
Search for Catalysts by Inverse Design: Artificial Intelligence,
Mountain Climbers, and Alchemists
Jessica G. Freeze,†,‡ H. Ray Kelly,†,‡ and Victor S. Batista*,§,‡

†Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
‡Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
§Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States

ABSTRACT: In silico catalyst design is a grand challenge of chemistry. Traditional
computational approaches have been limited by the need to compute properties for an
intractably large number of possible catalysts. Recently, inverse design methods have
emerged, starting from a desired property and optimizing a corresponding chemical
structure. Techniques used for exploring chemical space include gradient-based
optimization, alchemical transformations, and machine learning. Though the application
of these methods to catalysis is in its early stages, further development will allow for
robust computational catalyst design. This review provides an overview of the evolution of inverse design approaches and their
relevance to catalysis. The strengths and limitations of existing techniques are highlighted, and suggestions for future research
are provided.
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1. INTRODUCTION

The chemical space of all possible compounds is almost
inconceivably vast, with just the number of small organic
molecules estimated to be >1060.1 Clearly, it is impossible to
synthesize and characterize all possible compounds. So, there is
great interest in the development of efficient methods to search

for molecular compounds and materials with desirable
properties without having to test all possible structures. In
particular, the search for efficient catalysts is central to a wide
range of chemical processes, with 80% of all manufacturing
requiring catalysis at one or more steps of the production
mechanisms.2 The importance of catalysis has led to the
selection of in silico catalyst design as a holy grail in chemistry.3

Here, we focus on the emergence of computational methods
based on inverse design for the search of molecular and
heterogeneous catalysts.
Traditionally, the search for molecular compounds and

materials with desired properties has been based on the so-
called direct method where a library of promising candidates is
generated and then experimentally screened to identify
compounds with suitable properties.4−7 However, the number
of possible molecules in the library grows exponentially with
the number of sites that could be modified, so the cost and
time needed for synthesis and testing can be massive.
Computational methods can reduce the experimental burden
by narrowing the range of possibilities. One approach involves
virtual screening by implementing the direct approach in silico
to narrow the range of promising candidates, as already
successfully applied for the search of catalysts for methanation
and hydrogen evolution.8−10 Virtual screening can assess a
large number of possibilities rather quickly since it can be
trivially parallelized for distributed computing. However, it has
also been limited by the exponential scaling and thus is
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ineffective as the dimensionality of the chemical space
increases.
The inverse design strategy is the reverse of the direct method

since it starts with a desired target property and tailors a
structure with that property. Often, an initial reference
structure is gradually changed by following the gradients of
the expectation value of the property with respect to the
parameters that define the chemical identity.11−13 The
exponential scaling of computational cost is avoided since
the expectation values (and gradients) are computed in
polynomial time.
Early applications of inverse methods included design of

solid-state materials with a desired band structure.14−16

Subsequent implementations have successfully optimized the
visible-light absorption properties of dye sensitizers for
photocatalysis and dye-sensitized solar cells.17 Other applica-
tions were focused on the hyperpolarizability of large aromatic
structures,18 specific material hardness,19 volumetric properties
in metal−organic frameworks,20 binding in metal clusters,21

nitrogen-fixating catalysts,22 and binding energies of adsorbates
to catalytic metallic nanoparticles and slabs.23,24 Nevertheless,
inverse design methods remain in the limited realm of a few
groups involved in method development and have yet to gain
widespread application to the design of molecular and
heterogeneous catalysts.
Here, we review algorithms that have been developed for

inverse design of molecules and materials with emphasis on
methods relevant to catalysts and/or catalytic properties. We
focus on three major techniques, including gradient-based
methods such as the linear combination of atomic
potentials,17,18,25−33 alchemical transformations,23,24,34−38 and
machine learning techniques.39−47 We also offer our
perspective on future directions for inverse design of catalysts.

2. GRADIENT-BASED OPTIMIZATION

2.1. Mapping Inverse Design to Optimization

The inverse design problem can be mapped into a gradient-
based optimization when the property of interest is a smooth
function of the parameters that define the chemical identity.
Similarly to a traveler climbing to the top of a mountain range
(A, Figure 1), an initial reference structure B can be changed
toward the top by moving along the negative gradients of the
property to be optimized with respect to the parameters that
define the chemical composition. Fortunately, the optimization

of chemical properties tends to be more efficient than one
might expect from the vastness of chemical space. Property
optimization has been formulated as an optimal control
problem with a fitness landscape that relates an objective (e.g.,
catalytic activity) to a set of input parameters.48,49 These
landscapes were mathematically shown to contain no
suboptimal traps given a few physical assumptions, though
such traps can be created by constraints imposed by the input
variables.50 Fitness landscapes were generated for over 100 sets
of experimental data, and the vast majority was shown to be
free of traps. In particular, activity landscapes were produced
for over 30 different types of solid-state catalysts with varying
elemental composition. Traps, which only appeared in four of
the catalyst sets, were said to arise from an insufficient number
of variables to find the optimal solution (i.e., constrained
elemental composition and/or experimental conditions).50

The surprising efficiency of chemical property optimization
enables the successful use of gradient-driven methods for
inverse design.
The gradient-driven molecule construction (GdMC) method is

a representative example of inverse design for construction of a
molecule with a desired property based on gradient
optimization methods.22 The GdMC method requires one to
start with a predefined molecular fragment and builds a
molecule by gradient optimization while keeping the initial
fragment fixed. The molecular scaffold (i.e., everything outside
of the constrained fragment) is initially represented by a
potential, referred to as a “jacket potential”, which is optimized
by minimizing the geometry gradient. This potential can
consist of anything from a group of point charges to a full
quantum model, depending on the requirements of the
optimization problem. Following the optimization process,
the potential is converted to a molecular structure. A model
system using an abstract grid-based potential was explored, but
representation of the potential as a molecular structure was
nearly impossible. GdMC was applied to the construction of a
molybdenum complex for nitrogen fixation, based on the well-
known Schrock51 complex. Starting from a fixed Mo−N2
structural fragment, a jacket potential was used to represent
the ligand environment and its interaction with the Mo−N2
fragment. The potential was optimized to reduce the geometry
gradient and subsequently converted to a molecular ligand
environment. Several representations of the ligands were
considered. Single point charges, multiple point charges, and
nuclei and electrons were used as models. Additionally, ligands
were represented directly in terms of an extra potential in the
Kohn−Sham equations,52 which added the challenge of
ensuring that the potential corresponded to an actual ligand
environment. It was suggested that the linear combination of
atomic potentials (LCAP)32 method described in section 2.2
could be used to address this issue.22 Further development of
the GdMC method could lead to an effective method to aid in
the design of catalysts from a known reference fragment such
as Mo−N2 that can be used to constrain the catalytic binding
site, while the rest of the complex is optimized.
The GdMC method has the potential to impact the field of

inverse design. However, it shares the same problems that
plague most gradient descent techniques. Namely, finding a
desired global optimum can be challenging or computationally
expensive.22 One reason for this hindrance is that, like
mountain ranges, the chemical space is often a nonconvex
surface leading to the identification of only local optima. This
is easily seen in Figure 1 as the optimization would have a

Figure 1. Mountain range representing a property of interest in
chemical space, optimized from B to A by following the negative
gradients as in the GdMC method.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00759
Chem. Rev. 2019, 119, 6595−6612

6596

http://dx.doi.org/10.1021/acs.chemrev.8b00759


much easier time finding a local cusp rather than the global
optimum. Another problem that affects gradient-based
solutions is the issue of sampling discrete spaces, as can be
seen by the pillars in Figure 2. The difficulty arises from

determining which points will have data that can be sampled to
determine the gradient. From Figure 2, it makes as much sense
to check point (0.234,5.6) as it does (0,1). Even if restricted to
integers, there is no guarantee that every integer position in
space has data. Thus, solutions to the discreteness problem had
to be devised.
2.2. Linear Combination of Atomic Potentials

The LCAP method, first implemented by David N. Beratan
and Weitao Yang,32 is inspired by Kirkwood’s coupling
parameter method53−56 in thermodynamic integration (and
other alchemical transformation methods discussed in section
3.1). Continuous alchemical interpolation transforms the
analysis of a discrete space of possible structures into the
analysis of a continuous function for the electronic−nuclear
potential, defined as a linear combination of atomic potentials
(eq 1):

v r b v r( ) ( )
R,A

A
R

A
R∑=

(1)

v(r): Linear combination of atomic potentials. bA
R: Atom A

exists at location R with bA
R probability between 0 and 1, where

b 1
A

A
R∑ =

v r v r( )
Atomic potential of substituent A at position R

A may be an atom or a substituentmade up of atoms B ( )A
R

B
B

l
m
ooooo

n
ooooo ∑=

The expectation value of the property of interest is optimized
relative to the coefficients bA

R. Upon convergence, the largest
coefficient bA is rounded for each site R to define the favored
substituent for that site. Figure 2 shows continuous structure
generated by LCAP.32 Through the development of LCAP,
Wang et al. were able to optimize the composition of a
molecule separately from geometry, thereby finding a structure

with optimal polarizability and hyperpolarizability more
quickly than enumeration with standard DFT calculations.32

Getting stuck at a local optimum is a risk common to most
gradient-based optimization methods, including the LCAP
optimization in chemical space.27 In addition, optimization in
the continuous chemical space can lead to a local optimum of a
nonphysical alchemical species, instead of converging into a
real molecule corresponding to the global optimum. To
address these challenges, a gradient-directed jump method was
introduced.27 Starting from an initial real molecule, LCAP is
applied only to find the gradients necessary to “jump” to a
nearby real molecule along the direction of the gradients. In
the analogous mountain range picture, one can imagine the
jump corresponding to a traveler hopping to a nearby hill along
the direction of the negative gradients. The resulting gradient-
directed jump method has already been used to develop a
molecule with a lower LUMO energy for the purpose of
discovering new n-type semiconductors.57 While semiconduc-
tors and catalysts may sometimes be thought of as separate
fields, the interfacing between the two often becomes quite
pertinent, particularly in the development of solar fuels and
water splitting.57−63

The gradient-directed Monte Carlo (MC) optimization
method is another approach to address the challenge of local
minima in nonconvex surfaces.64 Escape from a minimum is
induced through the implementation of MC with Metropolis
conditions for randomly accepting a move. While this method
was initially applied to porphyrins in the context of nonlinear
optics,64 porphyrins have also been extensively investigated as
catalysts in a myriad of applications.65−67 Gradient-directed
MC was later combined with a best-first search algorithm to
optimize the functionalization of diamondoids by minimizing/
maximizing the HOMO−LUMO gap of materials for potential
optoelectronic applications.68 An alternative approach to avoid
alchemical local minima has been proposed by Keinan,
Therian, Beratan, and Yang.30 The scheme applied a finite
difference method to update the substituents at alterable
positions on the compound based on calculations of the
hyperpolarizability. From a library of 940 800 possible
molecules, ten runs of the optimization algorithm found six
unique porphyrin structures for nonlinear optical chromo-
phores. Remarkably, the optimization found a new class of T-
shaped structures,30 demonstrating the power of LCAP to
expand diversity in a group of chemicals that offer new
synthetic opportunities.
LCAP was further improved to drastically reduce the “cost”

of computations by reducing the number of steps necessary for
design in silico. The combination of tight binding and LCAP
was able to explore a space of 104 π-conjugated structures with
only 40 property calculations. The tight binding method was
then implemented into LCAP, utilizing an independent
particle Hückel−Hamiltonian matrix to optimize the matrix
coefficients which in turn optimize the electronic structure.18 A
tutorial for that implementation has been developed.33

Xiao et al. extended the LCAP method to design
photoabsorbers for dye-sensitized solar cells,11,17 using the
phenyl-acetylacetonate anchor as a starting point for linking
chromophores to TiO2. From 144 possible molecules, the 3-
acac-pyran-2-one anchor was discovered using the tight-
binding (TB) LCAP Hamiltonian and subsequently synthe-
sized and tested. The predicted properties of improved
photoabsorption and electron transfer, when compared to
the initial reference adsorbate, have been experimentally

Figure 2. Linear combination of atomic potential algorithm produces
a continuous surface from discrete possible structures with varying
polarizabilities. Reproduced with permission from ref 32. Copyright
2006 American Chemical Society.
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confirmed.11,17 It is therefore expected that these methods
should be particularly useful in the design of other semi-
conductor surfaces that might be doped or functionalized with
molecular adsorbates as in dye-sensitized solar cells and
photocatalytic applications. Recently, we extended the TB-
LCAP method to the inverse design of molecular catalysts.69

The ligand composition of Ni(II) transition metal catalysts for
CO/CO2 conversion70,71 has been optimized to reduce the
activation energy of the rate-limiting step of the underlying
catalytic reaction mechanism. Optimization of this energy
difference using the TB-LCAP method resulted in an improved
catalyst with a DFT-estimated 2 orders of magnitude
improvement in turnover frequency.69 This methodology
could be extended to cover multiple descriptors of catalytic
reactivity.
In summary, the LCAP method has already been shown to

address the challenges faced by inverse design based on
gradient optimization methods. The LCAP optimization is able
to traverse the space of possible chemical structures to find the
ones with desired properties. Advances using gradient-directed
jumps and tight binding model Hamiltonians led to increased
robustness toward nonconvex surfaces and greater screening
efficiency. With uses in semiconductors, porphyrins, and
chromophores, LCAP stands to have great promise in the
development of catalysts.

3. ALCHEMICAL DERIVATIVES

3.1. Alchemical Transformations

Alchemical transformations rely on the concept of state
functions describing certain properties of systems at equili-
brium. Changes in these properties are independent of the path
taken between the initial and final states, enabling the selection
of arbitrary paths between any pair of states regardless of
whether these transformations can be observed in the real
world. Transitions occurring through experimentally inacces-
sible paths are known as alchemical transformations. Typically,
alchemical transformations are described by a model
Hamiltonian defined as a linear interpolation of Hamiltonians
for the initial and final states, weighted by the coupling
parameter λ, as follows

H H H( ) (1 ) A Bλ λ λ= − + (2)

where λ is 0 at state A and 1 at state B. As λ is not required to
be an integer, values of λ between 0 and 1 may suggest a
nonphysical mixture of states. Alchemical methods have been
most frequently used for calculations of free energy changes, as
implemented in the thermodynamic integration method
proposed by Kirkwood in 1935.53−56 Practical aspects of
various computational methods for determining free energy
changes have previously been reviewed.72,73 A key focus of this
review is a discussion of recent research efforts focused on the
application of alchemical transformations for inverse design of
catalysts and other materials.
3.2. Alchemical Potentials

As mentioned previously, the representation of chemical space
as a continuum is crucial to inverse design algorithms. One
such representation within grand-canonical ensemble DFT was
proposed by von Lilienfeld et al., who devised a variational
particle number approach for the inverse design of
molecules.34,35 While conventional DFT methods involve the
optimization of electronic structure and nuclear positions, this
approach allows for chemical composition to also be varied

and optimized. From the Hohenberg−Kohn theorem,74 it was
demonstrated that the external potential vext uniquely
determines the electron density ρ(r) for constant number of
electrons Ne, where vext is also a functional of the nuclear
charge distribution Z(r).34 Therefore, any ground-state
observable O can be written as a function of Ne and a
functional of Z(r), i.e., O[Z(r)](Ne). This led to the creation of
a penalty functional to be minimized for the purpose of
property optimization

P Z N O Z N O( ) ( )e e ref
2[ ] = | [ ] − | (3)

where Oref is the reference value to which the observable
should be optimized.34 Equation 3 allows for the inverse design
of compounds to be approached as a minimization problem in
terms of electrons and nuclei which can be accelerated using
gradient descent methods. The nuclear chemical potential μn
was presented as a function of space which corresponds to the
tendency of the molecule to undergo changes in the nuclear
charge distribution Z. An equation for the first-order
approximation of μn was introduced as the electrostatic field
E(1) at a position r

r E r r
r

r r
Z

r R
( ) ( ) d

( )
n

(1)

I

I

I
∫ ∑μ ρ≈ = − ′ ′

| − ′|
+

| − | (4)

where RI is the position of the nucleus of atom I.34 At a nuclear
position, r = RI, μn is referred to as the alchemical potential as
it corresponds to the propensity for atom I to mutate into
another element. At other positions, μn is related to the proton
affinity at position r. Using the gradient of the penalty
functional outlined in eq 3 with respect to Z, a nonpeptidic
anticancer drug candidate was identified.34 Subsequently, von
Lilienfeld and Tuckerman rigorously described chemical space
using a molecular grand canonical ensemble DFT frame-
work.35 This description of chemical space allows for the
consideration of alchemical changes in molecular composition
within a DFT framework, which is needed for inverse design
optimizations. A new expression for the nuclear potential as a
modified electrostatic potential was proposed

r r
Z r r r r

r r
( ) d

( )erf ( )
n ∫μ σ ρ= ′ ′ [ | − ′|] − ′

| − ′| (5)

where the error function serves to eliminate the effect of
intranuclear proton repulsion with a sufficiently small σ.35

Various relations were obtained within this framework,
including those for the nuclear hardness and molecular Fukui
function.35 It was noted that a coupling parameter λ could be
used to move through alchemical paths in chemical space. The
effect of these alchemical transformations on interaction
energies was later investigated by the same authors by
transmuting between neutral ten-electron molecules
(CH4,NH3, H2O, and HF) as they interacted with formic
acid.36 The transformations were performed both with a rigid
structure and while allowing for relaxations, observing a
significant difference in these interaction energies even for a
transformation between CH4 and H2O.

36 These deviations
underscored the need to identify alchemical paths that enable
accurate prediction of molecular properties.
3.3. Predictions of Energy Changes Using Alchemical
Derivatives

Alchemical derivatives, which correspond to the change in the
energy with respect to changes in the nuclear charge
distribution, show great promise for estimating energy
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differences between compounds. These estimates could be
used to guide a gradient-based optimization for inverse design
of catalysts or simply to make a large number of energy
estimates with only a few calculations. Importantly, an analytic
alchemical derivative can be obtained from a single-point
calculation. Based on the Hellmann−Feynman theorem,75 von
Lilienfeld proposed a method for accurate energy predictions
for isoelectronic compounds.37 For linearly interpolated
transformations between compounds A and B, along the λ
parameter, the derivative of the energy E is given by

dE
d

H H r r v r v r
( )

d ( ) ( ) ( )B A B A∫λ
λ

ρ= ⟨ − ⟩ = ·[ − ]λ λ (6)

where v(r) corresponds to the Coulomb potential.37 These
derivatives were computed for various transmutations between
10-electron molecules, obtaining good agreement with finite
differences. However, the energetic paths were not linear in λ.

Ideally, one would like to be able to truncate dE
d
( )λ
λ

to first order

in Taylor series so that accurate predictions for many
transmutations could be made from only one DFT calculation.
The concept of a linearizing coefficient was introduced to
address this issue. The coefficient is calculated from a reference
transmutation and used to make more accurate predictions of
the energy change. The improvement is illustrated in Figure 3,
where inclusion of a linearizing coefficient improved the
predictions of HOMO eigenvalues for all cases.37

Alchemical derivatives were later used to estimate energy
barriers for simple reactions.23 The energy derivative for
isoelectronic transformations with relaxed geometries can be
expressed to first-order precision, as follows

E
r r

Z r
d ( )

( )
n∫λ

μ
λ

∂
∂

= ∂
∂ (7)

where the nuclear chemical potential is defined by eq 5.23 It is
important to note that the requirement for isoelectronic
transformations is less restrictive when pseudopotentials are

used, as a constant number of valence electrons is satisfactory.
Two model systems were analyzed showing agreement
between alchemical analytical and finite difference derivatives,
including the umbrella flipping of ammonia and the
protonation of small molecules.23 Although there was generally
good agreement, some errors resulted from the nonlinearity of
the properties along the λ path. This is shown for the activation
energy of the umbrella flipping of NH3 in Figure 4 where the

derivative at H2O would give a good estimate of the barrier for
ammonia, but the derivative at NH3 would strongly over-
estimate the barrier for water. This underscores the need for
finding paths in λ such that the first-order derivative remains
valid.
Alchemical derivatives have also been used to predict the

behavior of catalytic materials, including Pd nanoparticle
catalysts for oxygen reduction.23 As the activity of oxygen
reduction catalysts has been correlated with the binding energy
of O,76 this property can be optimized to reduce the barrier of
a reaction that limits the efficiency of fuel cells with proton
exchange membranes.77 In the Pd case, the alchemical term in
eq 7 was isolated by relaxing all geometries and only allowing
isoelectronic transformations.23 For every atom that was
mutated from Pd to Ag, another was simultaneously mutated
to Rh to maintain Ne. The predicted changes in binding energy
from alchemical derivatives was compared to those calculated
by DFT (Figure 5), demonstrating the ability to obtain
sensible binding energy estimates from only the three DFT
calculations needed for a routine binding energy calculation of
oxygen on a Pd nanoparticle.23 The results demonstrate that
once the accuracy has been confirmed for predictions based on
alchemical derivatives rapid identification of improved catalysts
can be accomplished with only a few DFT calculations. In an
inverse design scheme, catalysts that showed binding energies
near the optimum value could be selected for further
computational and eventually experimental study.
More recently, first-order alchemical derivatives were used in

a similar fashion to make predictions of binding energies for
oxygen reduction on periodic metal surfaces.24 The binding
energies of O*, OH*, and OOH* adsorbates were computed
on alchemically perturbed Pt(111), Pd(111), and Ni(111)
slabs to assess the catalytic activity of these alloys. The slabs
consisted of four layers of four atoms, and all alchemical
transformations were isoelectronic and resulted in no change
to the total atomic number of the slab. The computation of the
alchemical derivatives was straightforward. First, a standard

Figure 3. Predicted HOMO eigenvalues for CH4 from the first-order
derivatives of NH3, H2O, and HF. The solid lines correspond to
predictions made using just the derivatives, while the dotted lines
included linearization coefficients obtained by using reference
compounds. The reference pairs used were CH3−CH3 with each of
CH3−NH3, CH3−OH, and CH3−F. Note the nonlinearity of the
HOMO eigenvalue with respect to = λ for each of these
transformations. Reproduced with permission from ref 37. Copyright
2009 AIP Publishing.

Figure 4. (a) Energy along the reaction coordinate for the umbrella
flipping of NH3 shown for values of λ as the molecule is transformed
into H2O. (b) Activation energy, E

act, of umbrella flipping for different
values of λ. It can be seen that Eact is not linear in λ and that the
derivative at H2O will better predict the energy at NH3 than vice
versa. Reproduced with permission from ref 23. Copyright 2010 AIP
Publishing.
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DFT binding energy calculation was made requiring three
optimizations. For each atom I, the difference in the nuclear
potential between the two states was computed and placed in
an array ΔμnI. Alchemical predictions could then be computed
for each transformation by taking the dot product of an array
of the changes in nuclear charges with ΔμnI, an operation with
negligible computational cost. Surface alloys for the three
metals were considered such that transmutations occurred only
in the top and bottom layers, where the atoms in the bottom
layer have minimal impact on the binding energy but maintain
Ne. Additionally, mutations of skin alloys of Ni with the form
M3Ni were considered where M was either Pt or Pd, and half
of the second layer atoms were Ni. Figure 624 shows the
predicted energies for 360 alloys of the two forms. Those
predictions required only 15 DFT calculations, while the direct
DFT binding energies needed 720 calculations. In general,
errors were less than 0.1 eV, with major exceptions when the
Ni in the skin alloys was mutated to Mn, Fe, or Zn. With
further study to identify and overcome the cases where the
approximation breaks down, first-order alchemical derivatives

could be used to rapidly identify improved catalytic materials
at low computational cost.
Alchemical derivatives have been applied to problems

beyond catalysis, including covalent bonding,78 BN-doped
carbon materials,79,80 semiconductor band structures,81 bind-
ing in metal clusters,21,82−84 and bulk material properties.85,86

Terms related to electrostatic, polarization, and electron
transfer effects were applied to Al13 clusters doped with four
or fewer Si atoms to test the limits of alchemical derivatives.87

The doped Al cluster was challenging because none of these
effects were dominant in determining the relative energies.
Agreement with ab initio calculations was obtained for two-
atom isoelectronic mutations and one-atom nonisoelectronic
mutations. Higher-order alchemical derivatives could be used
to make more accurate energy predictions although at a higher
computational cost.78,80,88,89 If the calculations of these
derivatives become too costly, the advantage over brute-force
DFT calculations is less apparent. Thus, there has been an
effort to linearize properties, such as energy, with respect to the
coupling parameter λ for isoelectronic transformations.38 The
linearization enables the use of first-order alchemical
derivatives to compute exact energies, though no general
method for linearizing energy in λ exists without relying on
specific system information.90 However, as shown previously,
accurate results can be obtained using the first-order derivative
for certain systems. Improvements in numerical methods for
determining paths in λ for which the first-order perturbation is
valid, combined with guidelines when the approximation fails,
could lead to the rapid identification of improved catalysts at
minimal computational cost.

4. MACHINE LEARNING

Machine learning (ML) as an artificial intelligence approach
has been around since 1959.91 Over the past few decades, there
has been a flurry of activity in the field with the development of
algorithms and software packages for efficient parametrization
of artificial neural network (ANN) and powerful classification
methods.92−94 Great advances in image recognition,95,96

language processing,97−99 and optimal path finding100 have
led to many useful new technologies. In chemistry, ML has

Figure 5. Binding energies of oxygen from the first-order alchemical
derivative, ∂λE

bindΔλ, where Δλ = 1, compared to DFT-calculated
energy differences, ΔEbind, for isoelectronic variations of a 79 atom Pd
nanoparticle. Reproduced with permission from ref 23. Copyright
2010 AIP Publishing.

Figure 6. Comparison of alchemically predicted, ΔBEAlc, and DFT calculated, ΔBEQM, OH*, OOH*, and O* binding energies on alloys of Pt(111)
(left), Pd(111) (middle), and Ni(111) (right) slabs with transmutations such that |ΔZ | = 1. The data in the figure correspond to surface alloys,
while that in the inset is for skin alloys. Mean absolute errors (MAEs) are displayed in eV. Reproduced with permission from ref 24. Copyright
2017 American Chemical Society.
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already been explored in a wide range of applications, including
force field development,101,102 DFT calculations,103 drug
discovery,104 new materials development,105 toxicity prob-
ing,106 prediction of chemical reactions,107 and reaction
yields,108 to mention a few. With the overall interest in ML
having increased at least 10-fold over the past decade,109 we
anticipate ML will become a valuable computational tool for
the discovery and selection of catalytic materials.110−112

Therefore, we provide a brief overview of a few ideas in ML
that could be combined with inverse design methods. We note
that the field of ML is vast, allowing for many other ways of
combining inverse design with the ANN and classification
methods beyond the scope of our review.47

We also emphasize that ML has been mostly limited to data
analysis methods that compute the structure of correlations in
data sets and make predictions based on the extracted
correlations. Unfortunately, correlation does not necessarily
imply causation.113 Thus, it remains an outstanding challenge
to gain a fundamental understanding of systems from a causal
inference of the observational data produced by ML models
parametrized with empirical data.114

As a pretext, it is perhaps useful to mention what machine
learning is capable of doing at its current stage. Largely,
machine learning is capable of solving classification and
regression problems. This means that if one wants to use
machine learning for chemistry they must first phrase their
problem either as separating data into classes based on
differences in the values of descriptors used to describe that
data (classification problem) or looking for a relationship
between an input set of features and an output (regression
problem). As a trivial example, a classification problem may be
inputting free energies and separating reactions into sponta-
neous and nonspontaneous. A regression problem may be
relating ligand-withdrawing capability to reaction rate.
Ensuring that the problem fits the capabilities of machine
learning is the first hurdle to applying these methods.
One of the most common limiting factors in applications of

ML to chemistry is the availability of enough data for reliable
parametrization of ANN or classification models. Databases
such as ChemDB,115 ChemSpider,116 The PubChem Proj-
ect,117 and The National Chemical Database Service hosted by
the Royal Society of Chemistry provide valuable repositories of
structures and data. Expanding past these databases often
requires a great deal of computer science skill, though some
have attempted to make this process easier. One such example
was the development of Algorithm for Chemical Space
Exploration with Stochastic Search (ACSESS).118−120 ACSESS
allows for the systematic identification of missing components
of already explored chemical space and the expansion into
unknown regions to generate new libraries. Extensions to the
algorithm have added preference toward the exploration of
diverse molecules with desired properties.119 Though this
method has only yet been used to explore small organic
molecules, it presents a promising start for those wishing to
explore the frontiers of chemical space. Another way to
generate data is through the use of a genetic algorithms (GAs).
Genetic algorithms provide powerful methods for generating

and assessing structures over which ML models can be trained
and tested. GAs are evolutionary methods that mimic the
process of biological evolution as exhibited by successive
generations that adapt in response to changes in environmental
conditions. Analogously, new molecules can be formed based

on those features from previous generations found to be
correlated with favorable performance.

4.1. Genetic Algorithms

GAs applied to molecular design seek to evolve molecules and
improve their properties as determined by changes in structural
and functional properties, often encrypted in binary
form.121,122 For example, the presence (or absence) of a
specific functional group could be represented by 1 (or 0) of a
variable artificial “gene”. The list of activated/deactivated genes
constitutes the molecular “chromosome” typically initialized
with random values, as shown in Figure 7 for a binary
depiction of the chromosome of a representative system.123

Once the chromosome is initialized, the gene variables are
evolved according to the following steps:

1. Fitness Testing: The chromosome “fitness” is assessed by
evaluating the property of interest, usually defined as a
simple function of the gene variables.

2. Parents Selection: The selection of “parents” correspond-
ing to the current chromosome can be performed in
multiple ways, though the most popular approach is to
select a chromosome section for replacement at random,
as with a roulette wheel (Figure 8).123 Other methods of
selection are highlighted in ref 124 with the number of
parents historically set to two although there could be
more.125,126

3. Crossover of Parent Genes: Crossover is the process of
combining the parent genes to form the chromosomes of
children. One common method involves selecting one or

Figure 7. Binary representation of activated genes (solid) in the
chromosome of features of a molecular system that affect the property
of interest.

Figure 8. Genetic Algorithm Steps. Panel A shows a circle broken into
segments based on the fitness of each parent A through E. Bigger
segments mean higher fitness. Panel B shows multipoint crossover
where parent’s genes are swapped in odd segments and kept in even
segments to make children.
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more crossover points and swapping the genes on one
side of the point but leaving them unchanged on the
other side, as depicted in Figure 8A.123,127 Another
option is to translate those genes that match between
parents, thereby enforcing more commonly found genes
under the assumption that better genes will appear more
frequently. The genes that do not match between
parents are randomly selected from the possible gene
expressions, with the more common methods discussed
in ref 127. Crossover occurs according to random
chance, and in the event that it does not occur, the
parent chromosome may be included in the next
generation.

4. Mutation of Child Genes: A small mutation chance is
permitted for each gene to sample genes beyond those of
the parents.

5. Repeat Steps 1−4 Until Convergence of Fitness.

4.2. Genetic Algorithms in Inverse Design

The combination of inverse design and GAs has been
employed for the discovery of materials with hardness >40
GPa,19 for exploring the full range of band gaps for AlGaAs
alloys,128 and for deriving understanding of structural motifs
that led to desirable band structures in GaP alloys with
nitrogen impurities.15 These studies are relevant to catalytic
applications since the band gap energy has been identified as a
descriptor of catalytic activity in various semiconductor
materials, including mixed metal oxides.129

Froemming and Henkelman combined GA with DFT to
optimize core−shell metal nanoparticles for the catalysis of
oxygen reduction.130 Previously, Hammer and Nørskov
demonstrated the correlation of the center of the d-band
with catalytic activity.131,132 Therefore, the chosen fitness
function was the difference between the center of the d-band of
nanoparticles and that of Pt(111), a known oxygen reduction
catalyst.130 GA was applied to the initial random generation of
30 core−shell nanoparticles, with the constraint that each d-
block metal was used once as a core and once as a shell. DFT
optimizations and calculations of the electronic density of
states were performed to estimate the fitness according to the
difference between the d-band center and that of Pt(111). The
particles were then ranked according to their fitness and
underwent a breeding process to produce the next generation
of particles as depicted in Figure 9.130 Breeding probabilities
were chosen such that the particle with the highest ranking was
10 times more likely to breed than the lowest ranked one.
Random mutations of the parent particles were allowed with

10% probability to ensure ample sampling of the chemical
space. Single-point, double-point, and inversion mutations
occurred with equal probability (3.3%). The GA was compared
to Metropolis Monte Carlo and brute-force procedures, with
improved efficiency as shown in Figure 10. While the 38- to
79-atom particles considered in this study might not be readily
synthesizable, this GA method can provide insight into the
types of metals that might be combined to create improved
catalysts. We anticipate that further refinement of the fitness
functions to better match catalytic activity could result in the
applicability of this type of sampling to more complex catalytic
systems.
As detailed by Sokalski,133,134 an electrostatic field can be

used as an abstract representation of a catalytic environment.
This approximation is useful when electrostatic effects are
dominant in determining activity. Dittner and Hartke used

global optimization methods to allow for the inverse design of
these fields.135 Starting with a preoptimized reaction path, an
optimal electrostatic model of a catalyst is identified. These
models, which are produced by GA, can provide insight into
important catalytic effects and guide the design of new
catalysts. However, there is not yet a clear way to translate
them to a molecular structure. Currently, this method can be
used to find the optimal catalytic field (which is constant over
the fixed reaction path) for one reaction step. Future work
could eliminate some of the approximations used so that this
method can allow for a more robust inverse design of
catalysts.135

GAs allow for the rapid identification of molecules with
desired properties. Springborg et al. used an inverse design
method based on GA to optimize mixed Si−Ge clusters for
solar energy harvesting.136 A performance function was defined
which included several criteria corresponding to the suitability
of molecules for solar cell applications. Using computationally
efficient density-functional tight binding (DFTB), the proper-

Figure 9. Depiction of the breeding process used in the GA of ref 130
for two example parents Co6@Pd32 and Ni6@Pt32. The single
offspring of each breeding event was chosen randomly from the
possible offspring. Reproduced with permission from ref 130.
Copyright 2009 AIP Publishing.

Figure 10. Comparison of GA with Monte Carlo and random
sampling for optimization of core−shell nanoparticles. The fraction of
nanoparticles found with energies within 0.25 eV of the optimal d-
band is plotted against the total fraction sampled. At the point
marked, the GA had found more than twice as many particles with the
desired fitness as the other sampling methods (37% of fit particles
after sampling 15% of space). Reproduced with permission from ref
130. Copyright 2009 AIP Publishing.
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ties of interest were rapidly computed to give a performance
score. A GA was used in which those members with the better
score were kept for future generations. It was noted that many
of the optimal Si−Ge clusters did not follow typical chemical
intuition, which necessitates the use of inverse design.136 This
work was expanded upon with the creation of the poor man’s
materials optimization (PooMa) approach.137 This method
allows for the optimization of some property given a particular
molecular backbone structure. Such a scheme could be used
for the optimization of heterogeneous catalysts, in which the
atoms at particular sites are varied. PooMa consists of a GA for
guiding site transformations, a subroutine for molecular
construction based on typical structures, a method for
electronic structure calculations, and a performance function
corresponding to the desired property. This scheme is
sufficiently general to allow for the adjustment of the electronic
structure method and performance function to fit any
application. The DFTB calculations employed by the authors
are computationally feasible on a standard laptop or desktop
computer.137 GAs have similarly been used to guide the
computational screening of organic polymers for photovoltaic
applications.138,139 After the pool of candidates had been
reduced by GA, more rigorous calculations were used to create
a computational pipeline for the identification of promising
compounds.139 Recently, a GA was used to identify
fluorophores for organic light-emitting diode applications.140

A subspace of 1.26 million molecules was reduced to 3792
promising candidates after performing only 7518 DFT
calculations. Molecules were represented as tree structures in
which each node corresponded to a molecular fragment from a
predefined library. This methodology could be applied to
catalyst design with a predefined library consisting of
molecules thought to be synthetically viable. Further develop-
ment of GA-based methods will enable the rapid identification
of catalytic molecules and materials with desired properties.
It is important to note that GAs can be used to guide both

experiments and computations. The use of evolutionary
algorithms for material discovery, including catalytic materials,
has recently been reviewed.141 These algorithms have been
used to direct the synthesis of materials, beginning with an
influential paper by Wolf et al. in which a heterogeneous
catalyst for the catalysis of propane to propene was optimized
according to an experimental fitness function.142

Similar to the use of GAs, the best-first search (BFS) can be
used as a discrete method of moving through chemical space.25

This method is best suited for identifying molecules with an
optimal property within a moderate sample space. A BFS
scheme was used to optimize the acidity of 2-napthol
derivatives in both the ground and excited states.26 Results
for test cases were compared to synthetic known values and
found to be within 0.15 eV. For a molecule with N sites on
which the substituents will be altered, site 1 is first altered with
each possible substituent, and the value of the desired property
is computed for each variation. The molecule with the optimal
substituent is kept, and site 2 is varied such that the property is
computed for each substituent. This process is continued
through site N and is repeated for a chosen number of
iterations. Convergence to a local optimum is mitigated by
randomly generating several initial structures.26 Similarly, BFS
was used to design intrinsically stable thiadiazinyl radicals and
optimize their electrophilicity and nucleophilicity.143,144 A
gradient-driven Monte Carlo28,64 component was later added
to BFS to avoid getting trapped in local minima.68 One could

imagine using a similar BFS algorithm to optimize a catalytic
property. This would be especially effective for a well-defined
catalyst structure on which the substituents need to be tuned
to improve catalytic activity.

4.3. Machine Learning for Inverse Design?

Having discussed ML and GA, one may wonder whether
inverse design could benefit from ML. A capability that ML
can bring to inverse design methods is the ability to establish
patterns of correlation that might not be otherwise evident
from a cursory examination of the data or through traditional
analysis using general trends and chemical principles. Such
capabilities of ML have been recently demonstrated in the field
of game theory through the discovery of new strategies for
winning the game of Go that human players had not found in
the 2500 years since the game’s inception.145 The ability to
determine new patterns may even lead to new chemical
understanding of structure−property relationships. Further-
more, the combination of ML with principal component
analysis could pick out the features that most drastically affect
the property of interest and reduce the vastness of chemical
space to a tractable subspace.
Kulik and co-workers, for example, have already utilized GA

to generate structures at a specific distance that was defined by
metal proximal effects from other structures trained by an
ANN. Combining GA with DFT calculations revealed new
spin-crossover complexes through reduction of the spin-state
splitting energy.39 A comparison of the DFT-driven GA
method versus the ANN found that two-thirds of the
structures identified by the ANN method were spin-crossover
complexes as verified by DFT. The ANN method was able to
boil down more than 5500 possible complexes to 51, yet only
took seconds for evaluation of a compound as compared to
days by DFT.39 These studies demonstrated that ANN could
identify candidate molecules with the properties of interest
with high accuracy and much faster than accomplished with
brute force high-throughput methods.39

Goḿez-Bombarelli et al. used ML to aid the virtual
screening of organic light-emitting diode molecules.146 Using
ML, a search space of 1.6 million molecules was reduced to
400 000 for evaluation by time-dependent DFT (TD-DFT).
This space was comprised of molecules fitting a maximum
mass of 1100 g/mol and fitting the formula donor−(bridge)x−
acceptor with x values between 0 and 2. A random set of
40 000 molecules were treated with TD-DFT to train the
neural network, and subsequent molecules were selected for
TD-DFT simulations based on ANN predictions. The ANN
was retrained to incorporate additional TD-DFT calculations
as they were performed and was found to produce more
accurate predictions than a linear regression model. Hundreds
of promising molecules were identified, and a select few were
chosen for synthesis. Experimental results showed external
quantum efficiencies of up to 22%, demonstrating the power of
combining ML with quantum calculations.146

Quantitative structure−activity relationship (QSAR) models
also establish correlations between molecular structure and
molecular properties.147 The origin of structure−functional
models can be traced back at least to the Hammett equation
which correlates the reactivity of aromatic molecules with the
nature of the substituent groups described by empirical
parameters (e.g., reaction rates of benzoic acid derivatives).148

Modern QSAR methods involve the use of informatics and ML
techniques to identify relationships between molecular
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structures and properties as implemented in a wide range of
applications including medicinal chemistry,149 polymer materi-
als for solar cells applications,147 and the assessment of toxicity
of pesticide metabolites in food.150 However, QSAR models
rely on the “activity landscape” of the property of interest being
relatively smooth so that small changes in structure result in
small changes in activity. Unfortunately, many applications
exhibit “activity cliffs” where similar molecules have very
different properties.151 Additionally, molecules used in training
sets may not adequately describe novel molecules beyond the
types of molecules used for parametrization of the models.
Some of these drawbacks can be overcome by combining
QSAR models with ML for the development of scoring
functions.
In fact, Google’s DeepMind did just that with the new

AlphaFold. AlphaFold inputs a protein sequence into neural
networks trained on amino acid pair distances and bonding
angles between amino acids.152 By generating a scoring
function from the output of these predictions and performing
gradient descent, a three-dimensional protein structure is
formed. Though currently far from perfect, AlphaFold beat out
all competitors at the 2018 Critical Assessment of Structure
Prediction, correctly predicting the structures of 25 of the
possible 43 proteins.152,153 This method, while no doubt
reliant on the high computing power of Google’s infra-
structure, presents hope for solving chemistry’s most complex
systems with machine learning.

4.4. Machine Learning for Catalyst Inverse Design

Few studies have as of yet been reported as using ML for
inverse design of catalysts.40,41,154 Most of these efforts have
been limited to prediction of catalytic activity41,154 and
catalytic reaction pathways.40 As the range of possible
pathways based on available sites, possible structures, and
experimental conditions involved in a typical reaction can be
enormous, it makes sense to invert design techniques to
explore them. For example, the reaction of carbon monoxide
with hydrogen gas has more than 2000 possible pathways as
estimated by Ulissi et al.40 Nevertheless, a significant reduction
in the range of possibilities was achieved by using ML in
conjunction with principal component analysis and with the
assistance of group additivity. Free energies were predicted
cheaply, in comparison with traditional DFT, and subsequently
used to rule out unfavorable pathways. These free energies
were predicted with a Gaussian process regression with input
features consisting of the largest ten principal components of
fragment-based fingerprints. The method of Gaussian process
regression builds a normal distribution over each feature,
offering the benefit of understanding the uncertainty in
predictions. Therefore, through the use of ML, a screening
of pathways at lower computational cost was achieved, while
viable pathways for catalytic reaction were identified for
additional study, with some aspects of selectivity already
confirmed in experimental literature.40

Even when a reaction pathway is known, the catalyst which
will assist the most in lowering the reaction activation barrier
remains to be determined. This problem was addressed for the
Suzuki cross-coupling reaction155 using machine learning to
predict the reaction energies of catalysts and plotting them on
a reference volcano plot.154,156 The goal of volcano plots is to
identify catalysts that bind substrates strongly, but not too
strongly, thus setting them at the activity peak of the “volcano”.
This ML method varied both the ligands and metals and

discovered 557 catalysts that fit in the Goldilocks region of the
volcano plot. Starting from a database of 25 116 possible
realistic structure candidates, this study revealed the ability of
ML to generalize patterns across varied metal and ligand types,
even when some of the test ligands were not present in the
training sets.154 Further studies using this technique could
work on eliminating the reliance on reference volcano plots.
Looking practically from the experimental side, reaction

yield can be of great importance not only for turnover numbers
but also especially for multistep reactions where product may
be lost at every step. Ahneman et al. examine the use of high-
throughput experimentation for generating output labels in the
form of reaction yield for the Pd-catalyzed Buchwald−Hartwig
C−N cross-coupling reaction the presence of isoxazoles.157

Using publicly available reagent geometries and scripts, catalyst
descriptors were generated and used as input for multiple ML
methods including KNN, neural networks, random forest,
linear regression, and more. The research discovered that
random forests performed the best at predicting reaction yield
with an RMSE of 7.8.157 Performing additional statistics to
verify generalization uncovered the importance of under-
standing the underlying chemistry in train/test set splitting and
found that active splitting performed better in generalization
tests than random splitting.158 This additional testing is the
result of communication with data scientists and highlights the
crucial nature of applying null hypotheses and other statistical
methods when utilizing machine learning159

In an interesting twist on the concept of inverse design,
Jinnouchi and Asahi computed the binding energies of NO on
small-crystal slabs with DFT and then compared larger
nanoparticles to the slabs by using ML techniques.41 This
research aimed at describing the catalytic activity of large
heterogeneous crystal structures, an open question in surface
chemistry. Specifically focusing on structures of the type
Rh1−xAux, this work studied the direct decomposition of NO.
The advantage of ML relative to the heavy cost of DFT
calculations was that it allowed for the analysis of large
nanoparticles, which would otherwise be computationally
intractable. The binding energies were then used to calculate
catalytic activities of RhAu alloy nanoparticles. The method
used a similarity kernel called Smooth Overlap Atomic
Position (SOAP)42 to calculate the overlap integrals of two
single-crystal three-dimensional representations. The overlaps
KIJ were used to obtain the binding energy, as follows

E w KIJ
J

J IJ∑=
(8)

where wJ were determined by Bayesian linear regression with
DFT binding energies calculated for the slabs.41 The model
was then used to extrapolate to the nanoparticle by applying
the similarity kernel to the Ith nanoparticle and the Jth single
crystal to find the new KIJ which is plugged back into the above
equation. The Jth wJ is then used to determine the binding
energy of NO on the nanoparticle. Addressing the important
topic of catalytic conversion of nitrous oxide to nitrogen and
oxygen gas in cars, this study showed that the method was
practically applicable for active site surface analysis, turnover
frequency, and analysis of size and composition. It was also
suggested that the methodology could be expanded to examine
diffusion barriers and lateral binding energies.41 It is important
to mention that kernel methods are well-defined approaches
for extracting nonlinear relationships from data and are
specifically designed not to depend on the particular feature
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space being examined. This ML technique is therefore apt to
address a wide range of chemical problems beyond those
presented in this review.160

While the SOAP method is a step away from inverse design,
the use of slabs with known energies to form a larger structure
with desired properties is similar to searching in property space
to find a solicited property and then generating the
corresponding structure. The use of the single-crystal
structures may assist in the inverse design process as they
can be used to explore the configurational space for systems
with similar properties.
From the examples above, it is clear that using ML for

inverse design of catalysts or understanding catalytic pathways
shows promise. Therefore, it is natural to anticipate that
applications of ML to catalysis and inverse design in general
will continue to provide valuable insights into future
developments.

4.5. Machine Learning for Configurational Sampling

One of the important challenges of computational modeling of
catalytic systems is the description of the relative stability of
configurations. ML could significantly improve the computa-
tional efficiency of configurational sampling. In fact, ML has
already been applied to a wide range of studies where the
relative energies of different configurations are critical,
including the description of reactive gas-surface dynamics of
N2 on Ru(0001),43 CO2 adsorption on Au/Cu alloy
surfaces,44,161 and formation energies of elpasolites made
from all main-group elements up to Bi.162

In the study of N2 on Ru(0001), an ANN was parametrized
to reproduce DFT calculations of energies and forces based on
25 000 configurations. The ANN enabled efficient calculations
of the dissociation of nitrogen gas from ruthenium slabs at the
DFT level of accuracy. This would have otherwise required
roughly 105 trajectory calculations to reach convergence with
the same level of error as DFT. This method produced phonon
modes that closely modeled experimental results from the
literature.43

ANN has also been used to generate DFT-grade potentials
in the study of oxygen and CO2 adsorption onto Au/Cu alloy
surfaces containing up to 3915 atoms.163 The studies were able
to determine the environmental conditions that led to changes
in structure, size, and composition responsible for differences
in reactivity.44 Further study of those nanoparticles found
promising structures that were proposed for experimental
testing.161

A study of elpasolites made from main-group elements
developed a ML model to estimate DFT energies from
descriptors based on atom types and static energy contribu-
tions.162 The energies of 2 million elpasolite configurations
were estimated using ridge regression based on the
aforementioned ML model. Configurations with negative
formation energies were identified, including 2133 thermody-
namically allowed crystal structures determined through the
phase diagram analysis. DFT revealed that 90 of those
structures were stable and suitable for further analysis,
demonstrating significant efficiency gains when combined
with the preliminary analysis based on the ML model. The ML
method explores elapsolite crystals based on formation
energies, finding these energies with similar or better
accuracies than DFT as compared to experiment.162

ML has been able to detect patterns of correlation between
molecular structures and properties, as illustrated by the

examples mentioned above as well as many other stud-
ies.164−166 ML can provide gains in computational efficiency
that are critical to general-purpose applications, including
catalyst inverse design and beyond. In the context of polymer
chemistry, a combination of GA and ML was found to be
useful for the design of polymer dielectrics with a desired band
gap and target dielectric constant. Polymers in this space
contained four units in the repeating block that were built from
the subunits of CH2, NH, CO, C6H4, C4H2S, CS, and O. For
computational efficiency, a kernel ridge regression (KRR)
algorithm was utilized to map the GA structures to the
property of interest, defined by the following fitness function:

F E E( ) ( )target
2

gap target gap
2= ϵ − ϵ + − (9)

A KRR maps a given problem into a higher-dimensional kernel
space where a linear regression of the data can be found. The
KRR model was trained at the DFT level, using the rPW86
functional and the DFT-DF2 van der Waals correction,
sampling polymer crystal structures generated from the
Minima Hopping167,168 prediction scheme. Comparison to
DFT and experimental results for bandgap and total dielectric
constant shows similar results, though errors are not systematic
and offer an area for improvement.45

Combining ML and inverse design can be a powerful
approach to guide the development of catalysts. However, the
machine learning process can be slow when the property of
interest is matched by multiple structures. That difficulty
typically arises when the property of interest is not very
sensitive to structural changes, when data used to train the
ANN have inadequate precision, or when there is a lack of data
for the ANN to pick out the differences that would lead to
different property value. In any of these cases, it can be
challenging for the algorithm to resolve which structure should
be generated from the property. A solution to this dilemma has
been explored using a combination of forward traversing and
inverse direction ANN.46 First, the forward model was trained
to go from structure to property using input and labels from
full-wave electromagnetic simulations. This kind of network
always produces a unique property from a given structure. The
inverse network was then connected to the forward model to
take a spectrum as input and produced a unique design as
output which in turn produced a spectrum. The final spectrum
output was used to calculate the cost to update the weights in
the inverse network. In that way, the inverse network was
trained only for unique structure−property relations. To
achieve prediction of spectral response for any hole vector
within the 2400 combinatorial possibilities, only 20 000
simulations were needed for training.46

Transfer learning is a ML technique to repurpose a model
trained on one task for a second related objective. In the
simplest form, transfer learning adds on layers to a network
pretrained for a similar task to fit a new problem while
retaining the lessons from the previous purpose. Transfer
learning is an excellent way to save computational time by
generating structures from potentials rather than using the
forward methodology.43 At the same time, this avoids
repetition of previous calculations by tailoring previous work
to new research objectives. Transfer learning is one method to
bridge the bottlenecks of machine learning in chemistry, many
of which have been interwoven into the discussion above.
Explicitly, these bottlenecks are access to data, covering
enough of a property subspace to describe a desired
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relationship, complexity of chemical interactions increasing size
of model needed, generalizability to vast chemical space, and
representation of system. Data are the key unlocking
relationships with machine learning. The generation of large
data sets of chemical data, similar to those generated in the
biochemistry field but particularly for catalysis, is needed for
continued development of catalysts with machine learning.
Such data sets must reach widely across chemical space but
also deeply into the pockets of space that are examined so that
complex chemical relationships can be unwrapped. In
particular, relating catalytic performance to molecular proper-
ties is an open problem that nonlinear regression methods may
be able to successfully tackle given enough well-selected data.
Additionally, more complex relationships often require deeper
models, which increase memory and processing requirements.
This is perhaps why Google is able to surpass individual
research teams that had been working on the protein folding
problem for many more years. With the improved data sets
described above, models could be trained to be generalizable to
wider spaces of data, increasing the utility of individual models.
Finally, representation of systems in machine learning remains
an open question. The creation of a compact data structure
containing all pertinent chemical interactions offers the
promise of model training and preprocessing speedup, allowing
individual researchers to compete more evenly with industrial
giants. Each of these bottlenecks presents opportunities for
research in chemistry as well as math and computer science. In
the interim though, it is clear that advances in machine
learning for the inverse design of catalysts have laid a
foundation on which further research may be built.

5. CONCLUSIONS AND OUTLOOK

The development of new catalysts is critical for a wide range of
applications, including the generation of sustainable energy.
Recent developments in inverse design offer new opportunities
for identifying catalysts using computationally efficient
methods that bypass the need for high-throughput screening
and narrow the range of compounds and catalytic materials to
only those candidates with properties of interest. These can
then be the subject of synthetic and experimental work. From
this review, it is clear that while many advancements are tested
against experimental results in the literature, few have initiated
collaboration to experimentally test the validity of entirely new
predicted molecules. The authors encourage such follow-up
studies and think such studies are key to determining which
methods are the most useful. In the very far future, these
methods could be used to completely automate the design and
synthesis of compounds according to the user’s needs.169

Catalytic mechanisms could even be explored by inverse
design.170 Here, we have reviewed several inverse design
methods that are pertinent to catalyst development. As these
methods have not yet been extensively applied to catalysis,
there is ample room for new and exciting developments in this
growing field.
Inverse design could be applied to modulate catalytic activity

through changes in the first and second coordination spheres
of the catalyst binding site. Those effects are known to be
critical for functionality of catalytic cofactors in enzymes, often
responsible for efficiency and selectivity.171 In fact, such ideas
have been the motivation for efforts to design molecular
catalysts with structures similar to those of enzyme active
sites.172−174

Along the same lines, in real-world applications, catalysis
does not occur in a vacuum. The environment has a major
impact on catalytic activity. In particular, the solvent in which
catalysis occurs can play a major role in reactivity. Solvents can
increase the rate constant of a reaction significantly by
stabilizing the transition state or can undesirably hinder the
reaction rate.175−177 Recent efforts have focused on computa-
tionally designing solvents for improving the rates of
reactions.178 Including solvent effects in existing methods
and using inverse design to identify improved solvents for
catalysis will contribute to the development of more efficient
catalytic systems.
From a practical standpoint, the primary objective of inverse

design is to identify promising structures for further computa-
tional and experimental study. Therefore, it is important to find
compounds that are straightforward to synthesize. A possible
approach is to use the synthetic accessibility score,179 typically
applied for drug molecules, as part of the scoring functions of
inverse design that would ensure synthetic feasibility. One
method of doing such design efficiently may rely on the use of
empirical parameters to describe molecules without the cost of
using three-dimensional coordinates for a whole structure and
without relying on a model to determine the complex
interactions indirectly from the geometry.
At the computational level, progress in inverse design relies

critically upon optimization algorithms. These algorithms,
which dictate how an answer space is explored, could ensure
higher rates of success in finding parameters that optimize the
value of a scoring function. Methods, such as the recently
developed Classical Optimal Control Optimization (COCO)
algorithm,180 for global energy minimization could be
particularly valuable. COCO is based on diffeomorphic
modulation under the observable-response-preserving homo-
topy (DMORPH) algorithm181−186 and guides the classical
dynamics of a probe particle. These dynamics are driven by an
external field to reach the global optimum of a multidimen-
sional function by iteratively adapting field control parameters
along the direction of the gradient of the scoring function with
respect to the controls. The global minimum is typically found,
even for initial states far from the minimum, as long as the field
has enough control parameters. While COCO has been
demonstrated for model systems, an outstanding challenge is
its implementation for scoring functions in inverse design
applications.
Inverse design methods can benefit from ML techniques and

the development of scoring functions from data analysis
methods that provide patterns of correlation. These scoring
functions could correlate molecular descriptors to catalytic
properties to find catalysts through gradient-based optimiza-
tion. Still to overcome are the difficulties previously discussed
in section 4.3 that might plague the resulting scoring functions
as well. As an example, very similar molecules often have very
different catalytic activity due to subtle effects that must be
captured by scoring functions. Such subtleties may be captured
by pairing with experimentation to construct training sets of
systems that differ in values of the properties in order to
determine feature sets that are able to capture these properties.
Through these negative tests, features can be ruled
independent of the processes in question, developing new
chemical understanding. ML could similarly be used to
determine performance scores for GA-based methods such as
PooMa.136,137 In the realm of ML, autoencoders have been
applied to transform SMILES representations of chemicals to a
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continuous latent space to optimize chemical properties, such
as the synthetic accessibility score and Quantitative Estimation
of Drug Likeness.187,188 Using gradient-based methods, the
latent space could be traversed to predict novel structures
which could then be synthesized and tested. Such a
combination of inverse design with gradient-driven optimiza-
tion and ML is a prime example of using artificial intelligence
methods to address the challenge of catalyst discovery.
Similarly, a wide range of related methods that have been

developed to explore the chemical space for drug development
could be implemented for catalyst discovery. Such method-
ology could be applied to examine catalytic reactivity based on
empirical parameters, such as the Hammett148 and Lever189

ligand parameters, which provide a linear relationship between
the Gibbs free energy change and reaction rates. As many
catalysts consist of substituted phenyls and metal centers with
varying oxidation states, Hammett and Lever parameters are
expected to be particularly valuable as molecular descriptors to
scan across the chemical space for ligand design. These and
other empirical parameters could be used as inputs for
parametrization of ANN. The labels used for output
comparison could be a molecular representation or property
that enables the discovery of relationships between the
molecular descriptors and specific properties of interest. Such
patterns could give rise to a multivariate level of understanding
of catalytic reactivity. Further development of such networks
could employ transfer learning to examine the effects of the
environment on catalytic reactivity. As a final comment, we
note that the use of structural parameters and empirical
descriptors could provide significant gains in computational
efficiency while at the same time narrowing the range of
promising candidates to be analyzed.
Inverse design shows great promise for the development of

molecular and heterogeneous catalysts. It is natural to
anticipate that the early efforts highlighted in this review will
certainly be expanded upon to create more robust and efficient
inverse design methods. Catalysts identified through inverse
design can be subjected to high-level computations followed by
synthesis and experimental analysis, reducing the overall time
and cost needed for discovery and development. Furthermore,
inverse design will allow for the discovery of improved catalysts
through rigorous multivariate analyses beyond the capabilities
of the traditional approach of intuition-driven trial-and-error.
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(146) Goḿez-Bombarelli, R.; Aguilera-Iparraguirre, J.; Hirzel, T. D.;
Duvenaud, D.; Maclaurin, D.; Blood-Forsythe, M. A.; Sik Chae, H.;
Einzinger, M.; Ha, D.-G.; Wu, T.; et al. Design of Efficient Molecular
Organic Light-Emitting Diodes by a High-Throughput Virtual
Screening and Experimental Approach. Nat. Mater. 2016, 15,
1120−1127.
(147) Kar, S.; Sizochenko, N.; Ahmed, L.; Batista, V. S.; Leszczynski,
J. Quantitative Structure-Property Relationship Model Leading to
Virtual Screening of Fullerene Derivatives: Exploring Structural
Attributes Critical for Photoconversion Efficiency of Polymer Solar
Cell Acceptors. Nano Energy 2016, 26, 677−691.
(148) Hammett, L. P. The Effect of Structure upon the Reactions of
Organic Compounds. Benzene Derivatives. J. Am. Chem. Soc. 1937,
59, 96−103.
(149) Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.;
Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.;
Todeschini, R.; et al. QSAR Modeling: Where Have You Been?
Where Are You Going To? J. Med. Chem. 2014, 57, 4977−5010.
(150) Worth, A.; Fuart-Gatnik, M.; Lapenna, S.; Serafimova, R.
Applicability of QSAR Analysis in the Evaluation of Developmental
and Neurotoxicity Effects for the Assessment of the Toxicological
Relevance of Metabolites and Degradates of Pesticide Active
Substances for Dietary Risk Assessment. EFSA Supporting Publications
2011, 8, 169E.
(151) Maggiora, G. M. On Outliers and Activity Cliffs - Why QSAR
Often Disappoints. J. Chem. Inf. Model. 2006, 46, 1535−1535.
(152) Hassabis, D.; Jumper, J.; Senior, A.; Evans, R.; Kirkpatrick, J.;
Sifre, L.; Green, T.; Qin, C.; Zidek, A.; Nelson, S. et al. AlphaFold:
Using AI for Scientific Discovery, 2018 (Accessed Dec 7, 2018).
https://deepmind.com/blog/alphafold/.
(153) Stones, J. Google’s DeepMind Bests Experts at Predicting 3D
Protein Shapes, 2018 (Accessed Dec 7, 2018). https://www.alphr.
com/artificial-intelligence/1010276/google-s-deepmind-bests-
experts-at-predicting-3d-protein-shapes.
(154) Meyer, B.; Sawatlon, B.; Heinen, S.; von Lilienfeld, O. A.;
Corminboeuf, C. Machine Learning Meets Volcano Plots: Computa-
tional Discovery of Cross-Coupling Catalysts. Chem. Sci. 2018, 9,
7069−7077.
(155) Miyaura, N.; Yamada, K.; Suzuki, A. A New Stereospecific
Cross-Coupling by the Palladium-Catalyzed Reaction of 1-Alkenyl-
boranes with 1-Alkenyl or 1-Alkynyl Halides. Tetrahedron Lett. 1979,
20, 3437−3440.
(156) Busch, M.; Wodrich, M. D.; Corminboeuf, C. Linear Scaling
Relationships and Volcano Plots in Homogeneous Catalysis -
Revisiting the Suzuki Reaction. Chem. Sci. 2015, 6, 6754−6761.

(157) Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle,
A. G. Predicting Reaction Performance in C−N Cross-Coupling
Using Machine Learning. Science 2018, 360, 186−190.
(158) Estrada, J. G.; Ahneman, D. T.; Sheridan, R. P.; Dreher, S. D.;
Doyle, A. G. Response to Comment on “Predicting Reaction
Performance in C−N Cross-Coupling Using Machine Learning.
Science 2018, 362, eaat8763.
(159) Chuang, K. V.; Keiser, M. J. Comment on “Predicting
Reaction Performance in C−N Cross-Coupling Using Machine
Learning. Science 2018, 362, eaat8603.
(160) Shawe-Taylor, J.; Cristianini, N. Kernel Methods for Pattern
Analysis; Cambridge University Press: New York, NY, USA, 2004.
(161) Artrith, N.; Kolpak, A. M. Grand Canonical Molecular
Dynamics Simulations of Cu-Au Nanoalloys in Thermal Equilibrium
Using Reactive ANN Potentials. Comput. Mater. Sci. 2015, 110, 20−
28.
(162) Faber, F. A.; Lindmaa, A.; von Lilienfeld, O. A.; Armiento, R.
Machine Learning Energies of 2 Million Elpasolite (ABC2D6)
Crystals. Phys. Rev. Lett. 2016, 117, 135502.
(163) Kitchin, J. R. Machine Learning in Catalysis. Nat. Catal. 2018,
1, 230−232.
(164) Musil, F.; De, S.; Yang, J.; Campbell, J. E.; Day, G. M.;
Ceriotti, M. Machine Learning for the Structure-Energy-Property
Landscapes of Molecular Crystals. Chem. Sci. 2018, 9, 1289−1300.
(165) King, R. D.; Muggleton, S.; Lewis, R. A.; Sternberg, M. J. Drug
Design by Machine Learning: The Use of Inductive Logic
Programming to Model the Structure-Activity Relationships of
Trimethoprim Analogues Binding to Dihydrofolate Reductase. Proc.
Natl. Acad. Sci. U. S. A. 1992, 89, 11322−11326.
(166) Schütt, K. T.; Glawe, H.; Brockherde, F.; Sanna, A.; Müller, K.
R.; Gross, E. K. U. How to Represent Crystal Structures for Machine
Learning: Towards Fast Prediction of Electronic Properties. Phys. Rev.
B: Condens. Matter Mater. Phys. 2014, 89, 205118.
(167) Goedecker, S. Minima Hopping: An Efficient Search Method
for the Global Minimum of the Potential Energy Surface of Complex
Molecular Systems. J. Chem. Phys. 2004, 120, 9911−9917.
(168) Amsler, M.; Goedecker, S. Crystal Structure Prediction Using
the Minima Hopping Method. J. Chem. Phys. 2010, 133, 224104.
(169) Aspuru-Guzik, A.; Lindh, R.; Reiher, M. The Matter
Simulation (R)evolution. ACS Cent. Sci. 2018, 4, 144−152.
(170) Rangarajan, S.; Maravelias, C. T.; Mavrikakis, M. Sequential-
Optimization-Based Framework for Robust Modeling and Design of
Heterogeneous Catalytic Systems. J. Phys. Chem. C 2017, 121,
25847−25863.
(171) Cowan, J. A. Metal Activation of Enzymes in Nucleic Acid
Biochemistry. Chem. Rev. 1998, 98, 1067−1088.
(172) Rakowski DuBois, M.; DuBois, D. L. The Roles of the First
and Second Coordination Spheres in the Design of Molecular
Catalysts for H2 Production and Oxidation. Chem. Soc. Rev. 2009, 38,
62−72.
(173) Shook, R. L.; Borovik, A. S. Role of the Secondary
Coordination Sphere in Metal-Mediated Dioxygen Activation. Inorg.
Chem. 2010, 49, 3646−3660.
(174) Shaw, W. J. The Outer-Coordination Sphere: Incorporating
Amino Acids and Peptides as Ligands for Homogeneous Catalysts to
Mimic Enzyme Function. Catal. Rev.: Sci. Eng. 2012, 54, 489−550.
(175) Gutmann, V. Solvent Effects on the Reactivities of
Organometallic Compounds. Coord. Chem. Rev. 1976, 18, 225−255.
(176) Klibanov, A. M. Improving Enzymes by Using Them in
Organic Solvents. Nature 2001, 409, 241−246.
(177) Reichardt, C.; Welton, T. Solvents and Solvent Effects in
Organic Chemistry, 4th ed.; Wiley-VCH: Weinheim, Germany, 2011.
(178) Struebing, H.; Ganase, Z.; Karamertzanis, P. G.; Siougkrou, E.;
Haycock, P.; Piccione, P. M.; Armstrong, A.; Galindo, A.; Adjiman, C.
S. Quantifying the Chemical Beauty of Drugs. Nat. Chem. 2013, 5,
952−957.
(179) Ertl, P.; Schuffenhauer, A. Estimation of Synthetic
Accessibility Score of Drug-Like Molecules Based on Molecular
Complexity and Fragment Contributions. J. Cheminf. 2009, 1, 8.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.8b00759
Chem. Rev. 2019, 119, 6595−6612

6611

https://deepmind.com/blog/alphafold/
https://www.alphr.com/artificial-intelligence/1010276/google-s-deepmind-bests-experts-at-predicting-3d-protein-shapes
https://www.alphr.com/artificial-intelligence/1010276/google-s-deepmind-bests-experts-at-predicting-3d-protein-shapes
https://www.alphr.com/artificial-intelligence/1010276/google-s-deepmind-bests-experts-at-predicting-3d-protein-shapes
http://dx.doi.org/10.1021/acs.chemrev.8b00759


(180) Soley, M. B.; Markmann, A.; Batista, V. S. Classical Optimal
Control for Energy Minimization Based On Diffeomorphic
Modulation under Observable-Response-Preserving Homotopy. J.
Chem. Theory Comput. 2018, 14, 3351−3362.
(181) Rabitz, H. A.; Hsieh, M. M.; Rosenthal, C. M. Quantum
Optimally Controlled Transition Landscapes. Science 2004, 303,
1998−2001.
(182) Rothman, A.; Ho, T.-S.; Rabitz, H. Observable-Preserving
Control of Quantum Dynamics over a Family of Related Systems.
Phys. Rev. A: At., Mol., Opt. Phys. 2005, 72, No. 023416.
(183) Rothman, A.; Ho, T.-S.; Rabitz, H. Quantum Observable
Homotopy Tracking Control. J. Chem. Phys. 2005, 123, 134104.
(184) Ho, T.-S.; Rabitz, H. Why Do Effective Quantum Controls
Appear Easy to Find? J. Photochem. Photobiol., A 2006, 180, 226−240.
(185) Hsieh, M.; Wu, R.; Rabitz, H. Topology of the Quantum
Control Landscape for Observables. J. Chem. Phys. 2009, 130, 104109.
(186) Beltrani, V.; Dominy, J.; Ho, T.-S.; Rabitz, H. Exploring the
Top and Bottom of the Quantum Control Landscape. J. Chem. Phys.
2011, 134, 194106.
(187) Bickerton, G. R.; Paolini, G. V.; Besnard, J.; Muresan, S.;
Hopkins, A. L. Quantifying the Chemical Beauty of Drugs. Nat. Chem.
2012, 4, 90−98.
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