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Is the Filinov integral conditioning technique useful in semiclassical initial
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The utility of the Filinov integral conditioning technique, as implemented in semiclassical initial
value representatio(BC-IVR) methods, is analyzed for a number of regular and chaotic systems.
For nonchaotic systems of low dimensionality, the Filinov technique is found to be quite ineffective
at accelerating convergence of semiclassical calculations since, contrary to the conventional
wisdom, the semiclassical integrands usually do not exhibit significant phase oscillations in regions
of large integrand amplitude. In the case of chaotic dynamics, it is found that the regular component
is accurately represented by the SC-IVR, even when using the Filinov integral conditioning
technique, but that quantum manifestations of chaotic behavior was easily overdamped by the
filtering technique. Finally, it is shown that the level of approximation introduced by the Filinov
filter is, in general, comparable to the simpat hoctruncation procedure introduced by Kgy.

Chem. Phys101, 2250(1994]. © 2005 American Institute of Physid®OI: 10.1063/1.1854634

I. INTRODUCTION optimized sampling function when evaluating the IVR inte-
grals by importance sampling Monte Carlo techniqjt?ésl.

Understanding quantum mechanical processes in syjnfortunately, it has proven difficult to use the Filinov filter

tems with many coupled degrees freedom is a subject gf; this manner. Rather, the Filinov filter has typically been

great interest. Unfortunately, a rigorous quantum treatmenysiemented in SC-IVR calculations via an alternative ap-

of mo Ile_cular dyna}mlcs 1S gften impossible due to the %Xpogﬁ]roach, where the contributions of trajectories that originate
nentialincrease of required computer storage space and co 1 oscillatory regions are down-weighted. Obviously, such an
putational workload with dimensionality. It is therefore es-

sential to develob and implement anbroximate methods th e%pproach does not avoid sampling highly oscillatory regions
: velop 'mp pproxi %nd is therefore not optimal in terms of computational effort.

are both reliable and computationally tractable, of which : o .

; ; L . However, it does minimize undesirable effects caused by
semiclassical metholisre most promising. In this paper, we . o o . L

- . . rapid phase oscillations. The Filinov filter used in this way
explore the efficiency of the Herman—KIUKK) semiclassi- has been effective in accelerating the convergence of semi-
cal (SO initial value representatiofiVR) method®* one of lassical calculati ﬁé_lg( Ibeit thg sl _g i
a general class of semiclassical propagéfg)with emphasis classical caicuiations -~ {albert tney still remain fime con-
suming and is becoming part of the standard semiclassical

on the utility and accuracy of the Filinov integral condition- - . o
ing techniqué ! Such techniques were introduced to Speec]methodology. Surprisingly, a detailed study of the utility of

up convergence in semiclassical computations, a vital need }pe Filinov filter h_as y_et to be undertaken. This is the main
such computations are to be generally useful. issue addressed in this paper. o _

The HK SC-IVR is currently the most popular semiclas- Below, the utility of the Filinov filter is explored in a
sical approach. Unfortunately, the HK SC-IVR approach rednumber of nonchaotic and chaotic systems. The nonchaotic
mains quite inefficient when applied to a number of interest/nodels consist of a one-dimensioriaD) anharmonic oscil-
ing cases, primarily due to poor Monte CafMC) statistics !ator, a 2D linear triatomic syst_em Wlth d|5300|at|\{e dyparn—
in the integration over initial phase space conditions. This i4CS, and a 2D model of nonadiabatic ICN photodissociation
usually attributed to thécomplex valueflintegrand that may ~dynamics. In all of these nonchaotic systems, the Filinov

become highly oscillatory, leading to phase cancellatiorfilter is found to be quite inefficient if strong overdamping of
problems. the results is to be avoided. We analyze the reasons for the

The Filinov filter®* described in Sec. Il C, provides a observed lack of efficiency and show that the nonchaotic
means of analytically integrating out the contribution of Systems consideradb notexhibit rapid phase oscillations in
neighboring trajectories in highly oscillatory regions. Theregions of large integrand amplitude, explaining the ineffec-
original idea was to incorporate such a filter directly into antiveness of the Filinov filter. The chaotic examples studied

consist of two 1D nonadiabatically coupled oscillators, the

dpresent address: Department of Chemistry, Yale University, New Haveng_uartic_ o_sciIIator, the Henon-Heiles system, and th(? ph_OtO'
CT 06520-8107. dissociation of 2D HO. In these systems, the Filinov filter is
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seen to be capable of alleviating convergence problems arishe coordinate space representation|md3) is about the
ing from regions of large phase oscillations and exponensame size as the initial wave functi(ﬂr‘b(q).7
tially large integrand amplitude. However, the converged  The full HK SC-IVR wave function at timé can then be
Filinov filtered results show incorrect level spacing distribu-written as
tions in the chaotic domain, albeit correct behavior in the 1 \N
regu_lar regime. Thus, the Filinov filter overdamps the dy- qfsc(x',t):<ﬁ) fdpJqupqte'Spqt/h<x/|ptqtﬂ>
namics. ™

The paper concludes with a comparison of the Filinov X (pqB|¥o). (7)
filter method and an alternated hoc method proposed by
Kay.*® It is argued that the two methods introduce an equivaThis semiclassical integral is typically evaluated using
lent level of approximation when applied to the semiclassicaMonte  Carlo integration with a sampling function

KpaB| Po)|l. When|W ) is itself a Gaussian wave packet, the

integrals. vher :
(pgB|¥,) projection can be evaluated analytically. The nec-
Il. METHODOLOGY essary time-dependent factors in E@) are integrated nu-

A. Herman—Kluk SC-IVR

merically using the following differential equations:

dpy oH dg; oH

The HK SC-IVR'"'® approximates the quantum propa- LA (e ®)
gator dt g dt  Jpy
K(x',x,0) = (x’[e7H"|x) 6] g<ﬂ> B _% ( PH_opy _PH ﬂw) o
as dt\ dz; ko1 \ Py A Gy 9z Iy I 97 )
1 \N .
Kq(x ,X,t)=<%> fdpqucpqte'qut/h@ Ipa:B) g(&) _ ( #PH TP, PH %)' 20
dt\ 9z ) 5 \IPw Py 9z IO I Py 97

X(paBx), 2)

whereN is the number of degrees of freedofp, q) are the

initial coordinates and momenta for classical trajectoges
=p:(p,q) andg,=q,(p,q) obtained by integrating Hamilton's
equations to time, andS, is the classical action integrated

wherez=p or q.

In addition to the wave function, we compute both the
autocorrelation functior(t) and the associated energy spec-
trum I(E), defined as

along these classical trajectories, given by X0 = (¥ W (1) = <qf0|e-iﬁt/h|qfo> (11)
t
. d
Spqt:f dT[p‘r'qr_H(pT!qr)]' (3) an
0 1 * .
(E)=——| dtd"""x(1). 12
The statespgp), introduced by Eq(2), denote multidimen- ® Zﬂhfo X0 (2

sional Gaussian wave packets with average positipn

=(0y, G, -, An) @nd momentunp=(py, Pz, .-, Py), that is, .
N B. Nonadiabatic HK SC-IVR
lpap) = 11 |PkOkBi » (4) This semiclassical formalism can be extended to model
k=1 nonadiabatic dynamics on multiple electronic surfaCés.

First, a classical Hamiltonian that encompasses the multiple
surface problem must be constructed. Such a Hamiltonian
2P was developed by Meyer and Milférand is written, for the

1/4
ﬁk 2, -
=|— - (X + -qgu/h|.
P ( T ) exp[ 2 (%= 0"+ 1P~ G case of two potential energy surfaces, as

5 pP?
H(R,P;x,p) = ot Hel(R;Xx,p),

where

(13
The prefactoiC,, is defined by

1(0 0
Cpat = {dEI{—(&( + By 9P _ 2ih
2\ 9q; By Ipj

where
He(R;X,p) = 3H1 1(R)[pf + X2 — 1]+ 5H, A R)[p5 + X5 — 1]

1 ﬂ)] 1/2. +Hy o(R)[p1p2 + X% ]. (14)

2ih i 00 Herex, and p, are the coordinates and momenta of coupled
where gy, pi denote thekth component of the propagated oscillators modeling the electronic degrees of freed&n,
coordinate and momentum at timeThe square root in this andP are the nuclear coordinates and momenta, ldycare
equation is chosen such thag is a continuous function of the components of the electronic Hamiltonian matrix.
t with Cq0=1. The Gaussian width parametgsare essen- When this Hamiltonian dynamics is propagated through
tially arbitrary, but in practice the HK SC-IVR calculations SC-IVR, the wave functiong(x;,X,)=d(X1)d(X,) corre-
are seen to be optimized when tfg are chosen such that sponding to the electronic oscillators is given by harmonic

(6)
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oscillator states oH' =p?/2+x?/2, with |¢Y)=|1)|0) if the fe b)Y B HPIAC

first electronic surface is excited apg®)=|0)|1) if the sec- I= f dr'A(r')e : (19

ond surface is excited. The nuclear wave function omttte

electronic surface is calculated using HK SC-IVR as Preaveraging of the neighboring integration points then oc-

1 \N _ curs through the gradient term in the exponential, and the
V(R,mt) = (ﬁ) fdQOCQte'SQt’h<R|PthﬁXd)(m)lptxty) contribution to the integral is small when the phase of the
™ integrand becomes highly oscillatory. The “strength” param-
X(PoRoB|Po){poXor &™), (15)  eterC controls the extent of the preaveraging, and it is noted

) that asC— o, the original integra[Eq. (16)] is recovered.
where Q=(R,P,x,p), dQy=dPydRdpydXo,|®y is the

| tunction initiall thath electroni ; This procedure can be applied to the semiclassical inte-
. . . 2
and y is the Gaussian widh parameter for the elecironicd'® 10" V=9 by Smply incorporating the factae "o/«
Y P into the integrand, wherl¥,¢|? is the magnitude squared of
degrees of freedom.

the phase gradient with respect to the initial conditions and
can be calculate¢for the adiabatic cageas

- . N
C. Filinov Filter ap\> [ad\?
. . Vodl?=2 {(—) + (— : (20
Written as Eqs(7) and(15), the HK SC-IVR method is i=1 L\dG Ip;
seen to constitute a phase space average over the initial con-
ditions of classical trajectories. Since we are in the semiclasvhere
sical regime, the integrands are expected to become a highly N T o
oscillatory function of the initial coordinates due to the com- ip _ Iy s Bi(p1i — Py
: jsh - : —=2 =g |+~ | (21)
plex exponential dependence &/, increasing when neigh- o =1 L 9q ) 1L B+ B
boring trajectories diverge and separate with time. Further-
more, since the prefact@,; is a function of the coordinate _ oL
derivatives with respect to the initial conditions, the ampli- ~ d¢ -3 &—pti(x-’ —an ] - Bui(Gi — &) (22)
tude of a particular trajectory can become larger as time  gp; _].:1 | op; ! % | Bi+Bi |

progresses and the trajectory diverges from its neighboring

trajectories. Because of thi€,, is expected to increase ap- An analogous expression that includes both nuclear and elec-
proximately algebraically with time for regular trajectories tronic coordinates applies to the nonadiabatic case. Hése

and exponentially for chaotic trajectories, while the inte-set to 1 for ease of notation and the contribution to the phase
grand phase becomes more and more oscillatory. Introducingf the semiclassical prefact@,, is neglected. The latter is a
some preconditioning of the integrand or preaveraging oktandard approximation used when applying the Filinov filter
neighboring trajectories to minimize these adverse effectso semiclassical integrals, simply because this phase cannot
therefore seems desirable. The Filinov filétis applied to e easily included. Here the initial stdt,) was assumed to
semiclassical methods for this reason and proceeds as fdbe the Gaussian stafp;q;/8,). In calculating the semiclas-

lows. sical autocorrelation function®t)=(W¥,| ¥54t)), the phase
Consider a general complex integral written as derivatives are given by
i N
[ :f drA(r)e®n, (16) 99 _ {@[ﬁ-(pt- - pl-)} ~ %{ﬁl-(qt- - ql-)H
. o _ 90 =1 AL Bt By L Bt B
whereA(r) is the amplitud€i.e., a real-valued functionTo
precondition this integral, one inserts unity in the fozrm of a + {:3'001' - p-)} (23)
normalized Gaussian integral, 1&/7)V2[dr’'e """ to B; + Bij
give
N
: , ¢ % | Bi(Py — Pyj) APy | Baj(Cyj — )
| =(c/ lefdrfdr’Are'¢(r>e"c(r"r)2. 1 _:E{_l|:_J_J_J_ _ Ry Ay MLy
(Clar () an P lIpL Byt By p L Byt By
Since the Gaussiap is localized aroundqr large value; of B B1i(01i — ;) (24)
C, the phase functiom(r) can be approximated by a linear B; + B
expansion about’, é(r)=¢(r')+Ve(r')-(r-r’), to give ) . - ] . ]
This version of the Filinov filter as applied to SC-IVR is
| = (C/W)N/zf dr/Ar ) f dr &=Clr 1 24T (1) one of the simplest offered in the literaturE*>*82%5ection
' V discusses alternate versions that rely on keeping higher

(18) order terms when expanding in a Taylor series, or on more
complicated representations of unity. The results reported in
whereA(r) was approximated by(r’). This approximation that section, however, suggest that these more advanced ver-
to A(r) is again justified since the Gaussian is localized abousions are essentially no better than the simpler version pre-
r’. Evaluating the integral leads to sented here.
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IIl. NONCHAOQOTIC SYSTEMS were needed to converge the calculation. Since the previous

N ) ) o studies on ICN reported positive results when using the Fili-
Although the Filinov filter has been used primarily in the o, fijter, it is important to understand exactly why the Fili-

literature for chaotic systems, itis instructive to first considery fijter, at first glance, seems to be effective in this system.
its utility in the nonchaotic regime. Consider a 1D anhar-

) ) - e Such an understanding will start with an analysis of possible
monic oscillator, |n|t|qlly used .by Kaill,whlch is the sum of. chaotic regions of the ICN system. By examining exponen-
a Morse and harmonic potential defined by the Hamiltoniang givergence of initially neighboring trajectories originat-

€ 1 ing from various points in phase space, we found a small
2_b2(1 —e ™24 (1 —G)EXZ, (25  number of chaotic trajectories in ICN. However, all of the
chaotic trajectories corresponded to a class of nonphysical

where €=0.975 andb=1/v12. This particular anharmonic solutions that are expected to give no contribution to the

system poses no great numerical difficulties. The number ofeémiclassical wave function. Such nonphysical results arise
trajectories needed for convergence of up to six oscillation®ecause the Hamiltonian is fictitious, with the nonadiabatic

of a wave packet launched in the potential was 64@@th-  dynamics modeled via a coupling to fake oscillators. Specifi-

out the use of the Filinov filter. The system is included in thecally, the ICN Hamiltonian used in the semiclassical simula-

present study because the low dimensionality provides th#ONS IS

opportunity to fully map and visualize the integrand of the

1
H=->-p%+
2p

2 2 2
semiclassical integral over initial positiog and momentum HRK. 015.x) = — + + | + }H ~
o0 (RK,8,1,p,x) M ovret am T 2 1,1P1P:
1 . 1 ~
VX)) = Py f dpof AXCog€ o™X’ | pxec) + XX~ 1]+ EHz,z[pzpz + XoXp = 1]
r.
X (PoXoa| W) . (26) +Hy PiP, + X1%o], (27)

The initial wave function used throughout the study for thiswhere (p,x) are oscillators introduced to model the elec-
potential wasWy(x)=(2/m)exd—(x-7.3?]. The Filinov  tronic degrees of freedon(R, §) and (K,l) are the nuclear
filter was found not to improve the convergence rate in thiscoordinates and momenta. The quantitMsand m are the
system. For large values @ the Filinov filter was too weak |-CN and C-N reduced masseasjs the C-N equilibrium

to accelerate the convergence rate. For value€ afuffi-  bond length andH, . are the diabatic electronic Hamiltonian
ciently small to accelerate the convergence rate, the Filinowmatrix elements. In the semiclassical methodology used, the
filtering effect was found to be too strong and the calcula-initial (p,x) are sampled from harmonic oscillator wave
tions converged to incorrect resultsee Fig. 5. functions. When a particular initial condition satisfipg,

The second system considers the photodissociation of @ix;x; <1, PoPo+XoX, <1, or P;P,+X1%,< 0, the nuclear co-
generic triatomic molecule and has been previously used asadinates see negativid, ;, H, 5, or H; , energy surfaces,
test case in the calculation of cumulative transition matrixrespectively. These trajectories lead to nonphysical behavior
element£” The calculations were performed on a purely dis-since, for example, i, ; is effectively negative, the nuclear
sociative surface for a pseudotriatomic model of AB4. All coordinates propagating on this surface will see a large well
relevant parameters, including the form of the potential, carasR— 0 and the I-CN bond length will shrink to zero. All
be found in Ref. 24. The initial triatomic wave function used chaotic trajectories observed were found to originate from
was‘lfo(Rs,Ra)ocex;{—74.7R§—49.4?§], with Rs andR, (the  these nonphysical regions of phase space and should there-
symmetric and asymmetric modei® atomic units. It was fore be rejected from the initial sampling distribution.
reported in Ref. 24 that the semiclassical calculations of the Once these chaotic trajectories were manually excluded
transition matrix elements converged withka(0° trajecto-  from the initial sampling distribution, the Filinov was found
ries without the inclusion of the Filinov filter. Similar con- to be no longer effective at accelerating the convergence of
vergence rates were seen when this calculation was repeatttke calculation. Thus, the Filinov filter, in the ICN case, does
in the present study. As in the case of the 1D anharmonitittle more than damp out the contribution of the nonphysical
oscillator, overdamping of the results was seen if any accelehaotic trajectories.
eration of the convergence rate was to be achieved using the To understand why the Filinov filter is ineffective in
Filinov filter (not shown). these three casdsnce the chaotic trajectories are removed

The third nonchaotic system considered is the nonadiafrom the ICN calculations consider the behavior of the
batic dissociation of ICN/*> The ICN results presented in semiclassical integrand. The calculation of the semiclassical
Refs. 17 and 25 required>210’ trajectories for convergence wave functionWSYx’,t) at a particular poink’ and some
when making use of the Filinov filter. The initial nuclear timet is considered for each system. The phase and ampli-
wave function used for this system wa¥y(R,6) = tude of the integrand are then plotted as a function of a single
xexd -54.0R-5.1873%-29.34?], with R and ¢ (the I-CN integration coordinate while all other coordinates are held
bond length and anglein atomic units, and the potential constant. Care is taken to ensure that the path taken through
energy surfaces are those of Goldfield, Houston, and #zra.the initial phase space by varying only one initial coordinate
This system is interesting because, even with the inclusion ah this way does in fact pass through a region with high
the Filinov filter, a relatively large number of trajectories integrand amplitude for the particular final poixit chosen.
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6.1 6.1

AN

2 3 4
(d) Integrand Amplitude

FIG. 2. Relation of the integrand amplitude to the integrand phase. Ranel
shows the integrand amplitude as a function of both integration coordinates
for the anharmonic case. Parn@) shows the corresponding phase of the
integrand( 0= white to 2= black with a contour plot of the integrand
amplitude superimposed for comparison. Next are shown scatter plots of
integrand amplitude vs. the full phase gradient fof t@jectories selected
from the Monte Carlo sampling distribution fég) the triatomic case an(d)

the ICN case. The line in pan@d) corresponds to the phase gradients of Fig.
1(c) and the line in paneld) corresponds to the phase gradients of F§). 1
Note that values ofVyéy,;| near the zero of the integrand amplitude exceed
40 000 and 80 000 in pane(s) and (d), respectively

Figures 1c) and Xd) are for the triatomic system propagated
to a time of 20 fs with the finalR,R,) chosen ag0.632,
0.008. Panel(c) in Fig. 1 shows the integrand phase and
amplitude first as a function of the initial symmetric stretch
coordinateRy,. (Here the other initial coordinates were held
fixed at Ryy=-0.010222 6 Py,=-9.216 95,P,;,=1.5545)
Panel(d) in Fig. 1 shows the integrand as a function of the
initial asymmetric momentumP,, with Ry fixed at
0.033047 7. Figures (& and 1f) show results for the

FIG. 1. Integrand phase and amplitude for select paths through phase spa¢&N system propagated t@=20 fs. The integrand be-

Panelga) and(b) are for the anharmonic oscillator case shown as a function
of xg and py, respectively. Panel&) and(d) are for the triatomic case as a
function of the initial symmetric stretcRy, and the initial asymmetric mo-
mentumP,,. Panelse) and(f) are for the ICN case as a function of initial

p; and initial R.

havior is shown in Fig. (e) as a function of the electronic
momentump,; with the remaining coordinates fixed &
=5.073 39,6=-0.000 294 587 x,=1.78215,x,=0.477 678,
K=27.9355,1=-2.328 62, andp,=-0.682554 and panel
1(f) in Fig. 1 shows the integrand as a functiorFoivherep;

(Otherwise the plot will only reveal the behavior of some was now fixed ap;=-1.113 54. All of these plots show that
irrelevant and negligible low amplitude region of the inte- the regions of high integrand amplitude are accompanied by

grand)

regions of low phase gradient. The Filinov filter then does

Figure 1 shows typical results of these calculations fomot help the convergence of these systems because the re-

all three systems. Figureqd and Xb) are for the anhar-
monic oscillator case propagated to timetef2.0, with the
final coordinate being’=5. The integrand is showfFig.
1(a)] as a function ofx, with p,=0 held constant, and Fig.
1(b) as a function ofp, with xy held constant ak,=7.3.

gions of high phase gradient, which are down-weighted by
the filter, already contribute negligibly to the integral

Motivated by figures of this type, we undertook a gen-
eral survey of the relation between the phase gradients and
the integrand amplitude. Figure$a and Zb) show the in-
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0.5 0.5 0.5
Oo
0.25® 0.25 0.25

0 (m)
(=]

0
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FIG. 3. Contours of the calculated ICN wave function after ionization. Top row: single potential energy surface calculatién 16f,18nd 10 trajectories.
Lower row: multiple potential energy surface calculation using nonadiabatic SC-IVR forl® and 16 trajectories.

tegrand amplitude and phase for the complete integratiobehavior of the full integrands, with no relation between
space of the 1D anharmonic oscillator case. The dashed linégrge integrand amplitude and large phase gradients.
in Fig. 2@ corresponds to the phase-space paths taken by There remains the question as to why the ICN calcula-
Fig. 1(a) and Xb). Notice in Fig. Zb) that the regions of high tion takes two orders of magnitude more trajectories than
integrand amplitude overlap only with regions of low phasedoes the model one-surface triatomic. When we carried out
gradients. single surface simulations of ICN using either of the two
Unfortunately, visualizing the full phase space for theelectronic surfaces i.e., without the nonadiabatic SC-IVR for-
triatomic and ICN cases is not possible due to the highemalism), they were found to require the same number of
dimensionality of these systems. Here we must resort to &ajectories for convergence as did the model triatomic. Thus,
statistical sampling of the integration space. Figurgs and  the convergence difficulties are not intrinsic to the ICN po-
2(c) show scatter plots of integrand amplitude vs the numeritential energy surfaces, but instead originate from the nona-
cally calculated gradient of the full integrand phd®ge| diabatic SC-IVR procedure. It seems plausible to assume that
for 10* trajectories randomly selected from the Monte Carlothe coupled electronic degrees of freedom are perhaps intro-
sampling distribution for the triatomic and ICN systems, re-ducing difficulties. However, this is incorrect. Simulations of
spectively. “Full integrand phase” means the integrand phastine ICN dissociation using the nonadiabatic formalism, but
including the contribution from the prefact@. No initial ~ with the coupling turned offH; ,=0) still took ~10’ trajec-
coordinates were held fixed. The curve in Figc)2corre-  tories for convergence. This is clearly strange, since without
sponds to the phase gradients of Fi¢c)land is shown for the coupling terms the electronic degrees of freedom reduce
comparison against the scatter plot. Similarly, the line in Figto two extra simple harmonic oscillators for which the SC-
2(d) corresponds to the phase gradients of F{f). Note that IVR evaluation should require a minimal amount of trajec-
they axes were truncated for clarity; the phase gradients neaories. So from where do the convergence difficulties arise
the zero integrand amplitude region go up as high as 40 000pon inclusion of the electronic degrees of freedom?
for the triatomic case and 80 000 for ICN. This shows that  Figure 3 shows contours of the wave function calculated
the behavior seen in Fig. 1 is indeed representative of théor a single-surface ICN dissociatidtop row) and the two-
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16 T 30 T 600
1D oscillator Triatom ICN
10
- A ‘ FIG. 4. Time evolution ofCp, for a
o “ A ‘M‘v"» ‘ few sample trajectories showing the
i B ,/'!\5} i characteristic behavior for each
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surface ICN with couplingbottom row. All the classical in time. This polynomial scaling of the prefactor is a key
trajectories for the one-surface system end up near the finaéquirement for the convergence of the semiclassical inte-
position of the wave function and hence all can contribute ingrals without any filtering of the integrand and, as will be
a useful way to the integral. Both the converged wave funcseen in the following section, is in stark contrast with the
tion, and the wave function computed with a small numbemehavior of the prefactor for chaotic systems.

of trajectories occupy similar spatial regions. For the two-  Figure Fa) shows the calculated autocorrelation function
surface simulations, however, the spread in the final positiofor the 1D anharmonic oscillator system obtained using the
of the classical trajectories is much larger than the spread dilinov filter with a variety of filter settings. Figure(B) plots

the final converged wave function. Indeed, the ratio of thehe quantum result for comparison. When using a mild filter
spread in the trajectories to the spread in the final wave fungyarametefi.e., large values of) or no filter at all, the semi-
tion is estimated to be roughly 10:1. This large spread of th|assical autocorrelation function quite closely resembles the
classical trajectories arises from the fact that the Hamiltoniar@luamum result for the full time range, but no acceleration of
for the nonadiabatic SC-IVR method introduces an averagghe convergence rate is obtained. However, as the filter pa-
over many different weights of the nuclear potentials so thafgmeter becomes more aggressiie., smallerC values,
trajectories propagate on a distribution of effective potentialna accelerated convergence rate is accompanied by a semi-

energy surfaces. Furthermore, all the classical trajectories fQljassical autocorrelation function that becomes artificially
the two-surface system contribute to the large spread W'tlaamped out for large times.

about equal order of magnitude amplitude. This additional e |ong-time structure of the autocorrelation is indica-

spread of the trajectories, compared to the converged wavg,q of resonances in the system and is responsible for sharp

f_unct|0n, can be clearly seen in _the plots of the wave fun(_:Teatures in the corresponding energy spectri(i). The

Eo? . It?]wtnfﬂ{nttk)]ers Otf, trajectt(?rlles whe|r_|e theretsre Corm"overdamping seen in the semiclassical autocorrelation func-
utions that Tl the entire spatial map. Hence, the CoNVery,, \vijl then manifest itself in a broadening of the resonance

gence difficulty for two-surface ICN is caused by the need to

: . eaks in the corresponding spectru(i), significantly re-
average out most of the large spread in positand hence 3ucin the spectral pualit gHegce thfeEr)e Bi%aadvantay do
most of the trajectorigsto zero. The same interpretation 9 P quarty. ' 9

holds in the momentum spread of the nuclear coordinates a9 the Filinov filter in this case.

well, where the classical trajectories span a region that is
again much larger than the final converged. A “wasted vol- 6 T T T T
ume” of trajectories in both position and momentum space of 5 X\/\/\/\N[\NWM/\/\/\/\J\J\MW
about 10:1 in each gives a wasted volume in the full integra- \WNVW/V\MWW
tion phase space of about 100:1, which agrees well with the 4
extra computation effort needed to converge the two-surface
ICN as compared to the one-surface ICN.

This section concludes with a brief consideration of the 2 \/\/\/\/\/\W
time evolution of the semiclassical prefactor for these sys- M
tems as well as an explicit demonstration of the overdamping ! i
caused by the Filinov filter for the calculation of the autocor- ol A A I
relation function of the 1D anharmonic oscillator. This will
be of use for comparison with the chaotic systems considerec

in the following section. Figure 4 shows the prefac@y; g 05
for a representative set of 20 trajectories for each of the three

ﬁ%

. . . . | |
systems considered in this section. All three systems show a 0 50 100 150 200 250

most a polynomial increase in the magnitude of the prefactor®) Time (fs)

with time. ThI_S p0|yn0mlal _mcreas_e arises from the fact thatFIG. 5. The calculated autocorrelation functigft) for the 1D anharmonic
the prefactor is a polynomial function of the stability matrix gscinator system(a) Semiclassical results f€=52,5,50, 5%, ..., 5° and
elements which, for regular dynamics, scale as a polynomiabr no Filinov filter, from bottom to top(b) Quantum result.

o]
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IV. CHAOTIC SYSTEMS p% jz jz
. . . . =+t tV(RY), (31
Consider now the more interesting case of chaotic sys- 2ur  2urR%  2loy

tems. Here both advantages and drawbacks of using the Fili-
nov filter to accelerate the convergence of the semiclassiciyhere j is the angular momentum associated with the
calculations will become increasingly evident. bend mode y, ur=my(My+mg)/(2my+mg) and Iyo
Four model systems will be considered. The first is a two™" aiMo/ (My+Mo). The initial state used wa¥o(R, y)
surface nonadiabatically coupled system used by Stock an€XH—11.73R-r¢)?~5.98y-y,)], with y measured in
Thoss® This model exhibits regular quantum dynamics adians andy=104°. The majority of the trajectories for this
(with respect to such measures as the energy level spacing8itial state dissociate after one or two oscillations but the
but shows chaotic classical dynamics for large times whichémaining trajectories undergo complicated chaotic motion
unlike the ICN case of the preceding section, cannot be triviin the potential well for many oscillations before dissocia-
ally removed from the computation. The Hamiltonian istion. A small number of trajectories remain trapped in the

given by well, exhibiting pseudobound chaotic dynamics.
The first point of interest with these systems relates to
H= Q(Pz +X)1+ {Vll VlZ} ’ (29) the behavior of the prefact®,. A set of 20 representative
2 Vi Vo trajectories are plotted in Fig. 6 for each of the four chaotic

systems using, unlike Fig. 4, a logarithmic vertical scale. All
four systems exhibit some trajectories with exponentially in-
creasing prefactors. These appear as more or less linearly
increasing functions on the logarithmic plots and are the cha-
otic contributions. This is the root of the convergence diffi-
culties in chaotic systems using Monte Carlo sampling. Con-

The next two systems are classic models of both quanyerging the integral fop(t), with exponential growth of the

tum and classical chaos, namely, the quartic oscillator ana"ntegrand as a function of time, requires an exponentially

the Henon—-Heiles system. Both of these systems have bediFreasing number of trajectories with Increasing .t|-me. .
To clearly see the advantages of using the Filinov filter

studied using SC-IVR, with some form of integral filter tech- . ) ;
udied using W oo ! for chaotic systems we first calculaét). Figures 7 and 8

niques used to converge the resafté®*®1%2'All of the ot the aut lation functiond ) for th . i
studies reported beneficial attributes of the Filinov filter. weP'0t the autocorrelation Tunc long ). or the quartic oscifia-
r and the HO systems, respectively. Pand® in both

repeat these calculations here and identify both advantag igs. 7 and 8 plot the SC-IVR(1) for various values of the

nd limitations of h filtering techni .
: dThe Zugrtiscoossclijltl:ator ; dgfir?é:d b)c/ll:ﬁz Hamiltonian Filinov strength parametet (see captior_)swhile panels(b)
plot the fully quantumy(t) calculated using FFT grid-based
1, 1, 1,,1 methods. The quartic oscillator simulations used tt8jec-
H= EPX * EPV XY ZE(X4 ) (29 tories while thqujO simulations used 2 10° trajectoriejs. In
the absence of any filtering as well as for weak filter strength
(i.e., largeC), the semiclassica|(t) grows exponentially for
large times due to the exponentially increasi@g,. The
semiclassical calculation of these autocorrelation functions
then has no chance of converging over an arbitrarily large
time range without some form of integral conditioning due to
the exponential growth of the semiclassical prefactor. For
with A=0.1118. The initial wave paCket used for this SyStemmore aggressive filter Setting'se_’ smaller values w)' the
was Wo(x,y) <exg-0.5x—x)*~0.5y—Yo)*+ixP,0*+iyPy]  autocorrelation functions are seen to have converged but now
with X9=0, yo=-1.914,P,,=3.976, andP,=0.961. there is clear overdamping at large times when compared to
The fourth chaotic example involves the calculation Ofthe quantum resu|t’ as was seen in the 1D anharmonic oscil-
the absorption cross section of 2D planaiCHin the second  |ator case(Fig. 5). In practice, then, the Filinov filter should
absorption band, which occurs via a transition from thepe tuned to damp out the exponentially increasing contribu-
(XA") ground electronic surface to tiiB A’) excited elec- tions while overdamping as little as possible, with the opti-
tronic surface. This model is similar to the dissociative sys-mum choice ofC being as large as possible while still per-
tems considered in the preceding section except that the erditting numerical convergence of the calculation.
cited state potential energy surface contains a well in whictAutocorrelation functions for the Stock and Thoss systems as
the classical trajectories can oscillate and undergo chaotiwell as the Henon-Heiles system are shown in the following
dynamics prior to dissociation. The two coordinates considdiscussion.
ered are one HO-H bond lengkhand the HO-H bend. It is important to stress here that, however, accufate
The HO fragment was assumed to be a rigid diatom withinaccuratg the result of the calculation using the Filinov
bond length ofre,=1.83%,. The excited surfacé/(R,y) filter happens to be, its inclusion makes the convergence pos-
used is that of Segev and Shaﬁ?oThe Hamiltonian of the sible despite the underlying exponential growth of the semi-
system on the excited surface for total angular momentunalassical prefactor and represents an exponential acceleration
J=0is of the convergence rate. This is the main benefit of the Fili-

whereV,;=-V,,=A/2+xX andV;,=g. In keeping with Ref.
20, we use the parametefs=1, g=0.2A, 0w=0.1A, and «
=0.0%A. The initial wave packet¥y(X,l) used was the
ground state wave function of the single oscillatdt
=w/2[P?+X?]) placed on the ground electronic surfate,
=1.

with 8=0.01. The initial wave packet used wasy(x,y)
«exd -0.5¢*—0.5y-8.32?]. The Henon—Heiles system has
the Hamiltonian

H =P+ SR+ 50¢+y) + My - y3) (30)
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108 ; 10° :

Stock & Thoss Henon-Heiles

c
1C g

FIG. 6. Time evolution ofC, for a few sample trajec-
tories showing the characteristic behavior for each
system.

Quartic

0 25 50 0 250 500
Time Time (fs)

nov filter in the case of chaotic dynamics. The remainingwith C=1( (the optimal value for the number of trajectories
question, then, is exactly how accurate are the results whemsed and with C=10” which leads to overdamping, and fi-
the Filinov filter is used to converge the calculations? nally the full quantum autocorrelation function. Here the au-
To address this question we consider the energy spedecorrelation function calculated with the optimal Filinov pa-
trum of these systems, as calculated from the Fourier trangameter matches well the quantum result. Returning to the
form of x(t) for the optimal value ofC chosen as just out- calculated spectra, we see that the semiclassical spectrum
lined. We consider the four chaotic cases in order ofwith the optimal Filinov parameter agrees quite well with
increasing difficulties with the Filinov filter. The spectrum of quantum spectrum for this system. Thus, the Filinov filter is
the Stock and Thoss model is shown in Fig. 9 for both thehaving a positive effect in this case, filtering out the un-
full quantum and the semiclassical calculatigghown in-  wanted exponential growth of the integrand. It should be
verted. The semiclassical results used a Filinov settfg noted here that the energy spacings for this mddehrly
=10° and 10 trajectories. The inset shows, from top to bot- harmoni¢ suggest that the system is dominated by regular
tom, the autocorrelation function calculated with no filter, quantum dynamics. Furthermore, when looking at the repre-

11 ] T \ 0.3
| 0.25|-
u \ { 0.2
= i = H
= 1 LLiRg = 0155
* H| | j i
= ‘hn'%yill; rl\w|
W M ) m 0.1 j A wmhuum-ﬂw‘m:mmm
— S g o I
0.051
L
w
0
(a) (@) 0

10 20 30 4’0 50 0 100 200 300 400 500 600 700 800
(b) Time (b) Time (fs)
FIG. 7. The autocorrelation functiop(t) for the quartic oscillatorta) Semi- FIG. 8. The calculated autocorrelation functigft) for the H,O system(a)
classical results foE=10?,10* 1, ...,10' and for no Filinov filter, from  Semiclassical results f@=10°,10%, 1, ..., 10" and no Filinov filter, from
bottom to top.(b) Quantum result. bottom to top.(b) Quantum result.
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2 1
8 [ - Quantum
5¢ N 4 5 057
1.5 4 ] g 0
= Al ] B
11 2k 4T . Semiclassical
c 1% 8 10 12 14 16 18 20
2 0.5 OWWWNWW F Scaled Energy
E 0 200 400 600 800 1000
& 4 Time FIG. 11. Quantumtop) and semiclassicainverted spectruml(E) of the
0 ¥ ¢ + quartic oscillator.
-0.5 . L
guantum eigenstates are regular. Abdye the dynamics is
o increasingly chaotic with energy and the majority of the
-1 Semiclassical

guantum eigenstates quickly take on an irregular or chaotic
05 1 15 2 charactef**° The C=10° semiclassical results still agree
Energy quite well with the quantum results in this region and only
FIG. 9. Quantumitop) and semiclassicainverted spectrumi (E) for the ~ Start to diverge noticeably for the highest energies plotted
Stock and Thoss system. Inset: semiclassical and quantum autocorrelati¢fc >14.5—-16.%. The case is, however, not the same when
functions(see tex?. the stronger filteringC=1C? is used, as would be necessary
to converge a calculation when, for example, only a smaller
sentative sample of trajectories shown in Fig. 6 there ar@umber of trajectories is available. For this case, the quan-
clearly two classes of behavior, one exhibiting exponentiatum and semiclassical spectra are seen to correspond less and
growth of C,,c and the other exhibiting polynomial growth. It less abovee; with the semiclassical spectrum missing much
appears then that the Filinov is correctly filtering out theof the fine structure and sharpness of the peaks seen in the
chaotic contributions of the underlying classical dynamicshigh-energy quantum spectrum. As mentioned in the preced-
which, judging by the regular energy spacings of the quaning section, the broadening of the energy peaks has its origin
tum spectrum, should not have a significant effect on thén the overdamping of the long-time autocorrelation func-
guantum dynamics anyway. tion. The semiclassical spectrum then shows that the high
Next consider the calculated spectra of the Henon-energy chaotic dynamics is strongly affected by overdamping
Heiles system. This is an interesting case because the initisithile the low-energy nonchaotic dynamics remains rela-
wave packet used overlaps with both regular and chaotitively untouched. These two cases then give a clear picture
regions of the classical phase space so that the quantum dgf the overdamping that results when strong filtering is re-
namics involves both regular and irregular eigenstdfiise  quired to force early convergence of a semiclassical calcula-
classical dynamics, however, is only mildly chaotic in com-tion.
parison with the two examples to follow, the quartic oscilla- ~ The quantum and semiclassi¢@=10°) spectra for the
tor and the HO system). The quantum and semiclassical quartic oscillator are shown in Fig. 11. As is the convention
(10° trajectories spectra are shown in Fig. 10 for two values in the literature for this system, we plot the spectra vs the
of the Filinov parameter: panéd) usesC=10° while panel  scaled energy2E)¥4. Here the large scale featur&general
(b) usesC=10". At energies belovE,~ 9.1, the threshold for width of the spectra, average peak spagioigthe two spec-
chaotic classical dynamics, both spectra agree very well. Fdra agree quite well. However, many of the small scale fea-
these energies, the classical dynamics is nonchaotic and tiigres seen in the quantum spectrum are lost in the semiclas-
sical result; e.g., a number of the quantum peaks are
doublets, but show up as single peaks in the SC-IVR spec-
trum. The vertical dotted lines denote eigenergies calculated
in Ref. 31 which follow from an adiabatic separation of the
two degrees of motion of the system. These results represent
essentially uncoupled eigenstates of the oscillator. Although
these eigenenergies are only approximate, as can be seen
from the quantum spectrum, they all match the semiclassical
peaks quite well. Furthermore, the remaining peaks of the

-

Quantum

Spectrum (arb.)
o

Semiclassical

5 6.5 8.5 10.5 12.5 145 16.5

—
O

=

H

% | Quantm semiclassical spectrum, which fail to exhibit the doublet
g structure of the quantum spectrum, appear to be spaced by
g | ‘ the near-harmonic spacing suggested by the uncoupled
& Semiclassical E, | eigenenergies. These findings suggest that the semiclassical
s 66 85 105 125 145 165 spectrum converged using the Filinov filter is missing the
(b) Energy coupled character of the correct eigenstates and may be forc-

FIG. 10. Quantunttop) and semiclassicdlnverted spectrum (E) from the Ing artlflCIa"y regular spacing statistics on the energy spec-
Henon-Heiles system. The semiclassical calculations used the Filinov setrum-_
ting of C=10° [panel(a)] and C=1C? [panel(b)]. Figure 12 shows the calculated low-energyCHspec-
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FIG. 12. Near-barrier bound states and low-energy continuum spett)m  FIG. 14. Spectra of the Henon-Heiles systems calculated using the Filinov
of the H,O system for the quantum and semiclassical cases @ttCP. filter and Kay’s method.

trum for the quantum case and the semiclassical case witlje yse the criterion to keep a trajectory un@lg|> Cey
C=1CP. The sharpness of the continuum resonances seen {ghereC,,, is a constant controlling the strength of the filter-
the quantum case is lost in the semiclassical spectrum. FUlng using this method.
thermore, the energy peak resolvability is much worse in the ~ Figure 13 plots the autocorrelation function for the
bound state spectrum of the semiclassical results as comtenon—Heiles system calculated using the Filinov filter and
pared to that of the quantum results. Again, this is becausray’'s method for a variety of filter strengths. From these
the semiclassical autocorrelation function is overdamped irmots we see very similar behavior in the two methods as the
using the Filinov filter and the long-time behavior is sup-fiiter parameters are varied: for weak filtering, the autocorre-
pressed, causing a broadening of the peaks. lation function grows exponentially for large times and for
stronger filtering, the autocorrelation is prematurely damped
out. Figure 14 shows the corresponding spectrum for optimal
V. ALTERNATE FILTERING METHODS filter parameters using the FilinoyC=10°) and Kay’s

. : o thod(C=10?%). Both method to gi -
The large majority of the SC-IVR literature dealing with method (Cy ). Both methods are seen to give essen

. . . e . tially equivalent approximations to the full quantum spec-
chaotic dynamics and integral conditioning techniques ha y 4 bp g P

trum (see Fig. 10
15,18,23 g.
CH(aoT/f/i(/ee(jr ali(;égdhzgr?r?tr\ézrj::%g 0; E:ic?“;oovéhioc yet Some understanding of the connection between these

two methods can be obtained by considering the relation

nqngtheless succe.ssful., method of dealing with Cont”pu“onﬁetween the phase gradient and the prefactor. Figure 15 plots
arising from chaotic trajectories. For a recent application o V¢|2 VS |Cyqd for a random sample of 100 trajectories used

Kay's method see Ref. 32. We now compare these wo met o calculate the autocorrelation function. These two param-

ods and argue that they operate on an essentially equwaleg{ers are seen to be strongly correlated and almost fall on a
level of approximation.

In K thod™® a ai traiectory is included in the straight line in the log-log plot. This linear relationship on
N ays metnod, “a given trajectory 1S Included in the log scale follows from the fact that both the phase gra-
semiclassical integral up until the magnitude of the prefactodlent and the prefactor are polynomial functions of the sta-
I qt' grows larger than some preset function of time. Her eb|||ty matrix elements. The slope of the line gives the poly-
nomial relation between these two values.
W 'l\ lu[ ml m ‘f ! ‘M ‘l ‘H Figure 16 plots the filter functions for both methods on a
e |
1 ‘ ‘ ‘ l
i \ “ H ‘
n ‘ ‘ ")

M ‘ "r M

(5l

Filinov
Filter

'S

*& M

= S

pat

100 150 200

(9]
o

(b) ©
FIG. 15. Scatter plot of the phase gradigViip|? used in the Filinov filter vs

FIG. 13. Autocorrelation functions calculated usi@ythe Filinov filter for the magnitude of the prefact¢€pql| used in Kay's method, showing the

C=10°,1(%, 10, ...,10% and for no filter, andb) Kay’s truncation method  polynomial relationship between the two parameters. Dashed lines show the

using Cg,=10',10"%,1(, ..., 10 and for no filter. effective cutoff values for the two filters as used in Fig. 14.
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FIG. 16. Weighting functions used f¢a) the Filinov filter and for(b) Kay’s FIG. 17. Semiclassical calculations of the autocorrelation function up to
method. times of 200 fs for both the simpl@Id) and generalized Filinov filtersee

text for details)

log scale to match Fig. 15. The filter for Kay’s method is Filinov transform, has also been propog&dhis generalized
simply a step function in the prefactor with cutdf€,,{  Filinov filter was showf® to accelerate the convergence of a
=Cq, While the filter function for the Filinov method is a multidimensionalup toN=10) Henon-Heiles-type potential
smoothed step function with effective cutoff a¥ ¢>  as well as a pyroxene model. There the main focus was to
=4C In 2 (point where filter weight is 0)5 These two cutoff  converge the short-time autocorrelation function with as few
values are plotted as vertical and horizontal dashed lines ifrajectories as possible. A complete description of the method
Fig. 15. From this plot it can be seen that the two filtercan be found in Wang, Manolopoulos, and MifferThe es-
methods are both simply rejecting trajectories with integrandsential difference between the generalized Filinov technique
amplitude greater tha@,; Kay's method does this directly and that outlined in Sec. Il C is that an alternate representa-
while the Filinov method does so indirectly through the poly-tion of unity is inserted into the initial integrarigee Egs.
nomial relationship betweehV ¢|? and |C,q]. They are (16) and(17)]. The representation of unity used in the gen-
therefore both filtering out essentially the same set of trajeceralized Filinov filter has a linear term in the exponent in
tories, and hence give similar approximations to the dynamaddition to the quadratic term. The first parameter, cadled
ics. is the analog of th€ parameter used in the standard Filinov
Further to the equivalence of the Filinov and Kay's filter and controls the width of the Gaussians in the expan-
method, it should be noted that many of the conclusionssion of unity. The second parameter, calledcontrols the
reached in the preceding section regarding the overdampingrength of the linear term and can take on values of 0-1, but
of strong chaotic dynamics in the semiclassical calculationgmall valuegtypically b<0.2) were recommended.
when using strong Filinov filtering are essentially identical to  We have applied the generalized Filinov filter to the 2D
the conclusions reached by Kay when he initially analyzed4,0 model to see if it can accelerate the calculation of the
his truncation methodf long-time dynamics. Figure 17 shows the results of semiclas-
The literature also offers a few more refined versions ofsjcal calculations of the autocorrelation function up to times
the Filinov filter than that presented in Sec. Il C. The firstof 200 fs for both the standard and generalized Filinov filters.
versiort"'>*differs only in that it keeps higher order terms [Figure 17a) usesa=C=1Cf and Fig. 17b) usesa=C=1(.]
in the Taylor expansion in going from E@17) and (18).  Both (a) and(b) show results of the generalized Filinov filter
These terms, however, only affect the final form of the Fili- for b values of 0.1 and 0.02. The autocorrelation function at
nov filter by the appearance of an additional preexponentiaimes larger than 100 fs shows noise fluctuations that are on
term that is polynomial in the stability matrix elements. Thethe same order when using the standard Filinov or the gen-
filtering power of the Filinov, however, lies in the exponen- eralized Filinov filter. Changing th@ and C parameters
tial weighting terme™ ¥ 4%4C and the additional preexponen- shows that these fluctuations are dampedundampeyiby
tial term arising in the higher order Filinov methods did notroughly the same amount for either the standard or general-
improve the method when tested in the present study. In factzed Filinov filters. The only effect of thie parameter for the
the results deep into the region of exponential growth dif-generalized Filinov is to cause overdamping over the entire
fered negligibly when compared with both the simple Filinovtime range. This can be most easily seen by looking at the 40
of Sec. Il C as well as Kay’s truncation method, confirmingfs peak. The cases for the standard Filinov and the general-
that the preexponential term is of little help to the Filinov in ized Filinov with b=0.02 overlap quite well, but the case
converging the long-time dynamics. with b=0.1 for the generalized Filinov is seen to be smaller
A second alternate Filinov transformation of the semi-in amplitude. Indeed, the only difference between the
classical initial value representation, called the generalizeet0.1 andb=0.02 cases is that the results for the former are
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overdamped. It seems that the generalized Filinov filter is ndhe regions of high integrand amplitude. One might then con-
better than the standard Filinov at accelerating the convessider returning to the original idea proposed by Makri and

gence of the long-time dynamics for,8, and furthermore, Miller'®*% Incorporating the Filinov weight factor into some

it introduces new sources of overdamping whehecomes optimized Monte Carlo sampling procedﬁ?reould prove to

too large. These observations were supported by additiondle quite useful. Furthermore, the present usage of the Filinov
simulations on HO that we carried out using a wider variety filter for chaotic systems requires one to sample the chaotic

of a andb parameters. regions and essentially set these contributions to zero via the
weighting factor which leads to a large amount of 'wasted’
VI. CONCLUSIONS AND RECOMMENDATIONS Monte Carlo integration points. Using the Filinov in some

When we began this work, we adopted the aCC(ﬂ)te(ipwport«'jlnce sampling technique could in this case also pre-
' vent searching through this wasted integration volume lead-

view that the Filinov filter serves a positive role in semiclas-, ¢ ¢ fficient Monte Carl thods. Such i
sical initial value representation calculations. This work hagd 'o yet more efiicient vionte £.ario methods. such impor-
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