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The utility of the Filinov integral conditioning technique, as implemented in semiclassical initial
value representationsSC-IVRd methods, is analyzed for a number of regular and chaotic systems.
For nonchaotic systems of low dimensionality, the Filinov technique is found to be quite ineffective
at accelerating convergence of semiclassical calculations since, contrary to the conventional
wisdom, the semiclassical integrands usually do not exhibit significant phase oscillations in regions
of large integrand amplitude. In the case of chaotic dynamics, it is found that the regular component
is accurately represented by the SC-IVR, even when using the Filinov integral conditioning
technique, but that quantum manifestations of chaotic behavior was easily overdamped by the
filtering technique. Finally, it is shown that the level of approximation introduced by the Filinov
filter is, in general, comparable to the simplerad hoctruncation procedure introduced by KayfJ.
Chem. Phys.101, 2250s1994dg. © 2005 American Institute of Physics. fDOI: 10.1063/1.1854634g

I. INTRODUCTION

Understanding quantum mechanical processes in sys-
tems with many coupled degrees freedom is a subject of
great interest. Unfortunately, a rigorous quantum treatment
of molecular dynamics is often impossible due to the expo-
nential increase of required computer storage space and com-
putational workload with dimensionality. It is therefore es-
sential to develop and implement approximate methods that
are both reliable and computationally tractable, of which
semiclassical methods1 are most promising. In this paper, we
explore the efficiency of the Herman–KluksHKd semiclassi-
cal sSCd initial value representationsIVRd method,2–4 one of
a general class of semiclassical propagators5–7 with emphasis
on the utility and accuracy of the Filinov integral condition-
ing technique.8–11 Such techniques were introduced to speed
up convergence in semiclassical computations, a vital need if
such computations are to be generally useful.

The HK SC-IVR is currently the most popular semiclas-
sical approach. Unfortunately, the HK SC-IVR approach re-
mains quite inefficient when applied to a number of interest-
ing cases, primarily due to poor Monte CarlosMCd statistics
in the integration over initial phase space conditions. This is
usually attributed to thescomplex valuedd integrand that may
become highly oscillatory, leading to phase cancellation
problems.

The Filinov filter,8–11 described in Sec. II C, provides a
means of analytically integrating out the contribution of
neighboring trajectories in highly oscillatory regions. The
original idea was to incorporate such a filter directly into an

optimized sampling function when evaluating the IVR inte-
grals by importance sampling Monte Carlo techniques.10,11

Unfortunately, it has proven difficult to use the Filinov filter
in this manner. Rather, the Filinov filter has typically been
implemented in SC-IVR calculations via an alternative ap-
proach, where the contributions of trajectories that originate
in oscillatory regions are down-weighted. Obviously, such an
approach does not avoid sampling highly oscillatory regions
and is therefore not optimal in terms of computational effort.
However, it does minimize undesirable effects caused by
rapid phase oscillations. The Filinov filter used in this way
has been effective in accelerating the convergence of semi-
classical calculations11–18 salbeit they still remain time con-
sumingd and is becoming part of the standard semiclassical
methodology. Surprisingly, a detailed study of the utility of
the Filinov filter has yet to be undertaken. This is the main
issue addressed in this paper.

Below, the utility of the Filinov filter is explored in a
number of nonchaotic and chaotic systems. The nonchaotic
models consist of a one-dimensionals1Dd anharmonic oscil-
lator, a 2D linear triatomic system with dissociative dynam-
ics, and a 2D model of nonadiabatic ICN photodissociation
dynamics. In all of these nonchaotic systems, the Filinov
filter is found to be quite inefficient if strong overdamping of
the results is to be avoided. We analyze the reasons for the
observed lack of efficiency and show that the nonchaotic
systems considereddo notexhibit rapid phase oscillations in
regions of large integrand amplitude, explaining the ineffec-
tiveness of the Filinov filter. The chaotic examples studied
consist of two 1D nonadiabatically coupled oscillators, the
quartic oscillator, the Henon–Heiles system, and the photo-
dissociation of 2D H2O. In these systems, the Filinov filter is
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seen to be capable of alleviating convergence problems aris-
ing from regions of large phase oscillations and exponen-
tially large integrand amplitude. However, the converged
Filinov filtered results show incorrect level spacing distribu-
tions in the chaotic domain, albeit correct behavior in the
regular regime. Thus, the Filinov filter overdamps the dy-
namics.

The paper concludes with a comparison of the Filinov
filter method and an alternatead hocmethod proposed by
Kay.19 It is argued that the two methods introduce an equiva-
lent level of approximation when applied to the semiclassical
integrals.

II. METHODOLOGY

A. Herman–Kluk SC-IVR

The HK SC-IVR2,7,19 approximates the quantum propa-
gator

Ksx8,x,td = kx8ue−iĤt/quxl s1d

as

Kscsx8,x,td = S 1

2pq
DNE dpE dqCpqte

iSpqt/qkx8uptqtbl

3kpqbuxl, s2d

whereN is the number of degrees of freedom,sp ,qd are the
initial coordinates and momenta for classical trajectoriespt

=ptsp ,qd andqt=qtsp ,qd obtained by integrating Hamilton’s
equations to timet, andSpqt is the classical action integrated
along these classical trajectories, given by

Spqt =E
0

t

dtfpt · q̇t − Hspt,qtdg. s3d

The statesupqbl, introduced by Eq.s2d, denote multidimen-
sional Gaussian wave packets with average positionq
=sq1,q2,… ,qNd and momentump=sp1,p2,… ,pNd, that is,

upqbl = p
k=1

N

upkqkbkl, s4d

where

kxkupkqkbkl = S2bk

p
D1/4

expF−
bk

2
sxk − qkd2 + ipksxk − qkd/qG .

s5d

The prefactorCpqt is defined by

Cpqt = HdetF1

2
S ]qtk

]qj
+

b j

bk

]ptk

]pj
− 2iqb j

]qtk

]pj

−
1

2iqbk

]ptk

]qj
DGJ1/2

. s6d

where qtk,ptk denote thekth component of the propagated
coordinate and momentum at timet. The square root in this
equation is chosen such thatCpqt is a continuous function of
t with Cpq0=1. The Gaussian width parametersbk are essen-
tially arbitrary, but in practice the HK SC-IVR calculations
are seen to be optimized when thebk are chosen such that

the coordinate space representation ofupqbl is about the
same size as the initial wave functionC0sqd.7

The full HK SC-IVR wave function at timet can then be
written as

Cscsx8,td = S 1

2pq
DNE dpE dqCpqte

iSpqt/qkx8uptqtbl

3kpqbuC0l. s7d

This semiclassical integral is typically evaluated using
Monte Carlo integration with a sampling function
ukpqb uC0lu. WhenuC0l is itself a Gaussian wave packet, the
kpqbuC0l projection can be evaluated analytically. The nec-
essary time-dependent factors in Eq.s7d are integrated nu-
merically using the following differential equations:

dpti

dt
= −

]H

]qti
,

dqti

dt
=

]H

]pti
, s8d

d

dt
S ]pti

]zj
D = − o

k=1

N S ]2H

]ptk ] qti

]ptk

]zj
+

]2H

]qtk ] qti

]qtk

]zj
D , s9d

d

dt
S ]qti

]zj
D = o

k=1

N S ]2H

]ptk ] pti

]ptk

]zj
+

]2H

]qtk ] pti

]qtk

]zj
D , s10d

wherez=p or q.
In addition to the wave function, we compute both the

autocorrelation functionxstd and the associated energy spec-
trum IsEd, defined as

xstd = kC0uCstdl = kC0ue−iĤt/quC0l s11d

and

IsEd =
1

2pq
E

0

`

dteiEt/qxstd. s12d

B. Nonadiabatic HK SC-IVR

This semiclassical formalism can be extended to model
nonadiabatic dynamics on multiple electronic surfaces.20,21

First, a classical Hamiltonian that encompasses the multiple
surface problem must be constructed. Such a Hamiltonian
was developed by Meyer and Miller22 and is written, for the
case of two potential energy surfaces, as

HsR,P;x,pd =
P2

2M
+ HelsR;x,pd, s13d

where

HelsR;x,pd = 1
2H1,1sRdfp1

2 + x1
2 − 1g + 1

2H2,2sRdfp2
2 + x2

2 − 1g

+ H1,2sRdfp1p2 + x1x2g. s14d

Herexk andpk are the coordinates and momenta of coupled
oscillators modeling the electronic degrees of freedom,R
andP are the nuclear coordinates and momenta, andHi,j are
the components of the electronic Hamiltonian matrix.

When this Hamiltonian dynamics is propagated through
SC-IVR, the wave functionfsx1,x2d=fsx1dfsx2d corre-
sponding to the electronic oscillators is given by harmonic
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oscillator states ofH8=p2/2+x2/2, with ufs1dl= u1lu0l if the
first electronic surface is excited andufs2dl= u0lu1l if the sec-
ond surface is excited. The nuclear wave function on themth
electronic surface is calculated using HK SC-IVR as

CsR,m,td = S 1

2pq
DNE dQ0CQte

iSQt/qkRuPtRtblkfsmduptxtgl

3kP0R0buF0lkp0x0gufsndl, s15d

where Q=sR ,P,x ,pd , dQ0=dP0dR0dp0dx0, uF0l is the
nuclear wave function initially on thenth electronic surface,
and g is the Gaussian width parameter for the electronic
degrees of freedom.

C. Filinov Filter

Written as Eqs.s7d ands15d, the HK SC-IVR method is
seen to constitute a phase space average over the initial con-
ditions of classical trajectories. Since we are in the semiclas-
sical regime, the integrands are expected to become a highly
oscillatory function of the initial coordinates due to the com-
plex exponential dependence oneiS/q, increasing when neigh-
boring trajectories diverge and separate with time. Further-
more, since the prefactorCpqt is a function of the coordinate
derivatives with respect to the initial conditions, the ampli-
tude of a particular trajectory can become larger as time
progresses and the trajectory diverges from its neighboring
trajectories. Because of this,Cpqt is expected to increase ap-
proximately algebraically with time for regular trajectories
and exponentially for chaotic trajectories, while the inte-
grand phase becomes more and more oscillatory. Introducing
some preconditioning of the integrand or preaveraging of
neighboring trajectories to minimize these adverse effects
therefore seems desirable. The Filinov filter8–11 is applied to
semiclassical methods for this reason and proceeds as fol-
lows.

Consider a general complex integral written as

I =E drAsr deifsr d, s16d

whereAsr d is the amplitudesi.e., a real-valued function.d To
precondition this integral, one inserts unity in the form of a
normalized Gaussian integral, 1=sC/pdN/2edr 8e−Csr − r8d2, to
give

I = sC/pdN/2E dr E dr 8Asr deifsr de−Csr − r8d2. s17d

Since the Gaussian is localized aroundr 8 for large values of
C, the phase functionfsr d can be approximated by a linear
expansion aboutr 8 ,fsr d<fsr 8d+ =fsr 8d ·sr −r 8d, to give

I = sC/pdN/2E dr 8Asr 8deifsr8d E dre−Csr − r8d2+i=fsr8d·sr−r8d,

s18d

whereAsr d was approximated byAsr 8d. This approximation
to Asr d is again justified since the Gaussian is localized about
r 8. Evaluating ther integral leads to

I =E dr 8Asr 8deifsr8d−u = fsr8du2/4C. s19d

Preaveraging of the neighboring integration points then oc-
curs through the gradient term in the exponential, and the
contribution to the integral is small when the phase of the
integrand becomes highly oscillatory. The “strength” param-
eterC controls the extent of the preaveraging, and it is noted
that asC→`, the original integralfEq. s16dg is recovered.

This procedure can be applied to the semiclassical inte-
gral for uCscl by simply incorporating the factore−u=0fu2/4C

into the integrand, whereu=0fu2 is the magnitude squared of
the phase gradient with respect to the initial conditions and
can be calculatedsfor the adiabatic cased as

u=0fu2 = o
i=1

N FS ]f

]qi
D2

+ S ]f

]pi
D2G , s20d

where

]f

]qi
= o

j=1

N F ]ptj

]qi
sxj8 − qtjdG + Fbisp1i − pid

bi + b1i
G , s21d

]f

]pi
= o

j=1

N F ]ptj

]pi
sxj8 − qtjdG − Fb1isq1i − qid

bi + b1i
G . s22d

An analogous expression that includes both nuclear and elec-
tronic coordinates applies to the nonadiabatic case. Here" is
set to 1 for ease of notation and the contribution to the phase
of the semiclassical prefactorCpqt is neglected. The latter is a
standard approximation used when applying the Filinov filter
to semiclassical integrals, simply because this phase cannot
be easily included. Here the initial stateuC0l was assumed to
be the Gaussian stateup1q1b1l. In calculating the semiclas-
sical autocorrelation functionxscstd=kC0uCscstdl, the phase
derivatives are given by

]f

]qi
= o

j=1

N H ]qtj

]qi
Fb jsptj − p1jd

b j + b1j
G −

]ptj

]qi
Fb1jsqtj − q1jd

b j + b1j
GJ

+ Fb jsp1j − pjd
b j + b1j

G , s23d

]f

]pi
= o

j=1

N H ]qtj

]pi
Fb jsptj − p1jd

b j + b1j
G −

]ptj

]pi
Fb1jsqtj − q1jd

b j + b1j
GJ

− Fb1jsq1j − qjd
b j + b1j

G . s24d

This version of the Filinov filter as applied to SC-IVR is
one of the simplest offered in the literature.1,10,15,18,23Section
V discusses alternate versions that rely on keeping higher
order terms when expanding in a Taylor series, or on more
complicated representations of unity. The results reported in
that section, however, suggest that these more advanced ver-
sions are essentially no better than the simpler version pre-
sented here.
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III. NONCHAOTIC SYSTEMS

Although the Filinov filter has been used primarily in the
literature for chaotic systems, it is instructive to first consider
its utility in the nonchaotic regime. Consider a 1D anhar-
monic oscillator, initially used by Kay,7 which is the sum of
a Morse and harmonic potential defined by the Hamiltonian

H = −
1

2
p2 +

e

2b2s1 − e−bxd2 + s1 − ed
1

2
x2, s25d

where e=0.975 andb=1/Î12. This particular anharmonic
system poses no great numerical difficulties. The number of
trajectories needed for convergence of up to six oscillations
of a wave packet launched in the potential was 6400,7 with-
out the use of the Filinov filter. The system is included in the
present study because the low dimensionality provides the
opportunity to fully map and visualize the integrand of the
semiclassical integral over initial positionx0 and momentum
p0,

Ct
SCsx8d =

1

2pq
E dp0E dx0Cxqte

iSxqt/qkx8uptxtal

3kp0x0auC0l. s26d

The initial wave function used throughout the study for this
potential wasC0sxd=s2/pd1/4expf−sx−7.3d2g. The Filinov
filter was found not to improve the convergence rate in this
system. For large values ofC, the Filinov filter was too weak
to accelerate the convergence rate. For values ofC suffi-
ciently small to accelerate the convergence rate, the Filinov
filtering effect was found to be too strong and the calcula-
tions converged to incorrect resultsssee Fig. 5d.

The second system considers the photodissociation of a
generic triatomic molecule and has been previously used as a
test case in the calculation of cumulative transition matrix
elements.24 The calculations were performed on a purely dis-
sociative surface for a pseudotriatomic model of CH2IBr. All
relevant parameters, including the form of the potential, can
be found in Ref. 24. The initial triatomic wave function used
wasC0sRs,Rad~expf−74.7Rs

2−49.4Ra
2g, with Rs andRa sthe

symmetric and asymmetric modesd in atomic units. It was
reported in Ref. 24 that the semiclassical calculations of the
transition matrix elements converged with 53105 trajecto-
ries without the inclusion of the Filinov filter. Similar con-
vergence rates were seen when this calculation was repeated
in the present study. As in the case of the 1D anharmonic
oscillator, overdamping of the results was seen if any accel-
eration of the convergence rate was to be achieved using the
Filinov filter snot shownd.

The third nonchaotic system considered is the nonadia-
batic dissociation of ICN.17,25 The ICN results presented in
Refs. 17 and 25 required 23107 trajectories for convergence
when making use of the Filinov filter. The initial nuclear
wave function used for this system wasC0sR,ud~
3expf−54.0sR−5.1873d2−29.3u2g, with R and u sthe I–CN
bond length and angled in atomic units, and the potential
energy surfaces are those of Goldfield, Houston, and Ezra.26

This system is interesting because, even with the inclusion of
the Filinov filter, a relatively large number of trajectories

were needed to converge the calculation. Since the previous
studies on ICN reported positive results when using the Fili-
nov filter, it is important to understand exactly why the Fili-
nov filter, at first glance, seems to be effective in this system.
Such an understanding will start with an analysis of possible
chaotic regions of the ICN system. By examining exponen-
tial divergence of initially neighboring trajectories originat-
ing from various points in phase space, we found a small
number of chaotic trajectories in ICN. However, all of the
chaotic trajectories corresponded to a class of nonphysical
solutions that are expected to give no contribution to the
semiclassical wave function. Such nonphysical results arise
because the Hamiltonian is fictitious, with the nonadiabatic
dynamics modeled via a coupling to fake oscillators. Specifi-
cally, the ICN Hamiltonian used in the semiclassical simula-
tions is

HsR,K,u,l,p̃,xd =
K2

2M
+

l2

2MR2 +
l2

2mr2
+

1

2
H1,1fp̃1p̃1

+ x1x1 − 1g +
1

2
H2,2fp̃2p̃2 + x2x2 − 1g

+ H1,2fp̃1p̃2 + x1x2g, s27d

where sp̃ ,xd are oscillators introduced to model the elec-
tronic degrees of freedom,sR,ud and sK , ld are the nuclear
coordinates and momenta. The quantitiesM and m are the
I–CN and C–N reduced masses,r is the C–N equilibrium
bond length andHk,k8 are the diabatic electronic Hamiltonian
matrix elements. In the semiclassical methodology used, the
initial sp̃ ,xd are sampled from harmonic oscillator wave
functions. When a particular initial condition satisfiesp̃1p̃1

+x1x1,1, p̃2p̃2+x2x2,1, or p̃1p̃2+x1x2,0, the nuclear co-
ordinates see negativeH1,1, H2,2, or H1,2 energy surfaces,
respectively. These trajectories lead to nonphysical behavior
since, for example, ifH1,1 is effectively negative, the nuclear
coordinates propagating on this surface will see a large well
as R→0 and the I–CN bond length will shrink to zero. All
chaotic trajectories observed were found to originate from
these nonphysical regions of phase space and should there-
fore be rejected from the initial sampling distribution.

Once these chaotic trajectories were manually excluded
from the initial sampling distribution, the Filinov was found
to be no longer effective at accelerating the convergence of
the calculation. Thus, the Filinov filter, in the ICN case, does
little more than damp out the contribution of the nonphysical
chaotic trajectories.

To understand why the Filinov filter is ineffective in
these three casessonce the chaotic trajectories are removed
from the ICN calculationsd, consider the behavior of the
semiclassical integrand. The calculation of the semiclassical
wave functionCSCsx8 ,td at a particular pointx8 and some
time t is considered for each system. The phase and ampli-
tude of the integrand are then plotted as a function of a single
integration coordinate while all other coordinates are held
constant. Care is taken to ensure that the path taken through
the initial phase space by varying only one initial coordinate
in this way does in fact pass through a region with high
integrand amplitude for the particular final pointx8 chosen.
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sOtherwise the plot will only reveal the behavior of some
irrelevant and negligible low amplitude region of the inte-
grand.d

Figure 1 shows typical results of these calculations for
all three systems. Figures 1sad and 1sbd are for the anhar-
monic oscillator case propagated to time oft=2.0, with the
final coordinate beingx8=5. The integrand is shownfFig.
1sadg as a function ofx0 with p0=0 held constant, and Fig.
1sbd as a function ofp0 with x0 held constant atx0=7.3.

Figures 1scd and 1sdd are for the triatomic system propagated
to a time of 20 fs with the finalsRs,Rad chosen ass0.632,
0.008d. Panelscd in Fig. 1 shows the integrand phase and
amplitude first as a function of the initial symmetric stretch
coordinateRs0. sHere the other initial coordinates were held
fixed at Ra0=−0.010 222 6,Ps0=−9.216 95,Pa0=1.5545.d
Panelsdd in Fig. 1 shows the integrand as a function of the
initial asymmetric momentumPa0 with Rs0 fixed at
0.033 047 7. Figures 1sed and 1sfd show results for the
ICN system propagated tot=20 fs. The integrand be-
havior is shown in Fig. 1sed as a function of the electronic
momentump1 with the remaining coordinates fixed atR
=5.073 39,u=−0.000 294 587,x1=1.78215,x2=0.477 678,
K=27.9355,l =−2.328 62, andp2=−0.682 554 and panel
1sfd in Fig. 1 shows the integrand as a function ofR wherep1

was now fixed atp1=−1.113 54. All of these plots show that
the regions of high integrand amplitude are accompanied by
regions of low phase gradient. The Filinov filter then does
not help the convergence of these systems because the re-
gions of high phase gradient, which are down-weighted by
the filter,already contribute negligibly to the integral.

Motivated by figures of this type, we undertook a gen-
eral survey of the relation between the phase gradients and
the integrand amplitude. Figures 2sad and 2sbd show the in-

FIG. 1. Integrand phase and amplitude for select paths through phase space.
Panelssad andsbd are for the anharmonic oscillator case shown as a function
of x0 andp0, respectively. Panelsscd and sdd are for the triatomic case as a
function of the initial symmetric stretchRs0 and the initial asymmetric mo-
mentumPa0. Panelssed andsfd are for the ICN case as a function of initial
p1 and initial R.

FIG. 2. Relation of the integrand amplitude to the integrand phase. Panelsad
shows the integrand amplitude as a function of both integration coordinates
for the anharmonic case. Panelsbd shows the corresponding phase of the
integrands 0= white to 2p= blackd with a contour plot of the integrand
amplitude superimposed for comparison. Next are shown scatter plots of
integrand amplitude vs. the full phase gradient for 104 trajectories selected
from the Monte Carlo sampling distribution forscd the triatomic case andsbd
the ICN case. The line in panelscd corresponds to the phase gradients of Fig.
1scd and the line in panelsdd corresponds to the phase gradients of Fig. 1sfd.
Note that values ofu=0ffull u near the zero of the integrand amplitude exceed
40 000 and 80 000 in panelsscd and sdd, respectively
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tegrand amplitude and phase for the complete integration
space of the 1D anharmonic oscillator case. The dashed lines
in Fig. 2sad corresponds to the phase-space paths taken by
Fig. 1sad and 1sbd. Notice in Fig. 2sbd that the regions of high
integrand amplitude overlap only with regions of low phase
gradients.

Unfortunately, visualizing the full phase space for the
triatomic and ICN cases is not possible due to the higher
dimensionality of these systems. Here we must resort to a
statistical sampling of the integration space. Figures 2sbd and
2scd show scatter plots of integrand amplitude vs the numeri-
cally calculated gradient of the full integrand phaseu=0ffull u
for 104 trajectories randomly selected from the Monte Carlo
sampling distribution for the triatomic and ICN systems, re-
spectively. “Full integrand phase” means the integrand phase
including the contribution from the prefactorCpqt. No initial
coordinates were held fixed. The curve in Fig. 2scd corre-
sponds to the phase gradients of Fig. 1scd and is shown for
comparison against the scatter plot. Similarly, the line in Fig.
2sdd corresponds to the phase gradients of Fig. 1sfd. Note that
they axes were truncated for clarity; the phase gradients near
the zero integrand amplitude region go up as high as 40 000
for the triatomic case and 80 000 for ICN. This shows that
the behavior seen in Fig. 1 is indeed representative of the

behavior of the full integrands, with no relation between
large integrand amplitude and large phase gradients.

There remains the question as to why the ICN calcula-
tion takes two orders of magnitude more trajectories than
does the model one-surface triatomic. When we carried out
single surface simulations of ICN using either of the two
electronic surfaces i.e., without the nonadiabatic SC-IVR for-
malismd, they were found to require the same number of
trajectories for convergence as did the model triatomic. Thus,
the convergence difficulties are not intrinsic to the ICN po-
tential energy surfaces, but instead originate from the nona-
diabatic SC-IVR procedure. It seems plausible to assume that
the coupled electronic degrees of freedom are perhaps intro-
ducing difficulties. However, this is incorrect. Simulations of
the ICN dissociation using the nonadiabatic formalism, but
with the coupling turned offsH1,2=0d still took ,107 trajec-
tories for convergence. This is clearly strange, since without
the coupling terms the electronic degrees of freedom reduce
to two extra simple harmonic oscillators for which the SC-
IVR evaluation should require a minimal amount of trajec-
tories. So from where do the convergence difficulties arise
upon inclusion of the electronic degrees of freedom?

Figure 3 shows contours of the wave function calculated
for a single-surface ICN dissociationstop rowd and the two-

FIG. 3. Contours of the calculated ICN wave function after ionization. Top row: single potential energy surface calculation for 102, 103, and 104 trajectories.
Lower row: multiple potential energy surface calculation using nonadiabatic SC-IVR for 104, 105, and 106 trajectories.
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surface ICN with couplingsbottom rowd. All the classical
trajectories for the one-surface system end up near the final
position of the wave function and hence all can contribute in
a useful way to the integral. Both the converged wave func-
tion, and the wave function computed with a small number
of trajectories occupy similar spatial regions. For the two-
surface simulations, however, the spread in the final position
of the classical trajectories is much larger than the spread of
the final converged wave function. Indeed, the ratio of the
spread in the trajectories to the spread in the final wave func-
tion is estimated to be roughly 10:1. This large spread of the
classical trajectories arises from the fact that the Hamiltonian
for the nonadiabatic SC-IVR method introduces an average
over many different weights of the nuclear potentials so that
trajectories propagate on a distribution of effective potential
energy surfaces. Furthermore, all the classical trajectories for
the two-surface system contribute to the large spread with
about equal order of magnitude amplitude. This additional
spread of the trajectories, compared to the converged wave
function, can be clearly seen in the plots of the wave func-
tion for low numbers of trajectories where there are contri-
butions that fill the entire spatial map. Hence, the conver-
gence difficulty for two-surface ICN is caused by the need to
average out most of the large spread in positionsand hence
most of the trajectoriesd to zero. The same interpretation
holds in the momentum spread of the nuclear coordinates as
well, where the classical trajectories span a region that is
again much larger than the final converged. A “wasted vol-
ume” of trajectories in both position and momentum space of
about 10:1 in each gives a wasted volume in the full integra-
tion phase space of about 100:1, which agrees well with the
extra computation effort needed to converge the two-surface
ICN as compared to the one-surface ICN.

This section concludes with a brief consideration of the
time evolution of the semiclassical prefactor for these sys-
tems as well as an explicit demonstration of the overdamping
caused by the Filinov filter for the calculation of the autocor-
relation function of the 1D anharmonic oscillator. This will
be of use for comparison with the chaotic systems considered
in the following section. Figure 4 shows the prefactorCpqt

for a representative set of 20 trajectories for each of the three
systems considered in this section. All three systems show at
most a polynomial increase in the magnitude of the prefactor
with time. This polynomial increase arises from the fact that
the prefactor is a polynomial function of the stability matrix
elements which, for regular dynamics, scale as a polynomial

in time. This polynomial scaling of the prefactor is a key
requirement for the convergence of the semiclassical inte-
grals without any filtering of the integrand and, as will be
seen in the following section, is in stark contrast with the
behavior of the prefactor for chaotic systems.

Figure 5sad shows the calculated autocorrelation function
for the 1D anharmonic oscillator system obtained using the
Filinov filter with a variety of filter settings. Figure 5sbd plots
the quantum result for comparison. When using a mild filter
parametersi.e., large values ofCd or no filter at all, the semi-
classical autocorrelation function quite closely resembles the
quantum result for the full time range, but no acceleration of
the convergence rate is obtained. However, as the filter pa-
rameter becomes more aggressivesi.e., smallerC valuesd,
the accelerated convergence rate is accompanied by a semi-
classical autocorrelation function that becomes artificially
damped out for large times.

The long-time structure of the autocorrelation is indica-
tive of resonances in the system and is responsible for sharp
features in the corresponding energy spectrumIsEd. The
overdamping seen in the semiclassical autocorrelation func-
tion will then manifest itself in a broadening of the resonance
peaks in the corresponding spectrumIsEd, significantly re-
ducing the spectral quality. Hence, there is adisadvantageto
using the Filinov filter in this case.

FIG. 4. Time evolution ofCpqt for a
few sample trajectories showing the
characteristic behavior for each
system.

FIG. 5. The calculated autocorrelation functionxstd for the 1D anharmonic
oscillator system.sad Semiclassical results forC=5−2,5−1,50,51,… ,56 and
for no Filinov filter, from bottom to top.sbd Quantum result.
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IV. CHAOTIC SYSTEMS

Consider now the more interesting case of chaotic sys-
tems. Here both advantages and drawbacks of using the Fili-
nov filter to accelerate the convergence of the semiclassical
calculations will become increasingly evident.

Four model systems will be considered. The first is a two
surface nonadiabatically coupled system used by Stock and
Thoss.20 This model exhibits regular quantum dynamics
swith respect to such measures as the energy level spacingsd
but shows chaotic classical dynamics for large times which,
unlike the ICN case of the preceding section, cannot be trivi-
ally removed from the computation. The Hamiltonian is
given by

H =
v

2
sP2 + X2d1 + FV11 V12

V12 V22
G , s28d

whereV11=−V22=D /2+kX andV12=g. In keeping with Ref.
20, we use the parametersD=1, g=0.2D , v=0.1D, and k
=0.05D. The initial wave packetC0sX, ld used was the
ground state wave function of the single oscillatorsH
=v /2fP2+X2gd placed on the ground electronic surface,l
=1.

The next two systems are classic models of both quan-
tum and classical chaos, namely, the quartic oscillator and
the Henon–Heiles system. Both of these systems have been
studied using SC-IVR, with some form of integral filter tech-
niques used to converge the results.15,16,18,19,27All of the
studies reported beneficial attributes of the Filinov filter. We
repeat these calculations here and identify both advantages
and limitations of such filtering techniques.

The quartic oscillator is defined by the Hamiltonian

H =
1

2
Px

2 +
1

2
Py

2 +
1

2
x2y2 +

1

4
bsx4 + y4d s29d

with b=0.01. The initial wave packet used wasC0sx,yd
~expf−0.5x2−0.5sy−8.32d2g. The Henon–Heiles system has
the Hamiltonian

H =
1

2
Px

2 +
1

2
Py

2 +
1

2
sx2 + y2d + lsx2y − y3/3d s30d

with l=0.1118. The initial wave packet used for this system
was C0sx,yd~expf−0.5sx−x0d2−0.5sy−y0d2+ ixPx0+ iyPy0g
with x0=0, y0=−1.914,Px0=3.976, andPy0=0.961.

The fourth chaotic example involves the calculation of
the absorption cross section of 2D planar H2O in the second
absorption band, which occurs via a transition from the

sX 1A8d ground electronic surface to thesB̃ 1A8d excited elec-
tronic surface. This model is similar to the dissociative sys-
tems considered in the preceding section except that the ex-
cited state potential energy surface contains a well in which
the classical trajectories can oscillate and undergo chaotic
dynamics prior to dissociation. The two coordinates consid-
ered are one HO–H bond lengthR and the HO–H bendg.
The HO fragment was assumed to be a rigid diatom with
bond length ofreq=1.835a0. The excited surfaceVsR,gd
used is that of Segev and Shapiro.28 The Hamiltonian of the
system on the excited surface for total angular momentum
J=0 is

H =
PR

2

2mR
+

j2

2mRR2 +
j2

2IOH
+ VsR,gd, s31d

where j is the angular momentum associated with the
bend mode g , mR=mHsmH+mOd / s2mH+mOd and IHO

=req
2 mHmO/ smH+mOd. The initial state used wasC0sR,gd

~expf−11.73sR−reqd2−5.98sg−g0d2g, with g measured in
radians andg0=104°. The majority of the trajectories for this
initial state dissociate after one or two oscillations but the
remaining trajectories undergo complicated chaotic motion
in the potential well for many oscillations before dissocia-
tion. A small number of trajectories remain trapped in the
well, exhibiting pseudobound chaotic dynamics.

The first point of interest with these systems relates to
the behavior of the prefactorCpqt. A set of 20 representative
trajectories are plotted in Fig. 6 for each of the four chaotic
systems using, unlike Fig. 4, a logarithmic vertical scale. All
four systems exhibit some trajectories with exponentially in-
creasing prefactors. These appear as more or less linearly
increasing functions on the logarithmic plots and are the cha-
otic contributions. This is the root of the convergence diffi-
culties in chaotic systems using Monte Carlo sampling. Con-
verging the integral forxstd, with exponential growth of the
integrand as a function of time, requires an exponentially
increasing number of trajectories with increasing time.

To clearly see the advantages of using the Filinov filter
for chaotic systems we first calculatexstd. Figures 7 and 8
plot the autocorrelation functionsxstd for the quartic oscilla-
tor and the H2O systems, respectively. Panelssad in both
Figs. 7 and 8 plot the SC-IVRxstd for various values of the
Filinov strength parameterC ssee captionsd while panelssbd
plot the fully quantumxstd calculated using FFT grid-based
methods. The quartic oscillator simulations used 107 trajec-
tories while the H2O simulations used 23106 trajectories. In
the absence of any filtering as well as for weak filter strength
si.e., largeCd, the semiclassicalxstd grows exponentially for
large times due to the exponentially increasingCpqt. The
semiclassical calculation of these autocorrelation functions
then has no chance of converging over an arbitrarily large
time range without some form of integral conditioning due to
the exponential growth of the semiclassical prefactor. For
more aggressive filter settingssi.e., smaller values ofCd, the
autocorrelation functions are seen to have converged but now
there is clear overdamping at large times when compared to
the quantum result, as was seen in the 1D anharmonic oscil-
lator casesFig. 5d. In practice, then, the Filinov filter should
be tuned to damp out the exponentially increasing contribu-
tions while overdamping as little as possible, with the opti-
mum choice ofC being as large as possible while still per-
mitting numerical convergence of the calculation.
Autocorrelation functions for the Stock and Thoss systems as
well as the Henon-Heiles system are shown in the following
discussion.

It is important to stress here that, however, accuratesor
inaccurated the result of the calculation using the Filinov
filter happens to be, its inclusion makes the convergence pos-
sible despite the underlying exponential growth of the semi-
classical prefactor and represents an exponential acceleration
of the convergence rate. This is the main benefit of the Fili-
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nov filter in the case of chaotic dynamics. The remaining
question, then, is exactly how accurate are the results when
the Filinov filter is used to converge the calculations?

To address this question we consider the energy spec-
trum of these systems, as calculated from the Fourier trans-
form of xstd for the optimal value ofC chosen as just out-
lined. We consider the four chaotic cases in order of
increasing difficulties with the Filinov filter. The spectrum of
the Stock and Thoss model is shown in Fig. 9 for both the
full quantum and the semiclassical calculationssshown in-
vertedd. The semiclassical results used a Filinov settingC
=106 and 105 trajectories. The inset shows, from top to bot-
tom, the autocorrelation function calculated with no filter,

with C=106 sthe optimal value for the number of trajectories
usedd and withC=102 which leads to overdamping, and fi-
nally the full quantum autocorrelation function. Here the au-
tocorrelation function calculated with the optimal Filinov pa-
rameter matches well the quantum result. Returning to the
calculated spectra, we see that the semiclassical spectrum
with the optimal Filinov parameter agrees quite well with
quantum spectrum for this system. Thus, the Filinov filter is
having a positive effect in this case, filtering out the un-
wanted exponential growth of the integrand. It should be
noted here that the energy spacings for this modelsnearly
harmonicd suggest that the system is dominated by regular
quantum dynamics. Furthermore, when looking at the repre-

FIG. 6. Time evolution ofCpqt for a few sample trajec-
tories showing the characteristic behavior for each
system.

FIG. 7. The autocorrelation functionxstd for the quartic oscillator.sad Semi-
classical results forC=102,104,106,… ,1018 and for no Filinov filter, from
bottom to top.sbd Quantum result.

FIG. 8. The calculated autocorrelation functionxstd for the H2O system.sad
Semiclassical results forC=103,104,105,… ,1013 and no Filinov filter, from
bottom to top.sbd Quantum result.
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sentative sample of trajectories shown in Fig. 6 there are
clearly two classes of behavior, one exhibiting exponential
growth ofCpqt and the other exhibiting polynomial growth. It
appears then that the Filinov is correctly filtering out the
chaotic contributions of the underlying classical dynamics
which, judging by the regular energy spacings of the quan-
tum spectrum, should not have a significant effect on the
quantum dynamics anyway.

Next consider the calculated spectra of the Henon–
Heiles system. This is an interesting case because the initial
wave packet used overlaps with both regular and chaotic
regions of the classical phase space so that the quantum dy-
namics involves both regular and irregular eigenstates.sThe
classical dynamics, however, is only mildly chaotic in com-
parison with the two examples to follow, the quartic oscilla-
tor and the H2O system.d The quantum and semiclassical
s106 trajectoriesd spectra are shown in Fig. 10 for two values
of the Filinov parameter: panelsad usesC=106 while panel
sbd usesC=102. At energies belowEc,9.1, the threshold for
chaotic classical dynamics, both spectra agree very well. For
these energies, the classical dynamics is nonchaotic and the

quantum eigenstates are regular. AboveEc, the dynamics is
increasingly chaotic with energy and the majority of the
quantum eigenstates quickly take on an irregular or chaotic
character.29,30 The C=106 semiclassical results still agree
quite well with the quantum results in this region and only
start to diverge noticeably for the highest energies plotted
sE.14.5–16.5d. The case is, however, not the same when
the stronger filteringC=102 is used, as would be necessary
to converge a calculation when, for example, only a smaller
number of trajectories is available. For this case, the quan-
tum and semiclassical spectra are seen to correspond less and
less aboveEc with the semiclassical spectrum missing much
of the fine structure and sharpness of the peaks seen in the
high-energy quantum spectrum. As mentioned in the preced-
ing section, the broadening of the energy peaks has its origin
in the overdamping of the long-time autocorrelation func-
tion. The semiclassical spectrum then shows that the high
energy chaotic dynamics is strongly affected by overdamping
while the low-energy nonchaotic dynamics remains rela-
tively untouched. These two cases then give a clear picture
of the overdamping that results when strong filtering is re-
quired to force early convergence of a semiclassical calcula-
tion.

The quantum and semiclassicalsC=108d spectra for the
quartic oscillator are shown in Fig. 11. As is the convention
in the literature for this system, we plot the spectra vs the
scaled energys2Ed3/4. Here the large scale featuressgeneral
width of the spectra, average peak spacingd of the two spec-
tra agree quite well. However, many of the small scale fea-
tures seen in the quantum spectrum are lost in the semiclas-
sical result; e.g., a number of the quantum peaks are
doublets, but show up as single peaks in the SC-IVR spec-
trum. The vertical dotted lines denote eigenergies calculated
in Ref. 31 which follow from an adiabatic separation of the
two degrees of motion of the system. These results represent
essentially uncoupled eigenstates of the oscillator. Although
these eigenenergies are only approximate, as can be seen
from the quantum spectrum, they all match the semiclassical
peaks quite well. Furthermore, the remaining peaks of the
semiclassical spectrum, which fail to exhibit the doublet
structure of the quantum spectrum, appear to be spaced by
the near-harmonic spacing suggested by the uncoupled
eigenenergies. These findings suggest that the semiclassical
spectrum converged using the Filinov filter is missing the
coupled character of the correct eigenstates and may be forc-
ing artificially regular spacing statistics on the energy spec-
trum.

Figure 12 shows the calculated low-energy H2O spec-

FIG. 9. Quantumstopd and semiclassicalsinvertedd spectrumIsEd for the
Stock and Thoss system. Inset: semiclassical and quantum autocorrelation
functionsssee text.d

FIG. 10. Quantumstopd and semiclassicalsinvertedd spectrumIsEd from the
Henon–Heiles system. The semiclassical calculations used the Filinov set-
ting of C=106 fpanelsadg andC=102 fpanelsbdg.

FIG. 11. Quantumstopd and semiclassicalsinvertedd spectrumIsEd of the
quartic oscillator.
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trum for the quantum case and the semiclassical case with
C=106. The sharpness of the continuum resonances seen in
the quantum case is lost in the semiclassical spectrum. Fur-
thermore, the energy peak resolvability is much worse in the
bound state spectrum of the semiclassical results as com-
pared to that of the quantum results. Again, this is because
the semiclassical autocorrelation function is overdamped in
using the Filinov filter and the long-time behavior is sup-
pressed, causing a broadening of the peaks.

V. ALTERNATE FILTERING METHODS

The large majority of the SC-IVR literature dealing with
chaotic dynamics and integral conditioning techniques has
centered around some version of the Filinov filter.1,10,15,18,23

However, Kay19 has introduced a much moread hoc, yet
nonetheless successful, method of dealing with contributions
arising from chaotic trajectories. For a recent application of
Kay’s method see Ref. 32. We now compare these two meth-
ods and argue that they operate on an essentially equivalent
level of approximation.

In Kay’s method,19 a given trajectory is included in the
semiclassical integral up until the magnitude of the prefactor
uCpqtu grows larger than some preset function of time. Here

we use the criterion to keep a trajectory untiluCpqtu.Ccut

whereCcut is a constant controlling the strength of the filter-
ing using this method.

Figure 13 plots the autocorrelation function for the
Henon–Heiles system calculated using the Filinov filter and
Kay’s method for a variety of filter strengths. From these
plots we see very similar behavior in the two methods as the
filter parameters are varied: for weak filtering, the autocorre-
lation function grows exponentially for large times and for
stronger filtering, the autocorrelation is prematurely damped
out. Figure 14 shows the corresponding spectrum for optimal
filter parameters using the FilinovsC=106d and Kay’s
methodsCcut=102.5d. Both methods are seen to give essen-
tially equivalent approximations to the full quantum spec-
trum ssee Fig. 10d.

Some understanding of the connection between these
two methods can be obtained by considering the relation
between the phase gradient and the prefactor. Figure 15 plots
u=fu2 vs uCpqtu for a random sample of 100 trajectories used
to calculate the autocorrelation function. These two param-
eters are seen to be strongly correlated and almost fall on a
straight line in the log-log plot. This linear relationship on
the log scale follows from the fact that both the phase gra-
dient and the prefactor are polynomial functions of the sta-
bility matrix elements. The slope of the line gives the poly-
nomial relation between these two values.

Figure 16 plots the filter functions for both methods on a

FIG. 12. Near-barrier bound states and low-energy continuum spectrumIsEd
of the H2O system for the quantum and semiclassical cases withC=106.

FIG. 13. Autocorrelation functions calculated usingsad the Filinov filter for
C=100,102,104,… ,1016 and for no filter, andsbd Kay’s truncation method
usingCcut=101,101.5,102,… ,105 and for no filter.

FIG. 14. Spectra of the Henon–Heiles systems calculated using the Filinov
filter and Kay’s method.

FIG. 15. Scatter plot of the phase gradientu=fu2 used in the Filinov filter vs
the magnitude of the prefactoruCpqtu used in Kay’s method, showing the
polynomial relationship between the two parameters. Dashed lines show the
effective cutoff values for the two filters as used in Fig. 14.
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log scale to match Fig. 15. The filter for Kay’s method is
simply a step function in the prefactor with cutoffuCpqtu
=Ccut while the filter function for the Filinov method is a
smoothed step function with effective cutoff atu=fu2
=4C ln 2 spoint where filter weight is 0.5d. These two cutoff
values are plotted as vertical and horizontal dashed lines in
Fig. 15. From this plot it can be seen that the two filter
methods are both simply rejecting trajectories with integrand
amplitude greater thanCcut: Kay’s method does this directly
while the Filinov method does so indirectly through the poly-
nomial relationship betweenu=fu2 and uCpqtu. They are
therefore both filtering out essentially the same set of trajec-
tories, and hence give similar approximations to the dynam-
ics.

Further to the equivalence of the Filinov and Kay’s
method, it should be noted that many of the conclusions
reached in the preceding section regarding the overdamping
of strong chaotic dynamics in the semiclassical calculations
when using strong Filinov filtering are essentially identical to
the conclusions reached by Kay when he initially analyzed
his truncation method.19

The literature also offers a few more refined versions of
the Filinov filter than that presented in Sec. II C. The first
version1,10,18 differs only in that it keeps higher order terms
in the Taylor expansion in going from Eq.s17d and s18d.
These terms, however, only affect the final form of the Fili-
nov filter by the appearance of an additional preexponential
term that is polynomial in the stability matrix elements. The
filtering power of the Filinov, however, lies in the exponen-
tial weighting terme−u = fu2/4C and the additional preexponen-
tial term arising in the higher order Filinov methods did not
improve the method when tested in the present study. In fact,
the results deep into the region of exponential growth dif-
fered negligibly when compared with both the simple Filinov
of Sec. II C as well as Kay’s truncation method, confirming
that the preexponential term is of little help to the Filinov in
converging the long-time dynamics.

A second alternate Filinov transformation of the semi-
classical initial value representation, called the generalized

Filinov transform, has also been proposed.23 This generalized
Filinov filter was shown23 to accelerate the convergence of a
multidimensionalsup toN=10d Henon–Heiles-type potential
as well as a pyroxene model. There the main focus was to
converge the short-time autocorrelation function with as few
trajectories as possible. A complete description of the method
can be found in Wang, Manolopoulos, and Miller23. The es-
sential difference between the generalized Filinov technique
and that outlined in Sec. II C is that an alternate representa-
tion of unity is inserted into the initial integrandfsee Eqs.
s16d and s17dg. The representation of unity used in the gen-
eralized Filinov filter has a linear term in the exponent in
addition to the quadratic term. The first parameter, calleda,
is the analog of theC parameter used in the standard Filinov
filter and controls the width of the Gaussians in the expan-
sion of unity. The second parameter, calledb, controls the
strength of the linear term and can take on values of 0–1, but
small valuesstypically b,0.2d were recommended.

We have applied the generalized Filinov filter to the 2D
H2O model to see if it can accelerate the calculation of the
long-time dynamics. Figure 17 shows the results of semiclas-
sical calculations of the autocorrelation function up to times
of 200 fs for both the standard and generalized Filinov filters.
fFigure 17sad usesa=C=106 and Fig. 17sbd usesa=C=109.g
Both sad andsbd show results of the generalized Filinov filter
for b values of 0.1 and 0.02. The autocorrelation function at
times larger than 100 fs shows noise fluctuations that are on
the same order when using the standard Filinov or the gen-
eralized Filinov filter. Changing thea and C parameters
shows that these fluctuations are dampedsor undampedd by
roughly the same amount for either the standard or general-
ized Filinov filters. The only effect of theb parameter for the
generalized Filinov is to cause overdamping over the entire
time range. This can be most easily seen by looking at the 40
fs peak. The cases for the standard Filinov and the general-
ized Filinov with b=0.02 overlap quite well, but the case
with b=0.1 for the generalized Filinov is seen to be smaller
in amplitude. Indeed, the only difference between theb
=0.1 andb=0.02 cases is that the results for the former are

FIG. 16. Weighting functions used forsad the Filinov filter and forsbd Kay’s
method.

FIG. 17. Semiclassical calculations of the autocorrelation function up to
times of 200 fs for both the simplesoldd and generalized Filinov filtersssee
text for details.d
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overdamped. It seems that the generalized Filinov filter is no
better than the standard Filinov at accelerating the conver-
gence of the long-time dynamics for H2O, and furthermore,
it introduces new sources of overdamping whenb becomes
too large. These observations were supported by additional
simulations on H2O that we carried out using a wider variety
of a andb parameters.

VI. CONCLUSIONS AND RECOMMENDATIONS

When we began this work, we adopted the accepted
view that the Filinov filter serves a positive role in semiclas-
sical initial value representation calculations. This work has
shown this to be only partially correct. First, in the case of
nonchaotic systems, the inclusion of the Filinov does little
more than cause overdamping, if any acceleration of the con-
vergence rate is to be achieved. The reason for this lies in the
lack of large phase oscillations in the regions of large inte-
grand amplitude, the numerical difficulty that the Filinov fil-
ter is designed to alleviate. Second, in the case of chaotic
dynamics, where regions of large phase oscillations con-
comitant with regions of large integrand amplitude do
abound, the inclusion of the Filinov filter does make the
convergence of the semiclassical integrals possible. How-
ever, while the filtered results do a good job at representing
regular quantum dynamics, the quantum chaotic behavior
was seen to be easily overdamped if strong filtering is re-
quired to converge the calculations.

The demonstrated equivalence between the Filinov filter
and Kay’s truncation method suggests a possible shift in in-
tegral conditioning techniques. The Filinov method, espe-
cially the higher order methods discussed in Sec. V, is rather
complicated and cumbersome as compared to the simplicity
of Kay’s truncation method. Furthermore, if one looks
closely at the results of the two methodssFig. 13d, Kay’s
method is seen to give a smoother approximation near the
convergence limit. This is due to the fact that Kay’s method
rejectsall trajectories larger thanCcut while the weighting
function of the Filinov method lets a few trajectories through
with larger amplitudes, which causes larger residual fluctua-
tions. If the equivalence of the two methods goes unchal-
lenged, these two points seem to suggest Kay’s method as
the better of the two integral conditioning techniques for
semiclassical initial value representation methods.

Based on these observations, we offer the following rec-
ommendations:sid In the case of regular classical dynamics,
the use of filtering techniques is not required, and should
therefore be avoided at the risk overdamping of the results.
sii d In the case of classically chaotic dynamics, filtering
should be used to make possible the convergence of the cal-
culations, but with the understanding that any strongly quan-
tum chaotic character will be misrepresented.siii d Filinov-
based filtering methods can be replaced in all cases by the
simpler truncation method of Kay.

The fact that the regions of high phase gradients have
been shown to be linked to regions of low integrand ampli-
tude for the non-chaotic systems means that the Filinov
weight factorfsee Eq.s19dg is indeed well suited to identify

the regions of high integrand amplitude. One might then con-
sider returning to the original idea proposed by Makri and
Miller10,11. Incorporating the Filinov weight factor into some
optimized Monte Carlo sampling procedure33 could prove to
be quite useful. Furthermore, the present usage of the Filinov
filter for chaotic systems requires one to sample the chaotic
regions and essentially set these contributions to zero via the
weighting factor which leads to a large amount of ’wasted’
Monte Carlo integration points. Using the Filinov in some
importance sampling technique could in this case also pre-
vent searching through this wasted integration volume lead-
ing to yet more efficient Monte Carlo methods. Such impor-
tance sampling techniques, however, would not be expected
to correct the problem of misrepresentation of the strong
quantum chaotic dynamics demonstrated herein. It remains
an open question if the unfiltered SC-IVR method, if allowed
to run to convergence on some hypothetical super computer,
could recover the correct quantum chaotic dynamics, or if
this chaotic behavior is indeed lost in the semiclassical ap-
proximation altogether.
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