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Overview of the electronic structure problem

Here, we provide further context and motivation for the electronic structure problem. The

molecular Hamiltonian in atomic units can be written asS1
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ZAZB
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, (1)

where i, j are electron indices, A,B are nuclear indices, ∇2
i and ∇2

A are Laplacian operators

representing differentiation with respect to the coordinates of the ith electron and Ath nucleus,
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MA and ZA are the mass and atomic number of nucleus A, riA = |ri −RA| is the distance

between ith electron and Ath nucleus, rij = |ri − rj| is the distance between ith and jth

electrons, and RAB = |RA −RB| is the distance between Ath and Bth nuclei. The operator

terms in Eq. (1) represent the kinetic energy of electrons, kinetic energy of nuclei, Coulombic

attraction between electrons and nuclei, repulsion between electrons, and repulsion between

nuclei, respectively.

The Born–Oppenheimer approximation assumes the molecular electrons are moving in

the field of fixed nuclei since they are much lighter.S1 This allows one to neglect the nuclear

kinetic energy term in Eq. (1) and consider the nuclear-nuclear repulsion term to be con-

stant. Thus, the remaining terms of Eq. (1) constitute the molecular electronic structure

Hamiltonian

Helec = −1
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∑
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i −

∑
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∑
A

ZA
riA

+
∑
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∑
j>i

1

rij
. (2)

Our goal is to solve the time-independent Schrödinger equation for the molecular electronic

structure

HelecΨµ(r) = EµΨµ(r) (3)

where {Ψµ} are the electronic wavefunctions with corresponding energies {Eµ} for a given

molecular nuclear coordinates with {rj} being the set of electronic coordinates. As an

example, Ψ0 and E0 are the ground electronic wavefunction and its energy. Finding the

{Ψn} wavefunctions on a classical computer is a notoriously hard problem because of the

combinatorial growth of the dimensionality with increasing number of electrons N in the

molecule. This is where quantum computing promises to be impactful.

An electronic wavefunction Ψ(r) depends on a set of N electron coordinates {rj}. How-

ever, one should also include the electron spin into the picture, and denote the wavefunction

as Ψ(x) instead, where x represents the combined spatial and spin coordinates of the elec-

trons. Spin does not fundamentally arise in the non-relativistic premise of electronic structure

theory. Nevertheless, spin must be included as a bookkeeping tool to respect the fermionic
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antisymmetry of electrons

Ψ(· · · ,xj, · · · ,xk, · · · ) = −Ψ(· · · ,xk, · · · ,xj, · · · ), (4)

even in approximate wavefunctions. A good starting point for approximately solving the

electronic structure is the Hartree–Fock (HF) method,S1 which transform the many-electron

problem of Eq. (3) to an effective one-electron problem in the mean-field created by the

other electrons. The HF method provides M number (M > N) of orthonormal one-electron

functions {χp(x)}, called the molecular spin-orbitals. We are assuming M to be an even

integer since there is an underlying M/2 number of spatial functions {φp(r)} which can

associate with either up-spin α(ω) or down-spin β(ω) functions

χ2p↑(x) ≡ φp(r) α(ω), χ2p↓ ≡ φp(x) β(ω). (5)

Thus, N electrons in M molecular spin-orbitals give rise to
(
M
N

)
number of many-electron

basis states, each of which is an antisymmetrized product state

|p1, · · · , pN〉F ≡
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χp1(x1) · · · χpN (x1)

χp1(x2) · · · χpN (x2)

· · · . . . · · ·

χp1(xN) · · · χpN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6)

where 0 ≤ p1 < · · · < pN ≤ M − 1. The wavefunction in Eq. (6) is the so-called Slater

determinant and based on the ordering of {pj} indices, approximates the exact ground

and excited electronic states. For example, the Slater determinant |0, · · · , N − 1〉F is the

electronic ground state wavefunction under the HF approximation.
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Justification of the state mapping

The state mapping described in the Main Text is justified if we can prove that acting with

bosonic operators {b†j, bj} on the mapped fermionic states still preserve their commutation

relations. We follow the derivation done in Ref. S2 here, although a similar justification was

first given by Ref. S3.

The first step to deduce the action of bosonic creation operators on a Slater determinant

is to apply the state mapping to get

b†j |p1, · · · , pN〉F = b†j |q1, · · · , qN〉B =
√
qj + 1 |q1, · · · , qj + 1, · · · , qN〉B , (7)

which can be again mapped back to

b†j |p1, · · · , pN〉F =
√
pN−j+1 − pN−j |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN + 1〉F , (8)

where j < N . The same expression for the special case of j = N is given by

b†N |p1, · · · , pN〉F =
√
p1 + 1 |p1 + 1, · · · , pN + 1〉F , (9)

The action of bosonic annihilation operators on a Slater determinant can be similarly derived

as

bj |p1, · · · , pN〉F =
√
pN−j+1 − pN−j − 1 |p1, · · · , pN−k, pN−k+1 − 1, · · · , pN − 1〉F , (10)

when j < N and

bN |p1, · · · , pN〉F =
√
p1 |p1 − 1, · · · , pN − 1〉F . (11)
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Let us now combine Eq. (8) and Eq. (10) to arrive at

bjb
†
k |p1, · · · , pN〉F =

√
(pN−k+1 − pN−k) (pN−j+1 − pN−j − 1)

× |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN−j + 1, pN−j+1, · · · , pN〉F , (12)

where j < k. Similarly, by reversing the order of the bosonic operators, we get

b†kbj |p1, · · · , pN〉F =
√

(pN−k+1 − pN−k) (pN−j+1 − pN−j − 1)

× |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN−j + 1, pN−j+1, · · · , pN〉F , (13)

where j < k. Thus, the right hand sides of Eq. (12) and Eq. (13) are the same, which proves

[bj, b
†
k] = 0 for j < k. The j > k case can be similarly derived as above. Let us now consider

the j = k case

bkb
†
k |p1, · · · , pN〉F = (pN−k+1 − pN−k) |p1, · · · , pN〉F . (14)

Similarly, by reversing the order, we get

b†kbk |p1, · · · , pN〉F = (pN−k+1 − pN−k − 1) |p1, · · · , pN〉F . (15)

Thus, Eq. (14) and Eq. (15) shows that [bk, b
†
k] = 1, which proves that the state mapping

preserves the relation [bj, b
†
k] = δjk.

Derivation of the operator mapping

The derivation of the mapping {Ep
q} operators is shown in Ref. S2, which we call Dhar–

Mandal–Suryanarayana (DMS) mapping or simply direct mapping. We gain insight into the

derivation here by discussing all the steps for the specific cases of N = 1 and N = 2.

Let us first discuss the operator mapping with an N = 1 system. The state mapping is
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then simply |j〉F ↔ |j〉B, where the one-particle states are defined as

|j〉F ≡ f †j |−〉F , |j〉B ≡
b†j√
j!
|0〉B . (16)

Let us figure out how the bilinear fermionic operators act on the state |j〉B by using the

state mapping. The states {|j〉F} are eigenstate of the number operator Ep
p , and combining

this with the state mapping leads to

Ep
p |j〉F = δpj |j〉B = (|j〉 〈p|) |j〉B = (|p〉 〈p|) |j〉B , (17)

where |p〉 〈p| is the projection operator in the bosonic Fock basis with the subscripts “B”

suppressed to avoid symbolic clutter. Since |j〉B can now be mapped back to |j〉F , the

number operator is thus mapped as

Ep
p 7→ |p〉 〈p| , (18)

p = 0, 1, · · · ,M − 1. Similarly, acting with the off-diagonal bilinear fermionic operator on

|j〉F leads to

Eq
q+p |j〉F = δqj f

†
j+p |−〉F = δqj |j + p〉F , (19)

which maps to the state |j + p〉B. We can now write

Eq+p
q |j〉F = (σ†)p δq,j |j〉B = (σ†)p (|q〉 〈q|) |j〉B . (20)

Since |j〉B can now be mapped back to |j〉F , the Eq+p
q operator can be mapped as

Eq+p
q 7→ (σ†)p |q〉 〈q| , (21)

where q = 1, · · · ,M−1 and p = 1, · · · ,M−p−1. Because of its adjoint relation (Ep
q )† = Eq

p ,
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mapping bilinear fermionic operators {Ep
q} for p ≥ q is sufficient.

Let us now discuss the N = 2 case, for which the state mapping is given by, |p, q〉F ↔

|j, k〉B. Let us start our derivation by writing down how the number operator Er
r acts on an

arbitrary Slater determinant

Er
r |p, q〉F = (δp,r + δq,r) |p, q〉F , (22)

and after applying the state mapping back and forth, we arrive at

Er
r |p, q〉F 7→ (δk,r + δj+k,r−1) |j, k〉B

=
[
δk,r +

∑
a+b=r−1

δj,a δk,b

]
|j, k〉B

=
[
I⊗ |r〉 〈r|+

∑
a+b=r−1

|a, b〉 〈a, b|
]
|j, k〉B

7→
[
I⊗ |r〉 〈r|+

∑
a+b=r−1

|a, b〉 〈a, b|
]
|p, q〉F , (23)

where I is the identity operator acting on the first mode. We extended the projection operator

trick in the derivation of the N = 1 system here, i.e., the goal is to find a Kronecker delta

involving one of the indices (j and k) corresponding to the two modes. We can now redefine

the dummy indices above and express the mapping for the number operators as

Ep
p 7→ I⊗ |p〉 〈p|+

∑
a+b=p−1

|a, b〉 〈a, b| . (24)

Let us now map the off-diagonal operators. We first act Es+r
s on an arbitrary Slater deter-

minant

Es+r
s |p, q〉F = δp,s f

†
p+rf

†
q |−〉F + δq,s f

†
pf
†
q+r |−〉F , (25)
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which can be further written as

Es+r
s |p, q〉F = δp,s

( q−1∑
a=p+1

δp+r,a |p+ r, q〉F −
∞∑

a=q+1

δp+r,a |q, p+ r〉F
)

+ δq,s |p, q + r〉F . (26)

Similar to the derivation for the N = 1 case, we now apply the state mapping and the

normalized bosonic operators. The third term of Eq. (26) then reduces to

δq,s |p, q + r〉F 7→ δj+k,s−1 |j + r, k〉B = (σ†1)
r δj+k,s−1 |j, k〉B , (27)

Similarly the first term of Eq. (26) can be rewritten as

δp,s

q−1∑
a=p+1

δp+r,a |p+ r, q〉F 7→ δp,s

q−1∑
a=p+1

δp+r,a |j − r, k + r〉B

= σr1 (σ†2)
r

∞∑
a=0

δj,r+a δk,s |j, k〉B , (28)

whereas the second term of Eq. (26) turns to

δp,s

∞∑
a=q+1

δp+r,a |q, p+ r〉F 7→ δp,s

∞∑
a=0

δp+r,a+q+1 |r − 2− j, j + k + 1〉B

=
r−2∑
a=0

(σ†1)
r−2−a σa1 (σ†2)

a+1 δj,a δk,s |j, k〉B . (29)

Applying the projection operator relation and the state mapping back to the Slater deter-

minants, the action of the Es+r
s on an arbitrary Slater determinant can now be written
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as

Es+r
s |p, q〉F =

[
σr1 (σ†2)

r

∞∑
a=0

|r + a, s〉 〈r + a, s| −
r−2∑
a=0

(σ†1)
r−2−a σa1 (σ†2)

a+1 |a, s〉 〈a, s|

+ (σ†1)
r
∑

a+b=s−1

|a, b〉 〈a, b|
]
|p, q〉F . (30)

We can now redefine the dummy indices above and express the mapping for the off-diagonal

operators as

Eq+p
q 7→ σp1 (σ†2)

p

∞∑
a=0

|p+ a, q〉 〈p+ a, q| −
p−2∑
a=0

(σ†1)
p−2−a σa1 (σ†2)

a+1 |a, q〉 〈a, q|

+ (σ†1)
p
∑

a+b=q−1

|a, b〉 〈a, b| . (31)

Thus, we have shown how to derive the DMS operator mapping for the N = 1 and N = 2

cases.

S-9



General DMS mapping expression

The expression for the DMS mapping of {Ep
q} with p > q is given byS2

Eq+p
q 7→

∑
r1+···+rN
= q−N+1

(σ†1)
p Pr1,··· ,rN +

∞∑
a=0

∑
r2+···+rN
= q−N+2

σp1(σ†2)
p Pp+a,r2,··· ,rN

−
p−2∑
µ=0

∑
r2+···+rN
= q−N+2

(σ†1)
p−2−µσµ1 (σ†2)

µ+1 Pµ,r2,··· ,rN

+
N−1∑
k=2

[
Ik−1 ⊗

∞∑
a=0

∑
rk+1+···+rN
= q−N+k+1

σpk(σ
†
k+1)

p Pp+a,rk+1,··· ,rN

− Ik−2 ⊗
∞∑
a=0

p−2∑
µ=0

p+a−1∑
rk−1=a+1

∑
rk+1+···+rN
= q−N+k+1

T 1
p,k,µ Prk−1,µ,rk+1,··· ,rN

+ (−1)k
( ∞∑
r1=0

· · ·
∞∑
rk=0

−
∞∑
a=0

∑
r1+···+rk
= p+a−k

) ∑
rk+1+···+rN
= q−N+k+1

T 2
p,k,µ1,··· ,µk Pr1,··· ,rN

+
k−1∑
j=2

(−1)j Ik−j−1 ⊗
∞∑
a=0

( ∑
rk−j+···+rk
= p+a−j

∑
rk+1+···+rN
= q−N+k+1

T 3
p,k,j,rk−j+1,··· ,rk Prk−j ,··· ,rN

−
∑

rk−j+1+···+rk
= p+a−j

∑
rk+1+···+rN
= q−N+k+1

T 3
p,k,j,rk−j+1,··· ,rk |0〉 〈0| ⊗ Prk−j+1,··· ,rN

)]
, (32)

where q = 0, · · · ,M − 2 and p = 1, · · · ,M − q − 1 and the operators {T µ} are defined in

Table S1. All the summations in Eq. (32) will naturally truncate following the highest Fock

state allowed for a qumode based on the state mapping described in the Main Text . There

are O(N2) number of terms in Eq. (32) that need to be taken care of in case of computing

the expectation value of the operator Eq+p
q . The expression for {Ep

q} with p < q can be

found by taking the Hermitian conjugate of Eq. (32), while the mapping for p = q is given

in the Main Text .
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Table S1: Definitions for the intermediate operator terms used in Eq. (32).

Operator Definition

T 1
p,k,µ σp−1−µk−1 (σ†k)

p−2−µ σµk (σ†k+1)
µ+1

T 2
p,k,r1,··· ,rk (σ†1)

p−1−k−(r1+···+rk) σr11 (σ†2)
r1 · · ·σrk−1

k−1 (σ†k)
rk−1 σrkk (σ†k+1)

rk+1

T 3
p,k,j,µk−j+1,··· ,µk σ

p−j−(µk−j+1+···+µk)
k−j (σ†k−j+1)

p−j−1−(µk−j+1+···+µk)

× σµk−j+1

k−j+1 (σ†k−j+2)
µk−j+1 · · · σµk−1

k−1 (σ†k)
µk−1 σµkk (σ†k+1)

µk+1

Bosonic Hamiltonian for the dihydrogen molecule

The Hamiltonian of the dihydrogen molecule in a minimal basis can be written asS4

HF = h00 f
†
0f0 + h11 f

†
1f1 + h22 f

†
2f2 + h33 f

†
3f3 + v0110 f

†
0f
†
1f1f0 + v2332 f

†
2f
†
3f3f2

+ v0330 f
†
0f
†
3f3f0 + v1221 f

†
1f
†
2f2f1 + (v0220 − v0202) f †0f

†
2f2f0 + (v1331 − v1313) f †1f

†
3f3f1

+ v0312 (f †0f
†
3f1f2 + h.c.) + v0132 (f †0f

†
1f3f2 + h.c.), (33)

which can be written in terms of the bilinear fermionic operators

HF = (h00 + v0110 + v0330 + v0220 − v0202) E0
0 + (h11 + v1221 + v1331 − v1313) E1

1 + (h22 + v2332) E2
2 + h33 E

3
3

− v0110 E0
1E

1
0 − v2332 E2

3E
3
2 − v0330 E0

3E
3
0 − v1221 E1

2E
2
1 − (v0220 − v0202) E0

2E
2
0 − (v1331 − v1313) E1

3E
3
1

− v0312 (E0
1E

3
2 + h.c.)− v0132 (E0

3E
1
2 + h.c.), (34)

which means that we need to map the lone operators Ep
p with p = 0, 1, 2, 3, the symmetric

operator couples Ep
qE

q
p with p = 0, 1, 2 and q = p + 1, and the transition operator couples

E0
1E

3
2 and E0

3E
1
2 .

Let us map each of the operator terms of the Hamiltonian in Eq. (34). The maps
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corresponding to the operator terms with single bilinear fermionic operators are

E0
0 7→ I⊗ |0〉 〈0| , (35a)

E1
1 7→ I⊗ |1〉 〈1|+ |0, 0〉 〈0, 0| , (35b)

E2
2 7→ I⊗ |2〉 〈2|+ |0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0| , (35c)

E3
3 7→ |0, 2〉 〈0, 2|+ |1, 1〉 〈1, 1|+ |2, 0〉 〈2, 0| , (35d)

where we have truncated the mapping expression based on the relevant bosonic subspace for

our problem. The expressions after mapping the symmetric operator terms are

E0
1E

1
0 7→ |1, 0〉 〈1, 0|+ |2, 0〉 〈2, 0| , (36a)

E0
3E

3
0 7→ |0, 0〉 〈0, 0|+ |1, 0〉 〈1, 0| , (36b)

E1
2E

2
1 7→ |0, 0〉 〈0, 0|+ |1, 1〉 〈1, 1|+ |2, 1〉 〈2, 1| , (36c)

E0
2E

2
0 7→ |0, 0〉 〈0, 0|+ |2, 0〉 〈2, 0| , (36d)

E1
3E

3
1 7→ |0, 0〉 〈0, 0|+ |0, 1〉 〈0, 1|+ |2, 1〉 〈2, 1| , (36e)

E2
3E

3
2 7→ |0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0|+ |1, 2〉 〈1, 2|+ |2, 2〉 〈2, 2| . (36f)

The rest of the operator terms are similarly mapped as

E0
1E

3
2 7→ |2, 0〉 〈0, 1| , (37a)

E0
3E

1
2 7→ − |0, 0〉 〈0, 2| . (37b)
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We now combine Eq. (35), Eq. (36), and Eq. (37) to arrive at

HB =
(
h00 + h11 + v0110

)
|0, 0〉 〈0, 0|+

(
h11 + h22 + v1221

)
|0, 1〉 〈0, 1|

+
(
h00 + h22 + v0220 − v0202

)
|1, 0〉 〈1, 0|+

(
h11 + h33 + v1331 − v1313

)
|1, 1〉 〈1, 1|

+
(
h22 + h33 + v2332

)
|0, 2〉 〈0, 2|+

(
h00 + h33 + v0330

)
|2, 0〉 〈2, 0|

+ v0132
(
|0, 0〉 〈0, 2|+ h.c.

)
− v0312

(
|2, 0〉 〈0, 1|+ h.c.

)
. (38)

We can simplify even more by taking advantage of the symmetries of the four spin-orbitals

of the H2 molecule in a minimal basis, which leads to the following relationsS4

h00 = h11, (39a)

h22 = h33, (39b)

v0220 = v1331 = v1221 = v0330, (39c)

v0202 = v0312 = v0132 = v1313. (39d)

Thus, we can finally map the Hamiltonian in Eq. (34) to the bosonic form below

HB =
(
h00 + h11 + v0110

)
|0, 0〉 〈0, 0|+

(
h00 + h22 + v0220

)
|0, 1〉 〈0, 1|

+
(
h00 + h22 + v0220 − v0202

)
|1, 0〉 〈1, 0|+

(
h00 + h22 + v0220 − v0202

)
|1, 1〉 〈1, 1|

+
(

2h22 + v2332

)
|0, 2〉 〈0, 2|+

(
h00 + h22 + v0220

)
|2, 0〉 〈2, 0|

+ v0202
(
|0, 0〉 〈0, 2|+ h.c.

)
− v0202

(
|2, 0〉 〈0, 1|+ h.c.

)
. (40)
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The final form of the Hamiltonian mapping of Eq. (34) becomes

HF 7→ HB = g1 |0, 0〉 〈0, 0|+ g2 |0, 2〉 〈0, 2|+ g3
(
|0, 1〉 〈0, 1|+ |2, 0〉 〈2, 0|

)
+ g4

(
|1, 0〉 〈1, 0|+ |1, 1〉 〈1, 1|

)
+ g5

(
|0, 0〉 〈0, 2|+ h.c.

)
− g5

(
|2, 0〉 〈0, 1|+ h.c.

)
, (41)

where the scalars {gp} are defined in Table S2.

Table S2: The bosonic Hamiltonian coefficients of the dihydrogen molecule in a minimal
basis defined in Eq. (41) in terms of the one-electron and two-electron integrals.

Coefficient Definition
g1 h00 + h11 + v0110
g2 2h22 + v2332
g3 h00 + h22 + v0220
g4 h00 + h22 + v0220 − v0202
g5 v0202

The dependence of the bosonic Hamiltonian coefficients of Eq. (41) on the H–H bond

distance is shown in Figure S1. The simplification of the bosonic Hamiltonian originates

from the fact that the projection operators should not correspond to a basis state that

is outside of the physical Hilbert space for the dihydrogen molecule. Thus, the bosonic

Hamiltonian in Eq. (41) can also be understood as a Hamiltonian of two qutrits, i.e., qudits

with three dimensions. The mapped bosonic Hamiltonian has six physical Fock basis states

and the corresponding matrix heatmap is shown in Figure S2 for the H–H bond distance of

0.7414 Å, which matches exactly with its corresponding fermionic FCI matrix elements.

Let us now discuss the expectation values of the Hamiltonian in Eq. (41) given a bosonic

state. There are two classes of operator terms possible for a bosonic Hamiltonian expressed

in terms of tensor products of projection operators, namely, the photon counting operator

such as |1, 0〉 〈1, 0| and photon transfer operators such as |2, 0〉 〈0, 1|+ h.c.. The expectation

values for the photon counting operators are easy to interpret. For example, the expectation
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Figure S1: The parametric dependence of the mapped bosonic Hamiltonian coefficients for
the dihydrogen molecule in the STO-3G minimal basis, as defined in Eq. (41), on the H–H
bond distance. The Hamiltonian coefficients are defined in Table S2.

value of |1, 0〉 〈1, 0| for a given trial state

〈ψ|(|1, 0〉 〈1, 0|)|ψ〉 = | 〈1, 0|ψ〉 |2 (42)

is equivalent to the probability of measuring one photon in the first and zero photons in

the second qumode. The photon counting can be measured by optical detectors in the case

of photonic quantum computing,S5,S6 or using cavity-transmon parity measurements in the

case of cQED approach.S7

Computing the expectation value of photon transfer operators can be done via at least

two ways. A conceptually straightforward approach involves generalization of the qubit-

based Pauli-X operator expectation value for a pairs of qudit states. Let us elaborate with

a specific example below

X̄ ≡ |2, 0〉 〈0, 1|+ h.c. = H̄Z̄H̄, (43)
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Figure S2: Heatmap of the Hamiltonian matrix elements for the dihydrogen molecule in the
STO-3G minimal basis after the direct mapping. The matrix elements are computed for
the fixed H–H bond distance of 0.7414 Å and match exactly with their analogous fermionic
Hamiltonian matrix elements.

where the generalizations of Pauli-Z and Hadamard operators defined for the relevant qudit

subspace are

Z̄ ≡ |2, 0〉 〈2, 0| − |0, 1〉 〈0, 1| , (44a)

H̄ ≡ 1√
2

(|2, 0〉+ |0, 1〉) 〈2, 0|+ 1√
2

(|2, 0〉 − |0, 1〉) 〈0, 1| . (44b)

Since H̄ is a unitary operator, expectation value of X̄ reduces to photon counting in a rotated

basis

〈ψ|X̄|ψ〉 = 〈ψ′|Z̄|ψ′〉 = | 〈2, 0|ψ′〉 |2 − | 〈0, 1|ψ′〉 |2, (45)

where |ψ′〉 = H̄ |ψ〉. The expectation values for the other Hamiltonian terms of Eq. (41)

can be similarly expressed. The operator H̄ can be implemented with a photonic setup,S8

whereas operators like H̄ in cQED approach can be implemented by driving cascaded three-
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wave or four-wave mixing transitions using a dispersively coupled ancilla qubit, such as

|2, 0, g〉 ↔ |0, 0, e〉 ↔ |0, 1, g〉, where |g〉 and |e〉 represent the ground and excited states

of the ancilla.S9–S11 A potentially more scalable approach for computing the expectation

value of photon transfer operators between arbitrary multimode Fock states is the recently

introduced subspace tomography in cQED,S12 which does not rely on the H̄ operators and

instead uses phase space displacement operations that can be implemented efficiently.

Subspace tomography for computing photon transfer

expectation values

The cQED-based subspace tomography approach described in Ref. S12 can be implemented

with the help of an ancilla transmon qutrit and can be divided into two broad parts. Let

us denote the three levels of the ancilla to be |g〉, |e〉, and |f〉. The first part uses a unitary

operator coupled to the states |e, g〉 that transforms the full density matrix of a qumode

state into a chosen subspace density matrix coupled to the |e〉 state. The second part applies

phase displacement operator(s) followed by a photon-number state projection and measure

the corresponding probability in the |f〉 state. We discuss the resulting expressions below.

Let us first understand the above protocol for one qumode, whose state can be represented

in the Fock basis as

|Ψ〉 =
∞∑
n=0

Cn |n〉 , (46)

where {Cn} are the complex-valued Fock basis coefficients. Let us assume we want to

compute the expectation value of the following photon transfer operator |j〉 〈k|+ h.c.

Tj,k = 〈Ψ|
(
|j〉 〈k|+ h.c.

)
|Ψ〉 = CjC

∗
k + CkC

∗
j , (47)

where the operator pairing for the off-diagonal parts ensure Hermiticity. The subspace
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tomography approach will choose to handle the corresponding subspace density matrix

ρj,k =
( ∑
n=j,k

Cn |n〉
) ( ∑

n=j,k

C∗n 〈n|
)

=
∑

n,m ∈ S

CnC
∗
m |n〉 〈m| , (48)

where S represent the subspace chosen. Let us now apply the phase space displacement

operator D(α) = eαb
†−α∗b , which creates all possible photon excitation and deexcitation

from the Fock state it acts on

D(α) |n〉 =
∞∑
j=0

dn,j |j〉 , (49)

where {dn,j} are the known and easily tunable linear coefficients associated with the dis-

placement operator. The displacement operator transforms ρj,k as

R
(1)
j,k ≡ D(α) ρj,k D

†(α)

=
∑

n,m ∈ S

CnC
∗
m

[
D(α) |n〉 〈m|D†(α)

]
=
∑

n,m ∈ S

CnC
∗
m

∑
j,k ∈ N

dn,j (dm,k)
∗ |j〉 〈k| . (50)

The final observable can now be represented as

R
(2)
j,k,p ≡ Tr(|p〉 〈p|R(1)

j,k |p〉 〈p|) =
∑

n,m ∈ S

CnC
∗
m dn,p (dm,p)

∗. (51)

Assuming all {dn,p} coefficients to be real-valued, Eq. (51) can be rewritten as

R
(2)
j,k,p =

∑
n,m ∈ S

dn,p dm,p CnC
∗
m

= dj,p dj,p CjC
∗
j + dk,p dk,p CkC

∗
k + dj,p dk,p (CjC

∗
k + CkC

∗
j )

= d2j,p | 〈j|Ψ〉 |2 + d2k,p | 〈k|Ψ〉 |2 + dj,p dk,p Tj,k. (52)
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Since R
(2)
j,k,p is the observable for the subspace tomography and {| 〈j|Ψ〉 |2} can be computed

by photon number counting, the expectation value for the photon transfer operator can be

computed as

Tj,k =
1

dj,p dk,p

(
R

(2)
j,k,p − d

2
j,p | 〈j|Ψ〉 |2 − d2k,p | 〈k|Ψ〉 |2

)
. (53)

The generalization of the above approach to N number of qumodes is straightforward

with one phase space displacement operators acting on each of the qumodes. In this case,

we want to compute the expectation value of the photon transfer operator

Tj,k = 〈Ψ|
(
|j〉 〈k|+ h.c.

)
|Ψ〉 , (54)

where j is a vector of natural numbers and |j〉 ≡ |j1, · · · , jN〉B is a bosonic Fock state. The

corresponding subspace density matrix is

ρj,k =
( ∑

n=j,k

Cn |n〉
) ( ∑

n=j,k

C∗n 〈n|
)

=
∑

n,m ∈ S

CnC
∗
m |n〉 〈m| , (55)

and the experimental observables are

R
(1)
j,k ≡ DN(α) · · ·D1(α) ρj,k D

†
1(α) · · ·D†N(α), (56a)

R
(2)
j,k,p ≡ Tr(|p〉 〈p|R(1)

j,k |p〉 〈p|), (56b)

where Dp(α) is the displacement operator acting on the p-th qumode and |p〉 〈p| is the

multimode projection operator. Similar to discussion above, Tj,k can then be expressed as

Tj,k =
1∏N

i=1 dji,pi dki,pi

[
R

(2)
j,k,p −

( N∏
i=1

d2ji,pi

)
| 〈j|Ψ〉 |2 −

( N∏
i=1

d2ki,pi

)
| 〈k|Ψ〉 |2

]
. (57)

Thus, it is possible to compute the expectation value of any photon transfer operator of the

form |j〉 〈k|+ h.c. using the subspace tomography approach.
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Hybrid variational approach

We have all the tools needed for applying a hybrid quantum-classical variational algorithm

for finding the ground state energy of the dihydrogen molecule

min
ψ
E =

〈ψ|HB|ψ〉
〈ψ|ψ〉

, (58)

where |ψ〉 is a bosonic trial state and HB is the mapped bosonic Hamiltonian in Eq. (41).

The hybrid algorithm can assign the computation of the expectation value in Eq. (58) to a

bosonic device while the energy function is optimized in a classical processor. Similar to the

hybrid algorithms designed for quantum computers with qubits, one needs a robust ansatz

for |ψ〉 for the minimization in Eq. (58).

We explore the universal bosonic ansatz of two qumodes for the mapped bosonic Hamilto-

nian of Eq. (41) here. Universal control of qumodes requires non-Gaussian resources,S13,S14

which in cQED can be provided by the third or higher-order nonlinearity of the ancilla

Josephson qubits or couplers.S15–S20 Multiple non-Gaussian elementary gates in cQED can

be used to construct a universal gate set, including, most notably, the ancilla-controlled

rotation (native for dispersive Hamiltonian),S21 the selective number-dependent arbitrary

phase (SNAP) gate,S15–S17 and the conditional displacement gate.S18,S22 For example, one

possible way to implement an arbitrary multi-qumode unitary can be achieved by a sequence

of echoed conditional displacement (ECD) gates

ECD(β) = |e〉 〈g| ⊗D(β/2) + |g〉 〈e| ⊗D(−β/2), (59)

and ancilla rotations

R(θ, ϕ) = e−i
θ
2
(σx cosϕ+σy sinϕ), (60)

where D(α) = exp(αb† − α∗b) is the one-qumode displacement operator, |g〉 , |e〉 are the

ground and excited states of the ancilla qubit, and σx, σy are the one-qubit Pauli operators.S22
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Thus, a general ansatz for any bosonic Hamiltonian of two qumodes can be written as

|ψ〉 = UB(βB,θB,ϕB) · · · U1(β1,θ1,ϕ1)
(
|g〉 ⊗ |0, 0〉B

)
, (61)

where the initial state for the one ancilla qubit and the two qumodes is |g, 0, 0〉 and the Uj

unitary is defined as

Uj =
(
|e〉 〈g| ⊗ I⊗D(β2,j/2) + |g〉 〈e| ⊗ I⊗D(−β2,j/2)

)(
R(θ2,j, ϕ2,j)⊗ I⊗ I

)
×
(
|e〉 〈g| ⊗D(β1,j/2)⊗ I + |g〉 〈e| ⊗D(−β1,j/2)⊗ I

)(
R(θ1,j, ϕ1,j)⊗ I⊗ I

)
. (62)

The two-qumode ansatz of Eq. (61) has B number of Uj blocks and is illustrated in Figure S3.

The strategy of using an ancilla qubit rotation and ECD gates can be similarly extended for

any number of qumodes.S22 Additional strategies for multi-mode control such as based on

the conditional-NOT displacementS20 and photon blockadeS19 have also been demonstrated

recently.

Specifically for the ground state of H2 molecule in a minimal basis, the only relevant

Slater determinant basis states are |0, 1〉F and |2, 3〉F ,S23 which becomes the qumode Fock

basis states |0, 0〉B and |0, 2〉B after the state mapping. This means the general ansatz of

Eq. (61) can be applied to find the ground state of H2 molecule, even without optimizing

Figure S3: The universal bosonic ansatz for two qumodes with an ancilla qubit, following
Ref. S22. The qubit-qumode circuit is initialized in the state |g〉 ⊗ |0, 0〉B and then a block
of ECD gates and qubit rotations are acted sequentially, as defined in Eq. (61).
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Figure S4: Ground state energies of the dihydrogen molecule in the STO-3G minimal basis
for different H–H bond distances. The black line represents the exact energies in the basis
of Slater determinants. The brown dots and blue crosses represent the mapped bosonic
variational methods. Both the bosonic qutrit ansatz (brown dots) and the ECD-rotation
ansatz (blue crosses) of Eq. (63) reproduce the exact ground state energies. For the ECD-
rotation ansatz, the results are shown for B = 2 blocks.

the parameters on the first qumode. In that case, the following reduced version of Eq. (61)

is sufficient for the ground state of H2 moleculeS18

|ψ〉 = UB(βB, θB, ϕB) · · · U1(β1, θ1, ϕ1)
(
|g〉 ⊗ |0, 0〉B

)
, (63a)

Uj =
(
|e〉 〈g| ⊗ I⊗D(βj/2) + |g〉 〈e| ⊗ I⊗D(−βj/2)

) (
R(θj, ϕj)⊗ I⊗ I

)
, (63b)

where B is the number of blocks and {βj, θj, φj} needs to be optimized following Eq. (58).

As shown in Figure S4, the ECD-rotation ansatz of Eq. (63) with only B = 2 blocks can

reproduce the exact ground state energies for different H–H bond distances. Since the HB

defined in Eq. (41) can be thought of as a Hamiltonian of two qutrits, starting from the

initial state |0, 0〉B and applying e−2iθ (−i|0〉〈2|+h.c.), which is a qutrit Ry gate,S24,S25 to the
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second qumode is also an legitimate ansatz for the ground state, where the the scalar θ is

optimized following Eq. (58). As shown in Figure S4, both the general ECD-rotation and the

qutrit ansatze can reach the exact ground state energies of the H2 molecule. It is important

to note that the expectation value of HB for any Fock basis state that is absent in HB is

naturally zero, which allows the design of flexible bosonic ansatz without contaminating the

trial energy in Eq. (58), while potentially boosting the optimization.
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