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A rigorous and practical methodology for evaluating thermal-equilibrium density matrices,
finite-temperature time-dependent expectation values, and time-correlation functions is described.
The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method
to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the
evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically
adaptive coherent-state representation®2005 American Institute of Physics
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I. INTRODUCTION nonorthogonal and dynamically adaptive coherent-state rep-

. . . resentations generated according to the matching-pursuit
Rigorous and practical quantum-mechanical methods for g 9 9-p

) S . : algorithm.34 The main advantage of this approach relative to
computations of equilibrium and dynamical properties ofth tandard arid-based SOFT method is that th h ¢
complex systems(e.g., systems with many degrees of € standard grid-base method 1S that the coherent-

freedom have yet to be established. This paper introduceStae expansions allow for. aamalytlmmplem.entatlo.n of the
one such method as an extension of the recentl))_rouer expansion, bypassing the exponential scaling problem

developed matching—pursuit/split—operator—Fourier-transforn?‘sfsoc'ate‘j Wlth the fast-_Fourler—transform algorithm of u§ual
(MP/SOFT) method™1to calculations of thermal-equilibrium grid-based implementations. When compared to other time-
averages and finite-temperature time-dependent expectatiégPendent methods based on coherent-state expariSiths,
values and time-correlation functions. the MP/SOFT method has the advantage of avoiding the
In recent years, there has been significant progress in tHésual need of propagating expansion coefficients by solving
development of numerically exact methdd$ for quantum @ coupled system of differential equations. Further, the
dynamics propagation based on the SOFT approachthe  MP/SOFT method implements a successive orthogonal de-
Chebyshev expansidfi,or the short iterative Lanczdsal- ~ composition scheme that overcomes the usual numerical dif-
gorithms. These rigorous approaches, however, are limited tliculties due to overcompleteness introduced by nonorthogo-
systems with very few degrees of freeddeng., molecular nal basis function&. The main drawback of the MP/SOFT
systems with less than three or four atomsisice they require  method is that it requires generating a new coherent-state
storage space and computation effort that scale exponentialbkpansion of the time evolving state for each propagation
with the number of coupled degrees of freedom. Such a@tep, although the underlying computational task can be trivi-
exponential scaling problem has limited studies of thermabyly parallelized.
correlation functions of complex systems to approximate — The capabilities of the MP/SOFT method for simulations
methods built around semiclassical approximationS,  of quantum dynamics in multidimensional systems have al-

. . 6 .
mixed 9‘;237?23““"3'&3_3"33' t_reatmeﬁ?& centroid molecular  o54y heen demonstrated as applied to simulations of tunnel-
Qynamllc'vi arglyltm-gont!gluanorr: of w;c]agmgry-tlme p:ath- ing dynamics in model systems with up to 35 coupled de-
integral Monte Carlo data,™ or the seff-consistent mode- o oog of freedor®™ There is, however, the nontrivial

; 2,33 . .
coupling theor)?. . However pr_actlcal, these approximate %uestion as to whether such an approach can be efficiently
approaches require a compromise between accuracy and fea- ) e

implemented to provide accurate descriptions of thermal-

sibility and rely onad hocapproximations whose resulting cquilibrium  density matrices. finite-temperature  time-
consequences are often difficult to quantify in applications '[odq dent ¢ i/ | ' dii P lation functi
complex(nonintegrable dynamics. It is, therefore, essential ependent expectation vajues and time-correfation tunctions.

to develop practical methods for rigorous computations ofThIS paper shgws that t.he MP/SOFT methodology can in-
time-correlation functions of complex systems. Such methdeed be effectively applied to computations of thermal cor-
ods would allow one to validate approximate approaches antflation functions simply by combining the imaginary-time
provide new insights into the nature of quantum processesPropagation of equilibrium density matrices with the evalu-
The MP/SOFT methdd® has been recently introduced ation of Heisenberg time-evolution operators via real-time
in an effort to develop a simple and rigorous time-dependenpropagation in dynamically adaptive coherent-state represen-
method for simulations of quantum processes in multidimentations. While the paper is focused only on validating the
sional systems. The MP/SOFT methodology is based on th®IP/SOFT methodology by performing rigorous comparisons
recursive application of the time-evolution operator, as dewith benchmark calculations for reduced dimensional model
fined by the Trotter expansion to second-order accuracy, isystems, the results at least demonstrate the potentiality of
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the MP/SOFT method as applied to the description of thertime integration of the Bloch equation accordingHg. The

mal correlation functions of complef.e., nonintegrable  extension of the MP/SOFT method, introduced in this paper,

quantum systems. involves the numerically exact treatment of both the real-
The paper is organized as follows. Section Il describesind imaginary-time propagation steps as described below for

the generalization of the MP/SOFT method to calculations Othe imaginary-time propagation_ The real-time propagation is

finite-temperature  equilibrium  density ~matrices by analogously performed by simply implementing the variable

imaginary-time integration of the Bloch equation and the caltransformation3— —it/# from imaginary to real time.

culation of thermal correlation functions through evaluation  The Boltzmann-operator matrix elements are obtained
of Heisenberg time-evolution operators via real-time propahy solving the Bloch equatiott,

gation. Section Il describes the implementation of the 5 1
MP/SOI_:T method, as ger!erahzed in Sec. I, to th_e descrip- {_ - —V§+Vo(x)}p(x,x’;,3) -0, (4)
tion of finite-temperature time-dependent expectation values B 2m

and thermal correlation functions for a model system tha}
allows for rigorous comparisons with benchmark calcula-
tions. Section IV summarizes and concludes.

or p(x,x’;ﬁ)z<x|e‘ﬁ'3'0|x’> subject to the initial condition
given by the high-temperature approximation,

m 1/2 )
p(X,X/ : 6) - (_ e—(s/Z)[VO(X)+VO(X/)]e—(m/26)(x -x") ’ (5)
Il. METHODS 2me
where e defines a sufficiently high temperatufe 1/(kge).

Consider the problem of computing thermal correlation Equation(4) is formally integrated as follows:

functions,
C(t) = (A(0)B(1)) = 2L Tr{ e PHoAdH1Be 1, 1) p(x,x"; B) = f dX"p(x,X"; B= p(X",X';€), (6)

where (---) indicates the Boltzmann ensemble average at

N nep_ )= —(ﬁ—e)l:lo " H
temperatureT=1/(kgB), with kg the Boltzmann constanfy yvherfa the- propagatorp(x,x B=e) . <x|e. x7) is :
~ - , _imaginary time sliced by repeatedly inserting the resolution
and B are quantum-mechanical operators associated withj¢ identity

measurements of observables at time O gnspectively;
=Tr{ePHo] | - iti ion: ant: -

Z Tg[e o] is Ath.e canonlcgl pfartmon function; an'lillJ 1=de,-|Xj><X,-|, (7)

=-V;/(2m)+V;(X) is the Hamiltonian of the system of inter-

est with N degrees of freedom interacting according to theyi elding

potential V;(X). An example is the correlation functio®(t)

for a system evolving on the excited state potential energy (B-OFiglum — il

surfaceV,(X), as would result from a photoexcitation process (xle XY= [ X | dxa(XETOXs)

after the initial preparation at thermal equilibrium in the .

ground state potential energy surfa¢gX). To keep the no- X L (xq|eTMorlx"), (8)

tation as simple as possible, all expressions are written ip h _ . . .- o . .
. : ) X ere 7=-i(B-¢€)/s is a sufficiently thin imaginary-time

mass-weighted coordinates and atomic units so that all degice r=-i(B-e)ls | uthiciently thin imaginary=t

grees of freedom have the same masandz=1. i

. . . Each finite-time propagator, introduced by H®), is
Note th"?‘t Eq.1) provides an expression f(.)r compu'qng approximated for sufficiently small imaginary-time slices
not only time-dependent thermal correlation functions

o by the Trotter expansion to second-order accuracy,
but also thermal-equilibrium ensemble averages) y P y

=71 Tr[e"P"oA], when B=1, and finite-temperature time- e Hom ~ g Vo) M2gri(pH2m) rg-Vo(R) 12 9)

dependent ensemble averages, The MP/SOFT propagation of the initial condition, intro-

Bt)=2z"1 Tr[e—ﬁﬁoeiﬁltée-iﬁlt], (2)  duced by Eq(5), according to the Trotter expansion intro-
. duced by Eq(9) entails the following steps.
whenA=1. Step(1): Decomposé(x,x’; €)=e Vo 72p(x X' €) in

Thermal correlation function€(t) are obtained accord- a matching-pursuit coherent-state expansion:
ing to the following symmetrized form of Edql):

cy =21 f dx f dx’ f (x| B2Holx YA(X') e ;E)zzq‘ﬁ"(x)[d”'(x e o

Ao . where ¢;(x) and ¢:(x) are N-dimensional coherent states
X (x'[eH1Be Ml |x")(x"|e™#2 M o]x). (3 defined as follows:

The computational task necessary to obt@im), according N

to Eq. (3), requires obtaining the matrix elemertgx’) ¢j(x)EHA¢j(k)e'74q(k>[x(")'Xd»i(k>]2/2e‘szj(k)[X(k)‘qu,-(k)], (11)

X (x'|e"F2Ho|x) and(x"|e"#?Ho|x) and the subsequent real- k=1

time propagation for time, according tol:|1. The matrix  with complex-valued coordinates<¢,(k)Er¢j(k)+id¢,j(k),
elements are computed, as described below by imaginarynomenta p¢j(k)zg¢j(k)+if¢j(k) and scaling parameters
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y¢j(k)za¢j(k)+ib¢.(k). The normalization constants the product state;(x)[ ¢;(x")]*. Therefore, the norm of the
are Ad,_(k)E(a¢_(k$/w)1’4exp{—%a¢_(k)d¢_(k)2—d¢_(k)g¢_(k) remaining residue;(x,x’) is smaller than the norm of the
~[by (Kidy (K)+14 (012 [2a5 (0]} S initial target statés(x,x’; ), i.e., [le1] <|fpl.
he expansion coefficients, introduced by E0), are Step(1.2): Go to(1.1), replacingp(x,x’; €) by &;(x,x"),
defined as follows: i.e., subdecompose the residue by its projection along the
direction of its locally optimum match as follows;(x,x")
1y whenj =1, =Coha(X)[d5(X")]* + &5(x,X"), where
c = -1 _ (12)
: Ij—glck<¢jl¢k><¢ﬁl¢j’>, forj=2-n, czzfdx’ dXpo(X) e (X, X ) Py(x")]* . (16)
where the overlap integrdj is defined as follows: Note that|le,] <[e4], since e,(x,x’) is orthogonal to the

product statep,(X)[ ¢5(x")]*.
_ , - v, Step(1.2) is repeated each time on the resulting residue.
= f dx” dx s (x)p(x,x"; €)L (') * (13 After n successive projections, the norm of the residyés
_ . smaller than a desired precisiorg, i.e., |e=(1
Step (2): Analytically Fourier transform the coherent- —E”_1|cj|2)1’2< ¢, and the resulting expansion is given by Eq.
state expansion to the momentum representation, apply ﬂ‘(?toﬂj Note that norm conservation pf is maintained within
kinetic energy part of the Trotter expansion, and analytically; qesired precision, just as in a linear orthogonal decompo-

inverse Fourier transform the resulting expression back tQiion, although the coherent states in the expansion are non-
the coordinate representation to obtain the 'mag'”ary't'm%rthogonal basis functions.

evolved Boltzmann-operator matrix elements: It is important to mention that the computational bottle-
n neck of the MP/SOFT method involves the calculation
p(x,X";e+i7) = 2 ¢je VoI (x)[ o (x)]*, (14) of overlap matrix elements (¢|e™Vi®™¢) and
=1 (e Vi®™| ), where |4y and [fy are localized Gauss-
where ians introduced by Eq$11) and (15), respectively. The un-
derlying computational task is however trivially parallelized
_ N m according to a portable single-program-multiple-data streams
) =1A K code that runs under the message-passing-interface environ-
k1 m+ ITW/’i(k) ment.
P (K) 2 The overlap integrals are most efficiently computed in
<_JT - i[x;,j(k) —x(k)]) - (K2 applications to reaction surface Hamiltonians where a large
ex T‘ﬁj( ) _ p¢j( ) ' number of harmonic modes can bebitrarily coupled to a
2 . i2r Zﬁj(k) few reaction(tunneling coordinategsee, e.g., Models | and
%j(k) m Il in Ref. 3 and the reaction surface Hamiltonians in Refs.

53-59. For such systems, the Gaussian integrals over har-
(15 monic coordinates can be analytically computed and the re-

Note that the MP/SOFT approach reduces the computationgﬂ aining mtegral_s over react!on coordinates are _eff|C|entIy
btained according to numerical quadrature techniques. For

task necessary for the imaginary- or real-time propagation o . .
the Boltzmann-operator matrix elemeni&x,x’; ) to the more general Hamiltonians, the overlap matrix elements can

: . o be approximated by analytic Gaussian integrals when the
problem of recursively generating the coherent-state expan-_ . . .
sions introduced by Eq(10). choice of width parameterg (k) allows for a local expansion

. . .. of Vi(X) to second-order accuracy. Otherwise, the quadratic
Coherent-state expansions are obtained by comblnlng T ; .
pproximation is useful for numerically computing the cor-

the matching-pursuit algorithm and a gradient-based optimi- . . . . : i

sation method as follows: respoqdmg full-dimensional |_ntegrals according to variance-
Step(1.1): Evolve the complex-valued parameters, thatredUCtlon Monte Carlo techniques.

define the initial trial coherent states;(x) and qu’(x), to

locally maximize the overlap integral;, introduced in || RESULTS

Eq. (13). The parameters x¢l(k),p¢1(k),y¢,l(k) and N

X¢1(k)'p¢1(k)'7¢1(k) of the corresponding local maximum The accuracy and efficiency of the MP/SOFT method_ol_—

define the first pair of coherent states and ¢, in the 09V, described in Sec. Il, are evaluated in terms of explicit

expansion introduced by Eq10) and the first expansion calculations of time-dependent position ensemble averages

coefficient ¢, as follows: p(x,X’;€)=Cyhy(X)[p;(X")]* and position-position thermal correlation functions for the

+e4(x,x"), wherec,=1,, as defined according to EqL3).  asymmetric quartic oscillator described by the following

The results reported in Sec. Ill were obtained by locally op-Hamiltonian:

timizing 1; according to a gradient-based optimization . 52

scheme that combines the steepest descent algorithm with Hi= En*'Vl(X)- (17)

the parabolic search approa??H.:urther, note that due to the

definition of ¢;, the residues;(x,x’) does not overlap with where
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FIG. 1. Comparison of thermal ensemble average positions, obtained aé¢-IG. 2. Comparison of real parts of the position-position correlation func-
cording to the MP/SOFT methddolid lines, benchmark grid-based SOFT tions obtained according to the MP/SOFT metttedlid lineg, benchmark
calculations(dots, and classical ensemble averaggsn-dashed lingsfor grid-based SOFT calculatioridots, and the classical Boltzmann ensemble
the asymmetric quartic potential introduced by EtB). The system is ini-  averagesthin-dashed lingsfor the asymmetric quartic potential, introduced
tially prepared at thermal equilibrium on the potential energy surface intro-by Eq.(18). The system is initially prepared at thermal equilibrium on the
duced by Eq(19) at two different temperatures correspondinga@b% o/ potential energy surface introduced by Etp) at two different temperatures
=42 and(b) AwB=12/2. corresponding tda) AwB=\2 and(b) iwB=2/2.

Vi(x) = 3ma?@ - o + o, (18)  For reference, note that for a molecular vibration of
_ =250 cm! the two temperatures in panéks and(b) corre-
with m=1 a.u.,0=v2 a.u., anct=0.1 a.u. The system is ini- spond to 254 K and 508 K, respectively.
tially prepared at thermal equilibrium on the displaced po-  The results shown in Fig. 1 indicate that during the

tential energy surface, early-time dynamicsi.e., within the first 20 a.).the relax-
ation of the system is dominated by classical dephasing due
Vo(X) = sme?(x - a)? - c(x — )% + c(x — a)*, (199  to the anharmonicity of the potential, a process that is faster
at higher temperature. This early-time relaxation is therefore
with a=1 a.u. accurately described by classical mechanics, as indicated in

The model system, introduced by Eq$7)—(19), is par-  Fig. 1 by the comparison between benchmark quantum-
ticularly interesting since the highly anharmonic potentialmechanical calculationédoty and classical resultgthin-
leads to ultrafast dephasing within a few oscillation periodsdashed lines Recurrencies at later times, however, are due
as well as later rephasing of wave packet motion due to théo quantum-mechanical coherences and therefore require an
effect of quantum coherences. The underlying dynamics caaccurate description of coherent wave packet motion. Con-
be described by rigorous quantum-mechanical approachesquently, classical results fail to describe recurrencies be-
and has been investigated in terms of semiclassical aprond t=20 a.u. In contrast, the MP/SOFT methodology pro-
proaches based on coherent-state represent&fi6hy  vides a quantitative description of both the initial classical
Therefore, the model is ideally suited for a rigorous analysigiephasing dynamics and the later quantum coherent recur-
of the accuracy and efficiency of the MP/SOFT method asencies as well as the effect of temperature on the classical
compared to classical, semiclassical, and benchmarknd quantum relaxation time scales. The efficiency of the
guantum-mechanical calculations. MP/SOFT method is demonstrated in terms of the moderate

Figure 1 shows the time-dependent position ensemblaumber of coherent states, required by the expansion intro-
averagegx(t)), obtained according to the MP/SOFT meth- duced by Eq(10), with n=100 forwpB= V2 andn=500 for
odology (solid lineg implemented according to E(R), with  AwB=12/2, respectively.

A(x’)=1 andB=X%. The MP/SOFT results are compared to  Figures 2 and 3 compare the real and imaginary parts of
the corresponding benchmark grid-based SOFT calculatiori§€ position-position correlation functions computed accord-
(doty and the classical ensemble average predictitims- ing to Eqg.(3), with A(x’)=x" andB=X. The MP/SOFT re-
dashed linesat two different temperatures, corresponding tosults (solid lineg are compared to benchmark grid-based
hwpB=\2 andhwB=12/2, in panelga) and(b), respectively. quantum-mechanical calculatiofidots and classical Boltz-
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167 ' ' ' ' ' ' ] trices, finite-temperature time-dependent expectation values,
1.2 1 and thermal correlation functions. The method involves the
08r . imaginary-time integration of the Bloch equation and the
= 04k ] evaluation of Heisenberg time-evolution operators through
T o . ' 4 real-time propagation in dynamically adaptive coherent-state
E o4l d representations. The generalized MP/SOFT methodology,
080 ] which is common to both real- and imaginary-time propaga-
1ol 1 tion, relies on the recursive application of the time evolution
PO operator, as defined by the Trotter expansion to second-order
"0 10 20 30 40 50 60 70 accuracy, in nonorthogonal and dynamically adaptive
@ L) coherent-state representations generated according to the
2 — —— matching-pursuit algorithm.
15} ] We have demonstrated the accuracy and efficiency of the
1L ] generalized MP/SOFT approach for computations of thermal
— 05| ] correlation functions, as compared to benchmark guantum-
§ o AAA AAANA mechanical calculations for a model system in reduced di-
E o5l i mensionality. The reported results show that the MP/SOFT

methodology provides a quantitative description of both clas-

AT ] sical dephasing dynamics and quantum coherent recurrencies

A5¢ ] as well as the effect of temperature on the classical and quan-
2510 20 30 40 50 60 70 tum relaxation time scales. While the study has been focused
(b) t(au.) only on a reduced dimensional model system that allowed

e s c o of . N 3 - for rigorous comparisons with classical, semiclassical, and
. 3. Comparison of imaginary parts of the position-position correlation ; i i
functions obtained according to the MP/SOFT metlmalid lineg, bench- benchmark quantum calculations, the @“"S reported in this
mark grid-based SOFT calculatiofiots, and the classical Boltzmann en- P@per at least demonstrate the potentiality of the MP/SOFT
semble averageghin-dashed lingsfor the asymmetric quartic potential, method as applied to the description of thermal correlation
introduced by Eq(18). The system is initially prepared at thermal equilib- fynctions of complexi.e., nonintegrablequantum systems.
rium on the potential energy surface introduced by @9) at two different Work in progress in our research group involves the applica-

temperatures correspondin fhiwB=12 and(b) hwB=12/2. . . . . .
peratu ponding @ Aw/3=12 and(b) iwp=\ tion of the general computational approach introduced in this

mann ensemble averag@hin-dashetlat two different tem-  Paper to studies of thermal correlation functions in multidi-
peratures corresponding tmB=12 andfwB=12/2 in pan- Mensional model systems.
els (a) and(b), respectively.
Figures 2 and 3 show that the MP/SOFT methodologyACKNOWLEDGMENTS
provides an accurate and efficient description of both the real
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anharmonicity quartic potential. ny, ! ! u :

The results presented in this paper are not surprisin rogram Award No. CHE-0345984, the NSF Nanoscale Ex-

since the generalization of the MP/SOFT method to compu-:or?tory Reksearc;(Nl(EjR) waar;jh N% ECSthAg?f.lgl' tar:{dl
tations of thermal correlation function, introduced in Sec. pSart-up package funds from ine Frovosts ice at Yale

is both formally and numerically exact. The comparisons to niversity.

benchma}rk calculations, however, demonstrate' at least theY. Wu and V. Batista, J. Chem. Phy418 6720(2003.
potentiality (_)f_the MP/SOFT appro_agh for numerically accu- 2y \wy and V. Batista, J. Chem. Phy419, 7606 (2003.
rate and efficient calculations of finite-temperature expecta-jY. Wu and V. Batista, J. Chem. Phy421, 1676(2004).
tion values and thermal-correlation functions in systems withS\% gﬁur‘g‘uszirv J. Ch%mb chﬁ/soq 9C2h72(19§r?- Leaz 46 (1998
N ) . . . Zhu, J. Zhang, and D. Zhang, Chem. Phys. .
significant  quantum-mechanical behavior. “N_Ote that thfee. Schatz, M. Fitzcharles, and L. Harding, Faraday Discuss. Chem. Soc.
MP/SOFT method does not suffer from the “sign problem” g4 359(1987.
that usually defy the capabilities of real-time path-integral ;D- Clary, J. Phys. Chem98, 10678(1994.
Monte Carlo method$ and is able to properly describe ,R-Kosloff, Annu. Rev. Phys. Chemt5, 145 (1994.

oo ;
. . J. Fair, D. Schaefer, R. Kosloff, and D. Nesbitt, J. Chem. PAy¢§, 1406
quantum-mechanical phenomena that might defy the capa-(n0. IS

bilities of approximate semiclassical approaches. 193, Echave and D. Clary, J. Chem. Phyi0, 402 (1994.
4. Yu and J. Muckerman, J. Chem. Phykl7, 11139(2002.
IV. CONCLUDING REMARKS 12\, Hernandez and D. Clary, J. Chem. Phyi€1, 2779(1994).

13,
. D. Charlo and D. Clary, J. Chem. Phy$17, 1660(2002.
We have shown how to generalize the MP/SOFT method+; gowman, J. Phys. ghem_ 202, 300%(1998-

to rigorous computations of thermal-equilibrium density ma-*D. Xie, R. Chen, and H. Guo, J. Chem. Phyid.2, 5263(2000.

Downloaded 03 Feb 2005 to 130.132.58.224. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



064102-6 Chen, Wu, and Batista J. Chem. Phys. 122, 064102 (2005)

185 Anderson, T. Park, and D. Neuhauser, Phys. Chem. Chem. Rhys. *’E. Heller, J. Chem. Phys75, 2923(1981).

1343(1999. %R. Coalson and M. Karplus, Chem. Phys. Le30, 301 (1982.

M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Ph¢3, 412  3°S. Sawada, R. Heather, B. Jackson, and H. Metiu, Chem. Phys.82tt.
(1982. 3009(1985.

18\. D. Feit and J. A. Fleck, Jr., J. Chem. Phy&3, 301(1983. K. G. Kay, J. Chem. Phys91, 107 (1989.

1D, Kosloff and R. Kosloff, J. Comput. Phy$2, 35 (1983. “IM. Ben-Nun and T. Martinez, J. Chem. PhyK08 7244(1998.

24, Tal-Ezer and R. Kosloff, J. Chem. Phy81, 3967(1984). 42K. Thompson and T. Martinez, J. Chem. Phyd.0, 1376(1999.

2T, park and J. Light, J. Chem. Phy85, 5870(1986. “M. Ben-Nun and T. Martinez, Adv. Chem. Phy$21, 439 (2002.

22\, Makri and W. Miller, J. Chem. Physl16, 9207 (2002. *p_ V. Shalashilin and B. Jackson, Chem. Phys. L&f1, 143(1998.

e, Jezek and N. Makri, J. Phys. Chem.1®5, 2851 (2001). 5L, Andersson, J. Chem. Phy415, 1158(2001).

24, Nakayama and N. Makri, J. Chem. Phykl9, 8592 (2003. 8D, Shalashilin and M. Child, J. Chem. Phys13 10028(2000.

253, Poulsen, G. Nyman, and P. Rossky, J. Chem. Phy8.12179(2003. "D, Shalashilin and M. Child, J. Chem. Physl5, 5367 (2001).
%C. Lawrence, A. Nakayama, N. Makri, and J. Skinner, J. Chem. Phys®M. Beck, A. Jackle, G. Worth, and H. Meyer, Phys. R&24, 1 (2000.

120, 6621 (2004). M. Nest and H. Meyer, J. Chem. Phys19, 24 (2003.
2D, Reichman, P. Roy, and G. Voth, J. Chem. Phy$3 919 (2000. 50y, Wu and V. Batista, J. Chem. Phy@n press.
28Q. Shi and E. Geva, J. Chem. Phykl9 9030(2003. ®IR. Feynman, irStatistical Mechanic¢Benjamin, Reading, 1972
2%y Yonetani and K. Kinugawa, J. Chem. Phykl9, 9651 (2003. 52W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, in
30M. Jarrell and J. Gubernatis, Phys. R&269, 133 (1996. Numerical Recipes(Cambridge University Press, Cambridge, 1086
1A, Horikoshi and K. Kinugawa, J. Chem. Phy$19, 4629(2003. Chap. 12.
%2£. Rabani and D. Reichman, J. Chem. Phy&6, 6271(2002). V. Guallar, V. Batista, and W. Miller, J. Chem. Phy$13 9510(2000.
%D, Reichman and E. Rabani, Phys. Rev. L&, 265702(2007). 5. Guallar, V. Batista, and W. Miller, J. Chem. Phys10, 9922 (1999.
%3, Mallat and Z. Zhang, IEEE Trans. Signal Proce$s, 3397(1993. %M. Petkovic and O. Kuhn, J. Phys. Chem. %07, 8458(2003.
%E. Heller, Chem. Phys. Lett34, 321 (1975. %63. Shao and N. Makri, J. Phys. Chem.1®3 7753(1999.
M. J. Davis and E. J. Heller, J. Chem. Phygl, 3383(1979. 57s. Caratzoulas and P. Pechukas, J. Chem. Phg4. 6265 (1996).

Downloaded 03 Feb 2005 to 130.132.58.224. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



