Supporting Information

Reversible Visible–Light Photooxidation of an Oxomanganese Water–Oxidation Catalyst Covalently Anchored to TiO₂ Nanoparticles

Gonghu Li, Eduardo M. Sproviero, William R. McNamara, Robert C. Snoeberger III, Robert H. Crabtree^{*}, Gary W. Brudvig^{*} and Victor S. Batista^{*}

Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT 06520-8107

*E-mail Addresses: <u>robert.crabtree@yale.edu</u>; <u>gary.brudvig@yale.edu</u>; <u>victor.batista@yale.edu</u>

Table of Contents

Figure S1. Powder X-ray diffraction patterns of TiO₂ NPs

Figure S2. Transmission electron micrographs of TiO₂ NPs

Figure S3. Spectrum of the visible–light lamp used in this study

Figure S4. Molecular model of TiO₂ anatase surface

Figure S5. Molecular model of complex 1 and structure of 1–D70

Figure S6. EPR spectra of Mn^{II} –L–P25 and Mn^{II} –L–D70

Figure S7. EPR spectra of 1–D70 and 1–L–D70

Figure S8. EPR spectra of Mn^{II} –L–TiO₂ after the reactions with oxone

Figure S9. Simulated IR spectra of diphenyl amide in *cis* and *trans* configurations

Figure S10. Light-*minus*-dark EPR spectrum of L-P25

Complete Reference 53

Figure S1. Powder X–ray diffraction patterns of (a) well–crystallized P25 and (b) near–amorphous D70 TiO₂. Diffractions of various anatase (red) and rutile (blue) crystal faces are labeled.

Figure S2. Transmission electron micrographs of P25 (left) and D70 TiO_2 (right). Scale bars are 100 nm.

Figure S3. Spectrum of the visible–light lamp used in this study.

Figure S4. A section of the TiO_2 anatase NP model optimized at the DFT level in the PW91/GGA approximation with plane–wave basis ultrasoft Vanderbilt pseudopotentials. Atoms are represented by spheres of different colors and sizes: H (silver, small), O (red), Ti (silver, large).

Figure S5. Left: Complex **1** optimized in vacuum; atoms are represented by spheres of different colors: H (silver), O (red), N (blue), C (light green), Mn (purple). Right: A schematic representation of complex **1** deposited on TiO_2 surfaces by substituting one of its water ligand with a TiO_2 NP.

Figure S6. EPR spectra of (a) $Mn^{II}-L-P25$ and (b) $Mn^{II}-L-D70$. A broad surface-bound Mn(II) signal centered at g = 2.0 is seen in both spectra. A sharp resonance corresponding to organic radicals and a relatively small Ti³⁺ (lattice-trapped electron in TiO₂) signal are labeled in the spectrum of $Mn^{II}-L-P25$. The 6-line EPR signal characteristic of aqueous Mn^{2+} is also visible in the spectrum of $Mn^{II}-L-D70$ due to the existence of residual solvated Mn^{2+} ions adsorbed directly on the D70 surface after functionalization. The EPR spectrum of $Mn^{II}-L-D70$ was scaled down to 1/10 of its original intensity to allow a better comparison. The spectra were collected in dark at 7 K.

Figure S7. EPR spectra of (a) 1–D70 and (b) 1–L–D70 prepared by the KMnO₄ method. The same amounts of materials were used in the EPR measurements. The spectra were collected in dark at 7 K.

Figure S8. EPR spectra of functionalized TiO_2 NPs obtained by reaction of oxone with (a) $\text{Mn}^{II}-\text{L}-\text{P25}$ and (b) $\text{Mn}^{II}-\text{L}-\text{D70}$. The samples were not washed with water prior to EPR measurements. The 6-line EPR signal characteristic of aqueous Mn^{2+} and a sharp organic radical signal are seen for both samples. A broad surface Mn(II) signal (see Figure S6) is also resolvable in both spectra. The spectra were collected in the dark at 7 K.

Figure S9. Simulated IR spectra of diphenyl amide in *cis* and *trans* configurations. Atoms in the diphenyl amide molecules are represented by spheres of different colors: H (silver), O (red), N (blue), C (light gray).

Figure S10. Light–*minus*–dark EPR spectrum of L–P25. A sharp resonance corresponding to organic radicals and a relatively small Ti^{3+} (lattice–trapped electron in TiO_2) signal are labeled. The sample was subject to KMnO₄ treatment and was washed with water prior to EPR measurements. The spectrum was collected in the dark at 7 K.

Complete Reference 53:

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision B.04 ed.; Gaussian, Inc.: Wallingford CT, 2004.