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Rigorous simulations of quantum tunneling dynamics in model systems with up to 20 coupled
degrees of freedom are reported. The simulations implement an extension of the recently developed
matching-pursuit/split-operator Fourier-transform method to complex-valued coherent-state
representations. The resulting method recursively applies the time-evolution operator, as defined by
the Trotter expansion to second order accuracy, in dynamically adaptive coherent-state
representations generated by an approach that combines the matching-pursuit algorithm with a
gradient-based optimization method. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1766298#

I. INTRODUCTION

Studies of atomic and molecular quantum process at the
most fundamental level of theory require solving the time-
dependent Schrödinger equation. In recent years, there has
been significant progress in the development and application
of numerically exact methods1–13 based on the split-operator
Fourier-transform ~SOFT! approach,14–16 the Chebyshev
expansion,17 or the short iterative Lanczos18 algorithms. Un-
fortunately, these rigorous approaches are still limited to sys-
tems with very few degrees of freedom ~e.g., molecular sys-
tems with less than three or four atoms!. The major
stumbling block that hinders applications to larger systems,
however, is not intrinsic to the nature of these powerful in-
tegrators but rather to the typical representation of time-
dependent wave functions in basis sets of orthogonal func-
tions ~or grid points!. Such conventional representations
require computational effort that scales exponentially with
the dimensionality of the system.

Due to the limitations of rigorous approaches, studies of
quantum processes in multidimensional systems are cur-
rently based on approximate methods built around mixed
quantum-classical, variational, semiclassical, or path-integral
ideas. However practical, these approaches require a com-
promise between accuracy and feasibility and rely on ad hoc
approximations whose resulting consequences are often dif-
ficult to quantify in applications to complex ~nonintegrable!
dynamics. Establishing rigorous, yet practical, computational
methods to integrate the time-dependent Schrödinger equa-
tion is therefore one of the important challenges in theoreti-
cal chemistry.

The matching-pursuit/split-operator Fourier-transform
~MP/SOFT! method19,20 has been recently introduced in an
effort to develop a simple and rigorous time-dependent
method for simulations of quantum processes in multidimen-
sional systems, based on nonorthogonal representations. To
date, however, the efficiency and accuracy of the method
have been demonstrated only for the description of quantum
dynamics in a one-dimensional model system.19 The goal of
this paper is to introduce a generalization of the MP/SOFT

method and demonstrate its capabilities for simulations of
quantum dynamics in systems with many coupled degrees of
freedom.

The MP/SOFT method is based on the recursive appli-
cation of the time-evolution operator, as defined by the Trot-
ter expansion to second order accuracy, in dynamically adap-
tive and nonorthogonal coherent-state representations
generated according to the matching-pursuit algorithm.21 The
main advantage of this approach relative to the standard grid-
based SOFT method is that the coherent-state expansions
allow for an analytic implementation of the Trotter expan-
sion, bypassing the exponential scaling problem associated
with the usual fast-Fourier-transform implementation of the
propagator.

When compared to other time-dependent methods based
on coherent-state expansions,22–32 the MP/SOFT approach
has the advantage of avoiding the usual need of solving a
coupled system of differential equations for propagating ex-
pansion coefficients. In addition, the method overcomes the
usual numerical difficulties caused by the underlying over-
completeness, introduced by nonorthogonal basis functions,5

by implementing a successive orthogonal decomposition
scheme.

As formulated in Ref. 19, however, there are two caveats
worth mentioning. First, the method requires the recursive
construction of overcomplete basis sets for each propagation
time slice. This involves a computational effort that becomes
increasingly difficult as the number of coupled degrees of
freedom in the system increases. Second, the efficiency of
the method is limited to the capabilities of representations
based on real-valued coherent states ~i.e., coherent state with
real-valued coordinates, momenta, and fixed scaling param-
eters!. The generalization of the MP/SOFT method, intro-
duced in this paper, avoids the need of constructing over-
complete basis sets and generalizes the representations to
expansions based on complex-valued coherent states ~i.e.,
coherent state with complex-valued coordinates, momenta,
and variable scaling parameters!.

The capabilities of the method for efficiently describing
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quantum dynamics in multidimensional model systems are
demonstrated in terms of simulations of deep-tunneling
quantum dynamics in model systems with up to 20 coupled
degrees of freedom. Considering the limitations of numeri-
cally exact methods and the crucial roles that quantum pro-
cesses play in a wide range of atomic and molecular pro-
cesses ~e.g., electron and proton transfer in chemical and
biological reactions!, this approach provides a simple com-
putational technique to advance our understanding of a wide
range of quantum processes in systems that are beyond
the state-of-the-art in numerically exact time-dependent
methods.

The paper is organized as follows. Section II describes
the generalization of the MP/SOFT method to complex-
valued coherent-state representations generated according to
a computational approach that combines the matching-
pursuit algorithm with a gradient-based optimization method.
Section III describes the implementation of the generalized
MP/SOFT method introduced in Sec. II to the description of
deep tunneling in multidimensional model systems. Section
IV summarizes and concludes.

II. METHODS

Consider the propagation of the N-dimensional wave
function ^xuC t& by recursively applying the short-time ap-
proximation to the time-evolution operator defined by the
Trotter expansion

e2iĤt'e2iV~ x̂!t/2e2i~ p̂2/2m !te2iV~ x̂!t/2. ~1!

Here, t is a short propagation period for the time evolution
of the system as described by the Hamiltonian Ĥ
5p̂2/(2m)1V( x̂). To keep the notation as simple as pos-
sible, all expressions are written in mass-weighted coordi-
nates and atomic units, so that all degrees of freedom have
the same mass m and \51.

The implementation of Eq. ~1! according to the generali-
zation of the MP/SOFT method introduced in this paper can
be described by the following steps.

Step 1. Decompose ^xuC̃t&[^xue2iV( x̂)t/2uC t& in a
matching-pursuit coherent-state expansion,

^xuC̃t&'(
j51

n

c j^xu j& . ~2!

Here, ^xu j& are N-dimensional coherent states,

~xu j&[)
k51

N

A j~k !e2g j~k !@x~k !2x j~k !#2/2e ip j~k !@x~k !2x j~k !#,

~3!

with complex-valued coordinates x j(k)[r j(k)1id j(k),
momenta p j(k)[g j(k)1i f j(k), and scaling parameters
g j(k)[a j(k)1ib j(k). The normalization constants
are A j(k)[@a j(k)/p#1/4 exp„21/2a j(k)d j(k)2

2d j(k)g j(k)
2@b j(k)d j(k)1 f j(k)#2/@2a j(k)#… and the expansion coeffi-
cients, introduced by Eq. ~2!, are defined as follows: c1

[^1uC̃t& and c j[^ j uC̃t&2(k51
j21 ck^ j uk& for j52 – N .

Step 2. Analytically Fourier transform the coherent-state
expansion to the momentum representation, apply the kinetic

energy part of the Trotter expansion and analytically inverse
Fourier transform the resulting expression back to the coor-
dinate representation to obtain the time evolved wave func-
tion

^xuC i1t&5(
j51

n

c je
2iV~x!t/2^xu j̃&, ~4!

where

^xu j̃&[)
k51

N

A j~k !A m
m1itg j~k !

3expS S p j~k !

g j~k !
2i@x j~k !2x~k !# D 2

S 2
g j~k !

1

i2t

m D
2

p j~k !2

2g j~k !D .

~5!

Note that the computational task necessary for quantum
propagation, according to this approach, is completely re-
duced to the problem of recursively generating the coherent-
state expansions introduced by Eq. ~2!. These expansions are
obtained by combining the matching pursuit with a gradient-
based optimization method as follows.

Step 1.1. Starting from an initial trial coherent state u j&
evolve the real and imaginary components of its complex
parameters x j(k), p j(k), and g j(k) and locally maximize the
norm of its overlap with the target state u^ j uC̃t&u ~the results
reported in Sec. III were obtained by implementing a
gradient-based optimization scheme that combines the steep-
est descent algorithm with the parabolic search approach.33

The parameters x1(k), p1(k), and g1(k) of the local maxi-
mum define the first coherent state u1& in the expansion and
its corresponding expansion coefficient c1 as follows: uC̃t&
5c1u1&1ue1&, where c1[^1uC̃t& . Note that the residual
vector ue1& is orthogonal to u1& due to the definition of c1 .

Step 1.2. Goto step 1.1, replacing uC̃t& by ue1&, i.e., sub-
decompose ue1& by its projection along the direction of its
locally optimum match u2& as follows: ue1&5c2u2&1ue2&,
where c2[^2ue1&. Note that ue2u<ue1u, since ue2& is or-
thogonal to u2&.

Step 1.2 is repeated each time on the following residue.
After n successive projections, the norm of the residual vec-
tor uen& is smaller than a desired precision e—i.e., uenu5(1
2( j51

n uc ju
2)1/2

,e , and the resulting expansion is given by
Eq. ~2!. Note that norm conservation is maintained within a
desired precision, just as in a linear orthogonal decomposi-
tion, although the coherent states in the expansion are non-
orthogonal basis functions. Also, note that uc ju<1 although
the basis functions are nonorthogonal.

It is important to mention that the computational bottle-
neck of the MP/SOFT method involves the calculation of
overlap matrix elements ^ j ue2iV̂(x)t/2u k̃& and ^ j ue2iV̂(x)t/2uk&,
where uk& and u k̃& are localized Gaussians introduced by Eqs.
~3! and ~5!, respectively. The underlying computational task
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is however trivially parallelized according to a portable
single-program-multiple-data streams code that runs under
the message-passing-interface environment.

The overlap integrals are most efficiently computed in
applications to reaction surface Hamiltonians where a large
number of harmonic modes can be arbitrarily coupled to a
few reaction ~tunneling! coordinates ~see, e.g., models I and
II in this paper and reaction surface Hamiltonians in Refs.
34–36!. For such systems, the Gaussian integrals over har-
monic coordinates can be analytically computed and the re-
maining integrals over reaction coordinates are efficiently
obtained according to numerical quadrature techniques. For
more general Hamiltonians, the overlap matrix elements can
be approximated by analytic Gaussian integrals when the
choice of width parameters g j(k) allows for a local expan-
sion of V( x̂) to second order accuracy. Otherwise, the qua-
dratic approximation is useful for numerically computing the
corresponding full-dimensional integrals according to
variance-reduction Monte Carlo techniques.

III. RESULTS

The capabilities of the generalized MP/SOFT approach
introduced in Sec. II are demonstrated in simulations of
deep-tunneling quantum dynamics associated with two mul-
tidimensional model systems ~models I and II, for future ref-
erence!. Both model systems mimic a quantum particle,
coupled to a quantum bath, tunneling through a high energy
barrier. The main difference between the two models is that
the effective tunneling barrier in model I is independent of
the number of coupled degrees of freedom in the system,
while the effective barrier in model II linearly increases with
the number of degrees of freedom in the system.

The system is initially prepared in a metastable state
^xuC0&, localized near the bottom of the well on one side of
the potential energy barrier. Due to the light mass of the
particle and the high energy barrier, the subsequent relax-
ation dynamics is highly quantum mechanical in the deep
quantum tunneling regime. Tunneling is quantitatively de-
scribed in terms of the correlation function CR(t)
5^CRuC t& that measures the overlap between the time-
dependent wave function uC t& and the ‘‘mirror image’’ of the
initial state ^xuC0& reflected through the center of the barrier,
^xuCR&.

Model I is described by the following Hamiltonian:

Ĥ5

p̂1
2

2m1
1V1~ x̂1!1(

j52

N S p̂ j
2

2m j
1

1
2

m jv j
2x̂ j

2

1c jx̂ jx̂ j21D , ~6!

where m j51.0 a.u., v j51.0 a.u., and c j50.2 a.u. for j
51 – N and

V1~ x̂1!5

1
16h

x̂1
4
2

1
2

x̂1
2, ~7!

with h51.3544.
The initial wave function ^xuC0& is defined by the mul-

tidimensional harmonic state

^xuC0&5p2N/4)
j51

N

exp@2
1
2~x j2 x̄ j!

2# , ~8!

where x̄1522.5 a.u., and x̄ j50 for j52 – N .
Figure 1 compares CR(t) for model I with N510, 5, and

2, in panels ~a!, ~b!, and ~c!, respectively. Panel ~a! illustrates
the efficiency of the MP/SOFT methodology in terms of the
small number of basis functions (n5300) required for the
description of deep quantum tunneling in a model system
with 10 coupled degrees of freedom. In contrast, analogous
calculations based on the standard grid-based SOFT method
would be severely hindered by the exponential scaling prob-
lem. Panels ~b! and ~c! show the corresponding results after
reducing the dimensionality of the system to 5 and 2 degrees
of freedom, respectively. These results are consistent with
the form of the Hamiltonian introduced by Eq. ~6!. As ex-
pected, tunneling occurs along the x1 direction, a coordinate
that is coupled directly to x2 but only indirectly to the addi-
tional degrees of freedom in the system. Therefore, decreas-
ing the dimensionality of the system from 10 to 2, decreases
the frequency of CR(t) but does not significantly affect the
rate, or amount of quantum tunneling. Finally, note that panel
~c! compares the MP/SOFT results for N52 ~solid lines!

FIG. 1. Comparison of Re@CR(t)# and uCR(t)u for model I with N510, 5,
and 2 degrees of freedom, in panels ~a!, ~b!, and ~c!, respectively. Panel ~c!

compares the MP/SOFT results ~solid lines! for N52 with benchmark grid-
based SOFT calculations ~dashes!. The inserted labels indicate the dimen-
sionality of the system and the number of basis elements in the MP/SOFT
coherent-state expansions.
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with benchmark SOFT calculations ~dashes!. The compari-
son shows that there is quantitative agreement with bench-
mark results for both the real part and modulus of CR(t)
throughout the whole simulation time. The final propagation
time represents 1200 propagation time slices ~t50.2 a.u.!,
about 60 oscillation periods at the bottom of the well where
uC0& is initially localized.

Model II is defined by the following Hamiltonian:

Ĥ5

p̂1
2

2m1
1V1~ x̂1!1(

j52

N S p̂ j
2

2m j
1

1
2

m jv j
2x̂ j

2

1

1
2

c jx̂1x̂ j
2D , ~9!

where V1 is defined according to Eq. ~7!, c j50.1 a.u. and
m j51.0 a.u. for j51 – N , with N51 – 20.

Figure 2, panel ~a!, shows CR(t) for the 20-dimensional
model II (N520) computed according to the MP/SOFT
method introduced in this paper. Remarkably, these efficient
calculations require rather compact matching-pursuit
coherent-state expansions with only 25 basis elements (n
525). The efficiency of these dynamically adaptive
coherent-state representations is probably due to the under-

lying simplicity of the model Hamiltonian, where the quan-
tum bath is defined according to a manifold of harmonic
oscillators that are directly coupled only to the tunneling
coordinate. The accuracy of the methodology is verified in
Fig. 2, panel ~b!, where CR(t) for model II with N520 and
c j50 ~solid lines! is compared with benchmark calculations
~dashes!. Note that the solid and dashed curves are almost
completely superimposed throughout the whole simulation
time, demonstrating quantitative agreement between the MP/
SOFT results and benchmark calculations. In addition, note
that the net effect of decoupling the harmonic bath from the
reaction surface is to reduce the effective tunneling barrier,
as expected. Therefore, decoupling the bath from the tunnel-
ing coordinate increases the amount of quantum tunneling
without significantly affecting the frequency of the correla-
tion function. Furthermore, Fig. 2, panel ~c! compares the
MP/SOFT calculations ~solid lines! of CR(t) for model II
with N52 with benchmark calculations ~dashes! and semi-
classical Herman-Kluk ~Ref. 37! results ~dots!. Note that
quantitative agreement with benchmark calculations is
shown not only for the phase and amplitude of CR(t) but
also for all the detailed temporal structure of CR(t). Further-
more, note that the MP/SOFT calculations required
matching-pursuit coherent-state expansions with only 25 ba-
sis elements. In contrast, semiclassical results obtained ac-
cording to the most popular semiclassical initial value repre-
sentation method37 ~dots! employed more than 23104

coherent states and became increasingly difficult to converge
even beyond rather short propagation times ~5 a.u.!, probably
due to the highly quantum-mechanical nature of the deep-
tunneling dynamics.

IV. CONCLUDING REMARKS

We have shown how to generalize the MP/SOFT method
to complex-valued coherent-state representations. The
method propagates time-dependent wave functions in terms
of coherent-state expansions generated according to a suc-
cessive decomposition scheme that combines the matching-
pursuit algorithm with a gradient-based optimization method.
The efficiency of the approach relies on the fact that, con-
trary to the original formulation of the MP/SOFT, the method
avoids the need of generating overcomplete basis sets for
each propagation time slice. In addition, the method gener-
ates more flexible ~complex-valued! representations that still
allow for an analytic implementation of the time-evolution
operator as defined by the Trotter expansion to second order
accuracy.

We have demonstrated the efficiency of the generalized
MP/SOFT approach for simulations of deep-tunneling quan-
tum dynamics in model systems with up to 20 coupled de-
grees of freedom. These results at least demonstrate the po-
tentiality of a rigorous methodology for simulations of
quantum processes in systems that are beyond the capabili-
ties of the state-of-the-art in numerically exact time-
dependent methods. Work in progress in our research group
includes the implementation of this approach to simulations
of intramolecular proton transfer dynamics38 and calculations
of equilibrium properties of quantum systems by imaginary-
time propagation of the density matrix.39

FIG. 2. Calculations of CR(t) for model II described in the text. Panel ~a!:
20-dimensional model system (N520). Panel ~b!: N520 and c j50. Panel
~c!: MP/SOFT results ~solid lines! are compared to benchmark ~dashes! and
semiclassical ~dots! calculations for N52. The inserted labels indicate the
dimensionality of the system and the number of basis elements in the MP/
SOFT coherent-state expansions.
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