagatorrsx ,x9 ;b−ed;kxue−sb−edĤ0ux9l is
imaginary time sliced by repeatedly inserting the resolution
of identity,

1̂ =E dx jux jlkx ju, s7d

yielding

kxue−sb−edĤ0ux9l =E dxs−1 . . .E dx1kxue−iĤ0tuxs−1l

3 . . . kx1ue−iĤ0tux9l, s8d

where t;−isb−ed /s is a sufficiently thin imaginary-time
slice.

Each finite-time propagator, introduced by Eq.s8d, is
approximated for sufficiently small imaginary-time slicest
by the Trotter expansion to second-order accuracy,

e−iĤ0t < e−iV0sx̂dt/2e−isp̂2/2mdte−iV0sx̂dt/2. s9d

The MP/SOFT propagation of the initial condition, intro-
duced by Eq.s5d, according to the Trotter expansion intro-
duced by Eq.s9d entails the following steps.

Steps1d: Decomposer̃sx ,x8 ;ed;e−iV0sxdt/2rsx ,x8 ;ed in
a matching-pursuit coherent-state expansion:

r̃sx,x8;ed < o
j=1

n

cjf jsxdff8 jsx8dg * , s10d

where f jsxd and f j8sxd are N-dimensional coherent states
defined as follows:

f jsxd ; p
k=1

N

Af j
skde−gf j

skdfxskd − xf j
skdg2/2eipf j

skdfxskd−xf j
skdg, s11d

with complex-valued coordinatesxf j
skd; rf j

skd+ idf j
skd,

momenta pf j
skd;gf j

skd+ i f f j
skd and scaling parameters
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gf j
skd;af j

skd+ ibf j
skd. The normalization constants

are Af j
skd;saf j

skd /pd1/4 exph−1
2af j

skddf j
skd2−df j

skdgf j
skd

−fbf j
skddf j

skd+ ff j
skdg2/ f2af j

skdgj.
The expansion coefficients, introduced by Eq.s10d, are

defined as follows:

cj ; 5I j , when j = 1,

I j − o
k=1

j−1

ckkf jufklkfk8uf j8l, for j = 2 −n,6 s12d

where the overlap integralI j is defined as follows:

I j ;E dx8dxf jsxdr̃sx,x8;edff j8sx8dg * . s13d

Step s2d: Analytically Fourier transform the coherent-
state expansion to the momentum representation, apply the
kinetic energy part of the Trotter expansion, and analytically
inverse Fourier transform the resulting expression back to
the coordinate representation to obtain the imaginary-time
evolved Boltzmann-operator matrix elements:

rsx,x8;e + itd = o
j=1

n

cje
−iV0sxdt/2f̃ jsxdff j8sx8dg * , s14d

where

f̃ jsxd ; p
k=1

N

Af̃ j
skdÎ m

m+ itgf̃ j
skd

3 exp1S
pf̃ j

skd

gf̃ j
skd

− ifxf̃ j
skd − xskdgD2

S 2

gf̃ j
skd

+
i2t

m D −
pf̃ j

skd2

2gf̃ j
skd2 .

s15d

Note that the MP/SOFT approach reduces the computational
task necessary for the imaginary- or real-time propagation of
the Boltzmann-operator matrix elementsrsx ,x8 ;bd to the
problem of recursively generating the coherent-state expan-
sions introduced by Eq.s10d.

Coherent-state expansions are obtained by combining
the matching-pursuit algorithm and a gradient-based optimi-
zation method as follows:

Step s1.1d: Evolve the complex-valued parameters, that
define the initial trial coherent statesf jsxd and f j8sxd, to
locally maximize the overlap integralI j, introduced in
Eq. s13d. The parameters xf1

skd ,pf1
skd ,gf1

skd and
xf18

skd ,pf18
skd ,gf18

skd of the corresponding local maximum
define the first pair of coherent statesf1 and f18 in the
expansion introduced by Eq.s10d and the first expansion
coefficient c1 as follows: r̃sx ,x8 ;ed=c1f1sxdff18sx8dg*
+«1sx ,x8d, wherec1; I1, as defined according to Eq.s13d.
The results reported in Sec. III were obtained by locally op-
timizing I j according to a gradient-based optimization
scheme that combines the steepest descent algorithm with
the parabolic search approach.52 Further, note that due to the
definition of c1, the residue«1sx ,x8d does not overlap with

the product statef1sxdff18sx8dg*. Therefore, the norm of the
remaining residue«1sx ,x8d is smaller than the norm of the
initial target stater̃sx ,x8 ;ed, i.e., i«1i, ir̃i.

Steps1.2d: Go to s1.1d, replacingr̃sx ,x8 ;ed by «1sx ,x8d,
i.e., subdecompose the residue by its projection along the
direction of its locally optimum match as follows:«1sx ,x8d
=c2f2sxdff28sx8dg* + «2sx ,x8d, where

c2 ;E dx8 dxf2sxd«1sx,x8dff28sx8dg * . s16d

Note that i«2i, i«1i, since «2sx ,x8d is orthogonal to the
product statef2sxdff28sx8dg*.

Steps1.2d is repeated each time on the resulting residue.
After n successive projections, the norm of the residue«n is
smaller than a desired precisione, i.e., i«ni=s1
−o j=1

n ucju2d1/2,e, and the resulting expansion is given by Eq.
s10d. Note that norm conservation ofr̃e is maintained within
a desired precision, just as in a linear orthogonal decompo-
sition, although the coherent states in the expansion are non-
orthogonal basis functions.

It is important to mention that the computational bottle-
neck of the MP/SOFT method involves the calculation
of overlap matrix elements kf jue−iVjsx̂dt/2uf̃kl and

kf jue−iVjsx̂dt/2ufkl, where ufkl and uf̃kl are localized Gauss-
ians introduced by Eqs.s11d and s15d, respectively. The un-
derlying computational task is however trivially parallelized
according to a portable single-program-multiple-data streams
code that runs under the message-passing-interface environ-
ment.

The overlap integrals are most efficiently computed in
applications to reaction surface Hamiltonians where a large
number of harmonic modes can bearbitrarily coupled to a
few reactionstunnelingd coordinatesssee, e.g., Models I and
II in Ref. 3 and the reaction surface Hamiltonians in Refs.
53–55d. For such systems, the Gaussian integrals over har-
monic coordinates can be analytically computed and the re-
maining integrals over reaction coordinates are efficiently
obtained according to numerical quadrature techniques. For
more general Hamiltonians, the overlap matrix elements can
be approximated by analytic Gaussian integrals when the
choice of width parametersg jskd allows for a local expansion
of Vjsx̂d to second-order accuracy. Otherwise, the quadratic
approximation is useful for numerically computing the cor-
responding full-dimensional integrals according to variance-
reduction Monte Carlo techniques.

III. RESULTS

The accuracy and efficiency of the MP/SOFT methodol-
ogy, described in Sec. II, are evaluated in terms of explicit
calculations of time-dependent position ensemble averages
and position-position thermal correlation functions for the
asymmetric quartic oscillator described by the following
Hamiltonian:

Ĥ1 =
p̂2

2m
+ V1sxd, s17d

where
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V1sxd = 1
2mv2x2 − cx3 + cx4, s18d

with m=1 a.u.,v=Î2 a.u., andc=0.1 a.u. The system is ini-
tially prepared at thermal equilibrium on the displaced po-
tential energy surface,

V0sxd = 1
2mv2sx − ad2 − csx − ad3 + csx − ad4, s19d

with a=1 a.u.
The model system, introduced by Eqs.s17d–s19d, is par-

ticularly interesting since the highly anharmonic potential
leads to ultrafast dephasing within a few oscillation periods
as well as later rephasing of wave packet motion due to the
effect of quantum coherences. The underlying dynamics can
be described by rigorous quantum-mechanical approaches
and has been investigated in terms of semiclassical ap-
proaches based on coherent-state representations.22,23,56

Therefore, the model is ideally suited for a rigorous analysis
of the accuracy and efficiency of the MP/SOFT method as
compared to classical, semiclassical, and benchmark
quantum-mechanical calculations.

Figure 1 shows the time-dependent position ensemble
averageskxstdl, obtained according to the MP/SOFT meth-
odologyssolid linesd implemented according to Eq.s3d, with

Asx8d=1 and B̂= x̂. The MP/SOFT results are compared to
the corresponding benchmark grid-based SOFT calculations
sdotsd and the classical ensemble average predictionssthin-
dashed linesd at two different temperatures, corresponding to
"vb=Î2 and"vb=Î2/2, in panelssad andsbd, respectively.

For reference, note that for a molecular vibration ofv
=250 cm−1 the two temperatures in panelssad andsbd corre-
spond to 254 K and 508 K, respectively.

The results shown in Fig. 1 indicate that during the
early-time dynamicssi.e., within the first 20 a.u.d the relax-
ation of the system is dominated by classical dephasing due
to the anharmonicity of the potential, a process that is faster
at higher temperature. This early-time relaxation is therefore
accurately described by classical mechanics, as indicated in
Fig. 1 by the comparison between benchmark quantum-
mechanical calculationssdotsd and classical resultssthin-
dashed linesd. Recurrencies at later times, however, are due
to quantum-mechanical coherences and therefore require an
accurate description of coherent wave packet motion. Con-
sequently, classical results fail to describe recurrencies be-
yond t<20 a.u. In contrast, the MP/SOFT methodology pro-
vides a quantitative description of both the initial classical
dephasing dynamics and the later quantum coherent recur-
rencies as well as the effect of temperature on the classical
and quantum relaxation time scales. The efficiency of the
MP/SOFT method is demonstrated in terms of the moderate
number of coherent states, required by the expansion intro-
duced by Eq.s10d, with n=100 for"vb=Î2 andn=500 for
"vb=Î2/2, respectively.

Figures 2 and 3 compare the real and imaginary parts of
the position-position correlation functions computed accord-

ing to Eq. s3d, with Asx8d=x8 and B̂= x̂. The MP/SOFT re-
sults ssolid linesd are compared to benchmark grid-based
quantum-mechanical calculationssdotsd and classical Boltz-

FIG. 1. Comparison of thermal ensemble average positions, obtained ac-
cording to the MP/SOFT methodssolid linesd, benchmark grid-based SOFT
calculationssdotsd, and classical ensemble averagessthin-dashed linesd for
the asymmetric quartic potential introduced by Eq.s18d. The system is ini-
tially prepared at thermal equilibrium on the potential energy surface intro-
duced by Eq.s19d at two different temperatures corresponding tosad "vb
=Î2 andsbd "vb=Î2/2.

FIG. 2. Comparison of real parts of the position-position correlation func-
tions obtained according to the MP/SOFT methodssolid linesd, benchmark
grid-based SOFT calculationssdotsd, and the classical Boltzmann ensemble
averagessthin-dashed linesd for the asymmetric quartic potential, introduced
by Eq. s18d. The system is initially prepared at thermal equilibrium on the
potential energy surface introduced by Eq.s19d at two different temperatures
corresponding tosad "vb=Î2 andsbd "vb=Î2/2.
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mann ensemble averagessthin-dashedd at two different tem-
peratures corresponding to"vb=Î2 and"vb=Î2/2 in pan-
els sad and sbd, respectively.

Figures 2 and 3 show that the MP/SOFT methodology
provides an accurate and efficient description of both the real
and imaginary parts of thermal correlation functionsCstd, as
influenced by both classical- and quantum-dynamical effects
at different temperatures. In correspondence to Fig. 1, it is
shown that the MP/SOFT approach provides an exact de-
scription of dephasing and rephasing dynamics as deter-
mined by the coherent wave packet motion on the highly
anharmonicity quartic potential.

The results presented in this paper are not surprising
since the generalization of the MP/SOFT method to compu-
tations of thermal correlation function, introduced in Sec. II
is both formally and numerically exact. The comparisons to
benchmark calculations, however, demonstrate at least the
potentiality of the MP/SOFT approach for numerically accu-
rate and efficient calculations of finite-temperature expecta-
tion values and thermal-correlation functions in systems with
significant quantum-mechanical behavior. Note that the
MP/SOFT method does not suffer from the “sign problem”
that usually defy the capabilities of real-time path-integral
Monte Carlo methods57 and is able to properly describe
quantum-mechanical phenomena that might defy the capa-
bilities of approximate semiclassical approaches.

IV. CONCLUDING REMARKS

We have shown how to generalize the MP/SOFT method
to rigorous computations of thermal-equilibrium density ma-

trices, finite-temperature time-dependent expectation values,
and thermal correlation functions. The method involves the
imaginary-time integration of the Bloch equation and the
evaluation of Heisenberg time-evolution operators through
real-time propagation in dynamically adaptive coherent-state
representations. The generalized MP/SOFT methodology,
which is common to both real- and imaginary-time propaga-
tion, relies on the recursive application of the time evolution
operator, as defined by the Trotter expansion to second-order
accuracy, in nonorthogonal and dynamically adaptive
coherent-state representations generated according to the
matching-pursuit algorithm.

We have demonstrated the accuracy and efficiency of the
generalized MP/SOFT approach for computations of thermal
correlation functions, as compared to benchmark quantum-
mechanical calculations for a model system in reduced di-
mensionality. The reported results show that the MP/SOFT
methodology provides a quantitative description of both clas-
sical dephasing dynamics and quantum coherent recurrencies
as well as the effect of temperature on the classical and quan-
tum relaxation time scales. While the study has been focused
only on a reduced dimensional model system that allowed
for rigorous comparisons with classical, semiclassical, and
benchmark quantum calculations, the results reported in this
paper at least demonstrate the potentiality of the MP/SOFT
method as applied to the description of thermal correlation
functions of complexsi.e., nonintegrabled quantum systems.
Work in progress in our research group involves the applica-
tion of the general computational approach introduced in this
paper to studies of thermal correlation functions in multidi-
mensional model systems.
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