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Detailed Computational Methodology

For all calculations which include solvent effects, the quantum chemical package Gaussian [1]

has been employed whereas calculations without consideration of any solvent effect have been

performed with the quantum chemical package Turbomole1 [2] [except of Fig. 2 (a)]. For

the ground-state structure optimization (if not noted otherwise) and IR spectrum calculation,

density functional theory (DFT) was used with the BP86 density functional [3,4] and Ahlrichs

TZVP [5] basis set. For excited-state structure optimizations and IR spectra calculations,

time-dependent DFT (TD-DFT) with the B3LYP density functional [6, 7], as implemented in

Gaussian 09 andTurbomole (Version 6.2), respectively, and the TZVP or TZVPP [5,8] basis

sets were used as well as the Configuration Interaction Singles (CIS) method with the TZVP

basis set. The B3LYP density functional in Gaussian 09 employs the Vosko, Wild, and Nusair

(VWN) correlation functional(III) [9] whereas the B3LYP density functional implementation

in Turbomole version 6.2 uses the VWN(V) correlation functional [9]. In addition, IR excited-

state spectra were obtained with the M06-2X [10] and CAM-B3LYP [11] density functionals.

The electronic transition dipole moments of cis-enol from the ground to the first electronically

excited state were obtained with TDDFT employing B3LYP and the TZVP or TZVPP basis set.

The solvent tetrachloroethene is considered via the polarizable continuum model (PCM) using

the integral equation formalism variant as implemented in Gaussian 09. The normal modes,

frequencies, and IR intensities as well as the anisotropy angles of certain normal modes were

obtained with a modified and extended version of SNF [12,13] in the harmonic approximation.

Gaussian 09 and Turbomole, respectively, were employed for the calculation of electronic

energy gradients and electric dipole moments for distorted structures of the molecule of interest.

This data was collected by SNF that evaluates the normal modes and IR intensities. For the

differentiation, a three-point central difference formula [14] was applied and the step length for

the differentiation was chosen to be 0.01 bohr. The electrostatic-potential-fitted (ESP) charges

were obtained employing the Merz-Singh-Kollman [15,16] scheme as implemented in Gaussian

09. Molecular structures and normal modes were visualized using the programs Vmd [17] and

Jmol [18], respectively.
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Figure 1: IR spectra of HBT in the S1-state with cis-keto* configuration, calculated with (a)

TDDFT (B3LYP/TZVP), (b) TDDFT(B3LYP/TZVP/PCM)/CIS(TZVP/PCM), (c) TDDFT

(CAM-B3LYP/TZVP/PCM), and (d) TDDFT (M06-2X/TZVP/PCM) are compared with the

transient IR spectrum measured at 100 ps pulse delay (d).
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Comparison of Experimentally Measured and Calculated Anisotropies

Table 1: Measured and calculated [TDDFT(B3LYP/TZVP/PCM)] anisotropy angles Θ of selected

experimental bands / calculated normal modes Ω of cis-keto (in brackets: trans-keto*) in the first

electronically excited state.

Ω (cm−1) Θ (◦)

Exp. Theory Exp. TDDFT

1305 1308 (1305) 29 ± 5 39 (4)

1397 626+794 (625+770) 90−15 90 (90)

1439 1422 (1421) 77 ± 13 52 (31)

1475 1475 (1475) 90−15 68 (86)

1475 1482 (1491) 90−15 62 (31)

1535 1535 (1520) 23 ± 2.5 16 (29)
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Table 2: Measured and calculated anisotropy angles Θ of selected experimental bands / calculated

normal modes Ω of cis-keto in the first electronically excited state; the calculated values were obtained

with normal modes employing TDDFT(B3LYP/TZVP/PCM) and electric-dipole moments computed

with CIS(TZVP/PCM).

Ω (cm−1) Θ (◦)

Exp. Theory Exp. (TDDFT/CIS)

1305 1308 29 ± 5 12

1397 (703+735) 90−15 90

1439 1142 77 ± 13 36

1475 1475 90−15 68

1475 1482 90−15 38

1535 1535 23 ± 2.5 12
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