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Abstract

Computations with quantum harmonic oscillators or qumodes is a promising and

rapidly evolving approach towards quantum computing. In contrast to qubits, which

are two-level quantum systems, bosonic qumodes can in principle have infinite discrete

levels, and can also be represented with continuous variable bases. One of the most

promising applications of quantum computing is simulating many-fermion problems

such as molecular electronic structure. Although there has been a lot of recent progress

on simulating many-fermion systems on qubit-based quantum hardware, they can not

be easily extended to bosonic quantum devices due to the fundamental difference in

physics represented by qubits and qumodes. In this work, we show how an electronic

structure Hamiltonian can be transformed into a system of qumodes with a fermion to

boson mapping scheme and apply it to simulate the electronic structure of dihydrogen

molecule as a system of two qumodes. Our work opens the door for simulating many-

fermion systems by harnessing the power of bosonic quantum devices.
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1 Introduction

Understanding the ground and excited states of many-fermion systems is one of the fun-

damental problems in chemistry and physics. Accurate simulation of molecular electronic

structure, a many-fermion problem, is critical in understanding chemical reaction mecha-

nisms or designing new molecules and materials with novel properties. Classical computers

are fundamentally restricted in simulating molecular electronic structure problems beyond

a certain system size,1 and the recent interest in developing algorithms based on quantum

computers can potentially address this issue.

The current era of noisy intermediate scale quantum (NISQ) computers relies on the

quantum information unit known as qubits which are two-level quantum systems. NISQ

computers have inherent limitations due to the decoherence associated with qubits and the

quantum operators acting on them. Nevertheless, several hybrid quantum-classical algo-

rithms have been developed to simulate molecular electronic structure, that combines re-

sources from both classical and quantum devices.2–7 One of the steps in all these algorithms

involves mapping the fermionic Hamiltonian of the molecule of interest to a qubit Hamilto-

nian.8,9

The development of bosonic quantum devices introduces a fundamentally novel approach

to quantum computing. Bosonic quantum computing can be conceptually understood as

computations with quantum harmonic oscillators (QHOs), also known as qumodes, instead

of qubits. Qumodes can store quantum information in the unbounded Hilbert space of

QHOs and naturally support continuous variable bases due to the position and momentum

operators associated with oscillator modes. A range of applications have been demonstrated

using bosonic quantum devices for chemistry,10 including simulation of molecular vibronic

spectra,11,12 understanding conical intersections,13 and implementing quantum dynamics for

modeling chemical processes.14

Qumodes can be realized with different hardware approaches,15 including but not limited

to electromagnetic fields inside resonators,16,17 the motions of trapped ions,18 or a network of
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optical devices,11 as shown in Figure 1. A promising and rapidly evolving hardware platform

for realizing bosonic quantum computation is the circuit quantum electrodynamics (cQED)

approach.19,20 The cQED hardware comprises of microwave resonators as the qumodes, and

superconducting circuits based on Josephson junctions act as the non-linear element that

controls and measures the quantum information. Bosonic cQED devices with 3D resonator

geometries can have a lifetime of up to milliseconds, and provide a robust platform for

understanding decoherence from photon loss.15

Quantum algorithms for molecular electronic structure tailored for qubits can not be triv-

ially applied to qumode hardware due to the fundamental difference between qubits which

are spin-1/2 systems and qumodes which are bosonic. An important step in simulating

molecular electronic structure on bosonic quantum computers would be to map the corre-

sponding fermionic Hamiltonian to a bosonic one. There has been substantial past work on

fermion to boson mapping, including exact and approximate transformations.21–28 However,

these transformations lack a direct exact operator mapping between fermions and bosons

beyond the case where the fermions are paired. We focus on two fermion to boson trans-

formations here that have largely been overlooked by the electronic structure community.

An exact state mapping between fermionic Slater determinants and bosonic Fock states of

QHOs was established by Ohta based on the fact that particle-hole excitations from the

Fermi vacuum can be represented as photon transitions.29 An exact operator mapping be-

tween a number-conserving bilinear fermionic operator and oscillator projection operators

can be derived from this state mapping, as shown by Dhar, Mandal, and Suryanarayana.30

In this work, we apply fermion to boson mapping for transforming the molecular electronic

structure Hamiltonian to a system of qumodes and apply it to the dihydrogen molecule. To

the best of our knowledge, this is the first time a molecular electronic structure Hamiltonian

has been simulated as a bosonic system. We also introduce a hybrid quantum-classical

approach for finding the ground state energy of a molecule, where the computation of the

expectation value of the mapped bosonic Hamiltonian may be done on a bosonic quantum
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Figure 1: A quantum harmonic oscillator or qumode offers a new way to approach quantum
computing beyond qubits. Different hardware options are possible to build qumodes. The
top schematic on the right represents an ion trap where collective vibrations of the ions act
as the qumodes. The orange spheres are the ions and the blue rods are a set of electrodes.
The schematic on the middle of right represents the cavity quantum electrodynamics aproach
where superconducting resonators act as qumodes. The grey cyllinders are microwave res-
onators and they are connected to the superconducting circuit via the green center pins. The
bottom schematic on the right represents the photonic approach where the photonic modes
act as qumodes.

computer with the trial energy optimized on a classical computer. Although this work focuses

specifically on the molecular electronic structure Hamiltonian, the techniques presented here

can be applied to any number-conserving many-fermion Hamiltonian such as systems studied

in condensed matter31 or nuclear physics.21

2 Background

We will motivate the electronic structure problem, before discussing some key concepts

related to representing electrons algebraically here.
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2.1 Motivation

The molecular Hamiltonian in atomic units can be written as32

H = −1

2

∑
i

∇2
i −

1

2

∑
A

∇2
A

MA

−
∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
+
∑
A

∑
B>A

ZAZB
RAB

, (1)

where i, j are electron indices, A,B are nuclear indices, ∇2
i and ∇2

A are Laplacian operators

representing differentiation with respect to the coordinates of the ith electron and Ath nucleus,

MA and ZA are the mass and atomic number of nucleus A, riA = |ri −RA| is the distance

between ith electron and Ath nucleus, rij = |ri − rj| is the distance between ith and jth

electrons, and RAB = |RA −RB| is the distance between Ath and Bth nuclei. The operator

terms in Eq. (1) represent the kinetic energy of electrons, kinetic energy of nuclei, Coulomb

attraction between electrons and nuclei, repulsion between electrons, and repulsion between

nuclei, respectively.

The Born–Oppenheimer approximation assumes the molecular electrons are moving in

the field of fixed nuclei since they are much lighter.32 This allows one to neglect the nuclear

kinetic energy term in Eq. (1) and consider the nuclear-nuclear repulsion term to be con-

stant. Thus, the remaining terms of Eq. (1) constitute the molecular electronic structure

Hamiltonian

Helec = −1

2

∑
i

∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i

∑
j>i

1

rij
. (2)

Our goal is to solve the time-independent Schrödinger equation for the molecular electronic

structure

HelecΨµ(r) = EµΨµ(r) (3)

where {Ψµ} are the electronic wavefunctions with corresponding energies {Eµ} for a given

molecular nuclear coordinates. As an example, Ψ0 and E0 are the ground electronic wavefunc-

tion and its energy. Finding the {Ψn} wavefunctions on a classical computer is a notoriously

hard problem because of the combinatorial growth of the dimensionality with increasing
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number of electrons N in the molecule. This is where quantum computing promises to be

impactful.

2.2 Second quantization

An electronic wavefunction Ψ(r) depends on a set of N electron coordinates {rj}. However,

one should also include the electron spin into the picture, and denote the wavefunction as

Ψ(x) instead, where x represents the combined spatial and spin coordinates of the electrons.

Spin does not fundamentally arise in the non-relativistic premise of electronic structure

theory. Nevertheless, spin must be included as a bookkeeping tool to respect the fermionic

antisymmetry of electrons

Ψ(· · · ,xj, · · · ,xk, · · · ) = −Ψ(· · · ,xk, · · · ,xj, · · · ), (4)

even in approximate wavefunctions. A good starting point for approximately solving the

electronic structure is the Hartree–Fock (HF) method,32 which transform the many-electron

problem of Eq. (3) to an effective one-electron problem in the mean-field created by the

other electrons. The HF method provides M number (M > N) of orthonormal one-electron

functions {χp(x)}, called the molecular spin-orbitals. We are assuming M to be an even

integer since there is an underlying M/2 number of spatial functions {ϕp(r)} which can

associate with either up-spin α(ω) or down-spin β(ω) functions

χ2p−1(x) ≡ ϕp(r) α(ω), χ2p ≡ ϕp(x) β(ω). (5)
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Thus, N electrons in M molecular spin-orbitals give rise to
(
M
N

)
number of many-electron

basis states, each of which is an antisymmetrized product state

|p1, · · · , pN⟩F ≡ 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

χp1(x1) · · · χpN (x1)

χp1(x2) · · · χpN (x2)

· · · . . . · · ·

χp1(xN) · · · χpN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (6)

where 0 ≤ p1 < · · · < pN ≤ M − 1. The wavefunction in Eq. (6) is the so-called Slater

determinant and based on the ordering of {pj} indices, approximates the exact ground

and excited electronic states. For example, the Slater determinant |0, · · · , N − 1⟩F is the

electronic ground state wavefunction under the HF approximation.

One point to notice in Eq. (6) is that any Slater determinant can be uniquely identified by

asking which spin-orbitals are occupied for a given set of spin-orbitals. This leads to the sec-

ond quantization formulation in terms of fermionic creation operators {f †
p} and annihilation

operators {fp}. These elementary fermionic operators follow the canonical anticommutation

relation (CAR)

{f †
p , f

†
q} = f †

pf
†
q + f †

q f
†
p = 0, (7a)

{fp, f †
q} = fpf

†
q + f †

q fp = δpq, (7b)

where the fermionic mode indices represent the M number of spin-orbital functions {χp}.

The Pauli exclusion principle is then equivalent to the relation (f †
p)2 = 0, which is simply

a consequence of the CAR in Eq. (7). Thus, a given spin-orbital is either occupied or

unoccupied. The Slater determinants are now defined as

|p1, · · · , pN⟩F ≡ f †
p1
· · · f †

pN
|−⟩F , (8)
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where |−⟩F is the physical vacuum representing the state with N = 0 electrons and any

fp |−⟩F = 0.

The electronic Hamiltonian can be represented in the molecular spin-orbital basis as33

Helec =
∑
pq

hpq f
†
pfq +

1

2

∑
pqrs

vpqrs f
†
pf

†
q frfs, (9)

where p, q, r, s indices represent the spin-orbitals and the scalars {hpq} and {vpqrs} are the

one-electron and the two-electron integrals

hpq =

∫
dx χ∗

p(x)
(
− 1

2
∇2 −

∑
A

ZA
rA

)
χq(x), (10a)

vpqrs =

∫
dx1 dx2

χ∗
p(x1)χ

∗
q(x2) χr(x2)χs(x1)

r12
, (10b)

which is a byproduct of running a HF calculation. We will assume real-valued molecular

orbitals from now on which leads to the following relations between electron integral tensor

elements

hpq = hqp, (11a)

vpqrs = vprqs = vsqrp = vsrqp, (11b)

in addition to vpqrs = vqpsr due to the indistinguishability of electrons. It is then possible to

write Helec in a more compact form

Helec =
[1

2

∑
p

hpp f
†
pfp +

∑
p>q

(
hpq f

†
pfq +

1

2
τ pqpq f

†
pf

†
q fpfq

)
+

∑
p>q>r

(
τ pqpr f

†
pf

†
q fpfr + τ pqqr f

†
pf

†
q fqfr + τ prqr f

†
pf

†
rfqfr

)
+

∑
p>q>r>s

(
τ pqrs f

†
pf

†
q frfs + τ prqs f

†
pf

†
rfqfs + τ psqr f

†
pf

†
sfqfr

)]
+ h.c., (12)
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where we have defined τ pqrs ≡ vpqrs − vpqsr such that

τ pqrs = τ qprs = −τ pqsr = τ rspq , (13)

and h.c. represents the Hermitian conjugate of its preceding operator term.

Each term of the electronic Hamiltonian in Eq. (12) has creation and annihilation oper-

ators in pairs, which reflects the fact that Helec is number-conserving. We now define the

bilinear fermionic operators34

Ep
q ≡ f †

pfq = (Eq
p)

†, (14)

which is equivalent to the number operator when p = q and generalized singles excitation

otherwise.35 A set of {Ep
q} can be successively applied to transform between any two Slater

determinants with the same number of electrons. The bilinear fermionic operators follow a

simple commutation relation

[Ep
q , E

r
s ] = δqr E

p
s − δps E

r
q , (15)

and generate the u(M) Lie algebra.36 Thus, we can rewrite the electronic Hamiltonian as

Helec =
[1

2

∑
p

hpp E
p
p +

∑
p>q

(
hpq E

p
q +

1

2
τ pqqp E

p
pE

q
q

)
+

∑
p>q>r

(
τ pqrp E

p
pE

q
r + τ pqqr E

q
qE

p
r + τ prrq E

r
rE

p
q

)
+

∑
p>q>r>s

(
τ pqsr E

p
rE

q
s + τ prsq E

p
qE

r
s + τ psrq E

p
q (Er

s)
†
)]

+ h.c., (16)

where we have applied the adjoint relation for the bilinear fermionic operators and the

relations in Eq. (13). Thus, we have written Eq. (16) in such a way that the knowledge

about the bilinear fermionic operators {Ep
q} with p ≥ q is sufficient to represent Helec.
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3 Fermion to boson mapping

Our goal is to map Eq. (8) to a bosonic state and Eq. (9) to a bosonic Hamiltonian, so that

the molecular electronic structure problem can be tackled with bosonic quantum computers.

The key results that we apply in this work are given below.

• A system with N fermions can be mapped to a system of N quantum harmonic oscil-

lators (QHOs) or bosonic modes with a maximum of M − N + 1 oscillator levels for

each.

• An exact injective state mapping exists between Slater determinants and Fock states

of QHOs.

• An exact mapping exists between {Ep
q} and Fock state projection operators of QHOs.

We mention the details below.

3.1 State mapping

Elementary bosonic operators follow the canonical commutation relation (CCR)

[b†p, b
†
q] = b†pb

†
q − b†qb

†
p = 0, (17a)

[bp, b
†
q] = bpb

†
q − b†qbp = δpq, (17b)

where b†p and bp are the bosonic creation and annihilation operators. These operators are

defined such that their action on the Fock state {|q⟩ | 0 ≤ q ≤ ∞} of a single qumode is

b† |q⟩B ≡
√
q + 1 |q + 1⟩B , (18a)

b |q⟩B ≡ √
q |q − 1⟩B , q > 0 (18b)

b |0⟩B ≡ 0, (18c)
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Figure 2: State diagrams corresponding to the state mapping as defined in Eq. (20) and
Eq. (21). Here, a system with N = 4 electrons is mapped to a system of four quantum
harmonic oscillators. In the initial state, the Slater determinant |0, 1, 2, 3⟩F corresponds
to four electrons occupying the lowest four spin-orbitals, which is mapped to the oscillator
vacuum state |0, 0, 0, 0⟩B. When some of the occupied spin-orbitals are now excited to get the
Slater determinant |0, 1, 4, 7⟩F , it gets mapped to the Fock state |2, 2, 0, 0⟩B. The occupied
spin-orbitals for electrons and excitation levels for oscillators are represented by blue and
brown circles, respectively.

which can be trivially generalized to multimodal bosonic systems by taking tensor products of

single-mode Fock states. Similar to the fermionic case, the bosonic mode indices in Eq. (17)

represent an orthogonal one-particle basis. Each of the bosonic or QHO mode can have

inifinite levels or occupancies since there is no nilpotency in the CCR. Thus, we define a

Fock state of N QHOs as

|q1, · · · , qN⟩B ≡ (b†1)
q1 · · · (b†N)qN√
q1! · · · qN !

|0, · · · , 0⟩B , (19)

where |0, · · · , 0⟩B is the ground state of the N oscillators. It should be noted that we only

require a bosonic Fock basis of Eq. (19) for this paper, and our approach is agnostic of the

properties of the underlying oscillators such as their anharmonicity.

The indices in Eq. (19) represent occupied levels of each mode, in contrast to Eq. (8) where
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the occupied modes themselves are indexed. This distinction between Eq. (8) and Eq. (19) is

simply the result of Pauli exclusion principle and how we have chosen the index ordering in

Eq. (8). For example, the bosonic states |2, 2⟩B , |2, 3⟩B , |3, 2⟩B, and |3, 3⟩B are all legitimate

bosonic states involving the second and third levels of two bosonic modes, whereas |2, 3⟩F

is the only legitimate fermionic state involving the second and third spin-orbitals. Note

that |2, 3⟩F = f †
2f

†
3 |−⟩F = −f †

3f
†
2 |−⟩F respects the permutation of its underlying operators

and the resulting sign change, which is similarly true for any Slater determinant defined in

Eq. (8).

An injective state mapping exists between Slater determinants of N fermions defined in

Eq. (8) and state of N QHOs defined in Eq. (19)29,37

|p1, · · · , pN⟩F ↔ |q1, · · · , qN⟩B , (20)

where the relation between the two sets of indices are

qj = p1, if j = N, (21a)

= pN−j+1 − pN−j − 1, otherwise. (21b)

We refer the reader to Appendix A for a justification of the state mapping. Clearly, the Fermi

vacuum |0, · · · , N − 1⟩F maps to the Fock ground state |0, · · · , 0⟩B following Eq. (21). Then

the physical interpretation of Eq. (20) is that the holes created from the Fermi vacuum and

their impact on it are regarded as bosonic excitations, as in photoelectron spectroscopy.

A schematic for an example state mapping of a system with N = 4 electrons is shown in

Figure 2.

It is thus possible to apply the state mapping of Eq. (20) to map the full configuration
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interaction (FCI) state for an N -fermion system as

|Ψ⟩ =
∑

1≤p1<···<pN≤M

Cp1···pN |p1, · · · , pN⟩F 7→
∑

1≤p1<···<pN≤M

Cp1···pN |q1, · · · , qN⟩B , (22)

where the scalars {Cp1···pN} are the FCI coefficients and the {qj} indices are defined in

Eq. (21). Since any N -fermion state can be represented as a special case of FCI, Eq. (22)

allows mapping any state corresponding to a fermionic system with a fixed particle number

to a bosonic state with the number of modes same as the number of fermions. Based on

Eq. (21), it is easy to see that the highest integer corresponding to the indices {qj} in Eq. (22)

is L = M−N . Thus, the state mapping naturally truncates the dimension of the Fock basis,

i.e., number of qumode levels, based on the M number of spin-orbitals for a given electronic

system, which makes the relvant bosonic Hilbert space isomorphic to the Hilbert space of N

qudits38 of M −N + 1 dimension.

As a specific example, let us discuss the state mapping of Eq. (20) for a system with

N = 2 with arbitrary M > 2 number of spin-orbitals. Mapping between an arbitrary Slater

determinant

|p, q⟩F ≡ f †
pf

†
q |−⟩F , (23)

and the mapped state of two qumodes

|j, k⟩B ≡ 1√
j! k!

(b†1)
j (b†2)

k |0, 0⟩B (24)

is given by the following relations

p = k, j = q − p− 1, q = j + k + 1. (25)
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For example, if M = 4, then the transformations are

|0, 1⟩F ↔ |0, 0⟩B , |0, 2⟩F ↔ |1, 0⟩B , |0, 3⟩F ↔ |2, 0⟩B , (26a)

|1, 2⟩F ↔ |0, 1⟩B , |1, 3⟩F ↔ |1, 1⟩B , |2, 3⟩F ↔ |0, 2⟩B . (26b)

We have so far focused on mapping a Slater determinant into a multimodal bosonic state,

but as evident from Eq. (20), the reverse is also true. For example, we write the bosonic

states that did not appear in Eq. (26) but still correspond to two harmonic oscillator modes

with three levels below

|1, 2⟩B ↔ |2, 4⟩F , |2, 1⟩B ↔ |1, 4⟩F , |2, 2⟩B ↔ |2, 5⟩F , (27)

which are mapped to a Slater determinants of a N = 2 system that have M > 4 spin-orbitals.

3.2 Operator mapping

The Dhar–Mandal–Suryanarayana (DMS) transformation maps {Ep
q} operators into Fock

state projection operators of QHOs.30 The DMS transformation was derived from the state

mapping of Eq. (20) in Ref. 30. We simply state the resulting expressions of the DMS

transformation here and refer the reader to Appendix B for more insight into its derivation.

Let us define the bosonic Fock space projection operator corresponding to a given set of

k harmonic oscillator modes as

Pr1,··· ,rk ≡ |r1, · · · , rk⟩ ⟨r1, · · · , rk| , (28)

and similarly define a related operator as

Ck,a =
∑

r1+···+rk
= a

Pr1,··· ,rk , (29)
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where each index {rj | 0 ≤ rj ≤ L} has a specific range based on the highest physical mode

level that needs to be accessed following the state mapping. The expectation value of the

operator in Eq. (29) can be computed from the same set of photon number measurements.

Let us also denote the identity operator acting on the first k harmonic oscillator modes as

Ik ≡ I1 ⊗ · · · ⊗ Ik. (30)

Then the DMS mapping for any number operator Ep
p is

Ep
p 7→ IN−1 ⊗ |p⟩ ⟨p| +

N−1∑
k=1

Ik−1 ⊗ CN−k+1,p−N+k, (31)

where 0 ≤ p ≤ M − 1. Thus, there is N number of operator terms in Eq. (31) of the

form defined in Eq. (29). Operator terms involving more than one number operators can be

similarly expressed and simplified due to the projection operator in Eq. (31).

Let us now define the normalized bosonic creation and annihilation operators

σ† |q⟩B ≡ |q + 1⟩B , (32a)

σ |q⟩B ≡ |q − 1⟩B , q > 0 (32b)

σ |0⟩B ≡ 0, (32c)

which can easily be extended for multimodal systems. The DMS mapping expression for the

p > q case consists of Fock projection operators as in Eq. (31) with the {σ†
k, σk} operators.

We show an example of the generalized singles excitation mapping with q = p+ 1 below

Eq+1
q 7→ σ†

1 CN,q−N+1 +
N−1∑
k=1

Ik−1 ⊗
∑
a

σk Pq+a ⊗ σ†
k+1 CN−k,q−N+k+1, (33)

and state the general expression for the mapping of {Ep
q} operators in Appendix C.

As a specific example, let us discuss the DMS operator mapping for the specific case of
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N = 2 with an arbitrary M > 2 number of spin-orbitals. The number operators can be

mapped as

Ep
p 7→ I⊗ |p⟩ ⟨p| +

∑
j+k = p−1

|j, k⟩ ⟨j, k| , (34)

where p = 0, 1, · · · ,M − 1. The off-diagonal fermionic bilinear operators can be mapped as

Eq+p
q 7→ (σ†

1)
p

∑
j+k = q−1

|j, k⟩ ⟨j, k| + σp1 (σ†
2)
p
∑
j

|j + p, q⟩ ⟨j + p, q|

−
p−2∑
j=0

(σ†
1)
p−2−j σj1 (σ†

2)
j+1 |j, q⟩ ⟨j, q| , (35)

where q = 0, 1, · · · ,M−1 and p = 1, 2, · · · ,M−q−1. It is also possible to have an alternate

representation of the DMS mapping for the N = 2 case by applying Eq. (32)

Ep
p 7→ I⊗ |p⟩ ⟨p| +

∑
j+k = p−1

|j, k⟩ ⟨j, k| , (36a)

Eq+p
q 7→

∑
j+k=q−1

|j + p, k⟩ ⟨j, k| +
∑
j

|j, q + p⟩ ⟨j + p, q|

−
p−2∑
j=0

|p− 2 − j, q + j + 1⟩ ⟨j, q| . (36b)

We mention two examples of mapping the number operators below

E0
0 7→ I⊗ |0⟩ ⟨0| , (37a)

E1
1 7→ I⊗ |1⟩ ⟨1| + |0, 0⟩ ⟨0, 0| . (37b)

Similarly, the off-diagonal bilinear fermionic operators can be mapped, with two examples
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H HH2

1s1 1s2

σg

σu

Figure 3: A molecular orbital diagram corresponding to the H2 molecule in a minimal
basis. The molecular orbitals, σg and σu, are built from 1s atomic orbitals of the two
hydrogen atoms. In second quantization, the diagram represents the Slater determinant
|0, 1⟩F = f †

0f
†
1 |−⟩F , where the first and second spin-orbitals share the σg spatial function.

given below

E1
0 7→

L∑
j=1

|j − 1, 1⟩ ⟨j, 0| , (38a)

E2
0 7→

( L−1∑
j=1

|j − 1, 2⟩ ⟨j + 1, 0|
)
− |0, 1⟩ ⟨0, 0| , (38b)

where we truncated the expansion based on the highest relevant level of the bosonic modes.

4 Simulation of dihydrogen molecule

We apply the ideas discussed above to simulate electronic structure of H2 molecule here,

while also discussing the avenues for generalization to larger molecules.
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4.1 Setting up the problem

We discuss the electronic structure of the H2 molecule in a minimal basis.32 We choose one

spatial function per hydrogen atom, which leads to the following molecular spatial orbitals

ϕg = Ng (1s1 + 1s2), (39a)

ϕu = Nu (1s1 − 1s2), (39b)

where Ng and Nu are the normalization factors based on the spatial functions chosen, and

one popular choice is the STO-3G minimal basis39 that approximates the Slater-type atomic

functions with three real-valued Gaussian functions.32 Having two spatial orbitals means we

have an electronic system of two electrons in four spin-orbitals, as shown by the molecular

orbital diagram in Figure 3. Let us define the four spin-orbitals as

|χ0⟩ ≡ |ϕg, α⟩ , |χ1⟩ ≡ |ϕg, β⟩ , (40a)

|χ2⟩ ≡ |ϕu, α⟩ , |χ3⟩ ≡ |ϕu, β⟩ , (40b)

where α and β denote spin-orbitals with up and down electron spins, respectively. Then all

the possible Slater determinants are

|0, 1⟩F = f †
0f

†
1 |−⟩F , |0, 2⟩F = f †

0f
†
2 |−⟩F , |0, 3⟩F = f †

0f
†
3 |−⟩F , (41a)

|1, 2⟩F = f †
1f

†
2 |−⟩F , |1, 3⟩F = f †

1f
†
3 |−⟩F , |2, 3⟩F = f †

2f
†
3 |−⟩F . (41b)

The Fermi vacuum, in this case, is |0, 1⟩F , the only particle-hole doubles excitation is |2, 3⟩F ,

and the rest of the Slater determinants are particle-hole singles excitations with respect to

the |0, 1⟩F reference.

An arbitrary state in the fermionic Hilbert space can be written as

|Ψ⟩F = λ1 |0, 1⟩F + λ2 |0, 2⟩F + λ3 |0, 3⟩F + λ4 |1, 2⟩F + λ5 |1, 3⟩F + λ6 |2, 3⟩F , (42)
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Figure 4: The parametric dependence of the mapped bosonic Hamiltonian coefficients for
the dihydrogen molecule in the STO-3G minimal basis, as defined in Eq. (46), on the H–H
bond distance. The Hamiltonian coefficients are defined in Table 1.

where {λµ} are the unknown scalar coefficients, which can be solved, for example, with exact

diagonalization to get the exact ground and excited states. We now map the state in Eq. (42)

into a bosonic bimodal state by applying Eq. (26) to get

|Ψ⟩B = λ1 |0, 0⟩B + λ2 |1, 0⟩B + λ3 |2, 0⟩B + λ4 |0, 1⟩B + λ5 |1, 1⟩B + λ6 |0, 2⟩B . (43)

Thus, we have managed to represent an arbitrary electronic state of the dihydrogen molecule

in terms of basis states of two quantum harmonic oscillator modes.
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4.2 Bosonic Hamiltonian

The Hamiltonian of the dihydrogen molecule in a minimal basis can be written as8

HF = h00 f
†
0f0 + h11 f

†
1f1 + h22 f

†
2f2 + h33 f

†
3f3 + v0110 f

†
0f

†
1f1f0 + v2332 f

†
2f

†
3f3f2

+ v0330 f
†
0f

†
3f3f0 + v1221 f

†
1f

†
2f2f1 + (v0220 − v0202) f †

0f
†
2f2f0 + (v1331 − v1313) f †

1f
†
3f3f1

+ v0312 (f †
0f

†
3f1f2 + h.c.) + v0132 (f †

0f
†
1f3f2 + h.c.), (44)

which we want to map to a bosonic form. We first write the Hamiltonian of Eq. (44) in

terms of the bilinear fermionic operators

HF = (h00 + v0110 + v0330 + v0220 − v0202) E0
0 + (h11 + v1221 + v1331 − v1313) E1

1 + (h22 + v2332) E2
2 + h33 E

3
3

− v0110 E
0
1E

1
0 − v2332 E

2
3E

3
2 − v0330 E

0
3E

3
0 − v1221 E

1
2E

2
1 − (v0220 − v0202) E0

2E
2
0 − (v1331 − v1313) E1

3E
3
1

− v0312 (E0
1E

3
2 + h.c.) − v0132 (E0

3E
1
2 + h.c.), (45)

which means that we need to map the lone operators Ep
p with p = 0, 1, 2, 3, the symmetric

operator couples Ep
qE

q
p with p = 0, 1, 2 and q = p + 1, and the transition operator couples

E0
1E

3
2 and E0

3E
1
2 . The final form of the Hamiltonian mapping of Eq. (45) after applying the

DMS mapping of Eq. (36) becomes

HF 7→ HB = g1 |0, 0⟩ ⟨0, 0| + g2 |0, 2⟩ ⟨0, 2| + g3
(
|0, 1⟩ ⟨0, 1| + |2, 0⟩ ⟨2, 0|

)
+ g4

(
|1, 0⟩ ⟨1, 0| + |1, 1⟩ ⟨1, 1|

)
+ g5

(
|0, 0⟩ ⟨0, 2| + h.c.

)
− g5

(
|2, 0⟩ ⟨0, 1| + h.c.

)
, (46)

where the scalars {gp} are defined in Table 1. We refer the reader to Appendix D for

the intermediate steps in deriving Eq. (46) starting from Eq. (45). The dependence of the

bosonic Hamiltonian coefficients of Eq. (46) on the H–H bond distance is shown in Figure 4.

The simplification of the bosonic Hamiltonian originates from the fact that the projection
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operators should not correspond to a basis state that is outside of Eq. (26) for the dihydrogen

molecule. Thus, the bosonic Hamiltonian in Eq. (46) can also be understood as a Hamiltonian

of two qutrits, i.e., qudits with three dimensions. The mapped bosonic Hamiltonian has six

physical Fock basis states, as mentioned in Eq. (43), and the corresponding matrix heatmap

is shown in Figure 5 for the H–H bond distance of 0.7414 Å, which matches exactly with its

corresponding fermionic FCI matrix elements.

Let us now discuss the expectation values of the Hamiltonian in Eq. (46) given a bosonic

state. There are two classes of operator terms possible for a bosonic Hamiltonian expressed

in terms of tensor products of projection operators, namely, the photon counting operator

such as |1, 0⟩ ⟨1, 0| and photon transfer operators such as |2, 0⟩ ⟨0, 1|+ h.c.. The expectation

values for the photon counting operators are easy to interpret. For example, the expectation

value of |1, 0⟩ ⟨1, 0| for a given trial state

⟨ψ|(|1, 0⟩ ⟨1, 0|)|ψ⟩ = | ⟨1, 0|ψ⟩ |2 (47)

is equivalent to the probability of measuring one photon in the first and zero photons in

the second qumode. The photon counting can be measured by optical detectors in the case

of photonic quantum computing,40,41 or using cavity-transmon parity measurements in the

case of cQED approach.12

Computing the expectation value of photon transfer operators can be done via at least

two ways. A conceptually straightforward approach involves generalization of the qubit-

Table 1: The bosonic Hamiltonian coefficients of the dihydrogen molecule in a minimal basis
defined in Eq. (46) in terms of the one-electron and two-electron integrals defined in Eq. (10).

Coefficient Definition
g1 h00 + h11 + v0110
g2 2h22 + v2332
g3 h00 + h22 + v0220
g4 h00 + h22 + v0220 − v0202
g5 v0202
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Figure 5: Heatmap of the Hamiltonian matrix elements for the dihydrogen molecule in the
STO-3G minimal basis corresponding to the Hamiltonian in Eq. (46) and the FCI state in
Eq. (43). The matrix elements are computed for the fixed H–H bond distance of 0.7414 Å and
match exactly with their analogous fermionic Hamiltonian matrix elements corresponding
to Eq. (45) and Eq. (42).

based Pauli-X operator expectation value for a pairs of qudit states. Let us elaborate with

a specific example below

X̄ ≡ |2, 0⟩ ⟨0, 1| + h.c. = H̄Z̄H̄, (48)

where the generalizations of Pauli-Z and Hadamard operators defined for the relevant qudit

subspace are

Z̄ ≡ |2, 0⟩ ⟨2, 0| − |0, 1⟩ ⟨0, 1| , (49a)

H̄ ≡ 1√
2

(|2, 0⟩ + |0, 1⟩) ⟨2, 0| +
1√
2

(|2, 0⟩ − |0, 1⟩) ⟨0, 1| . (49b)

Since H̄ is a unitary operator, expectation value of X̄ reduces to photon counting in a rotated
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basis

⟨ψ|X̄|ψ⟩ = ⟨ψ′|Z̄|ψ′⟩ = | ⟨2, 0|ψ′⟩ |2 − | ⟨0, 1|ψ′⟩ |2, (50)

where |ψ′⟩ = H̄ |ψ⟩. The expectation values for the other Hamiltonian terms of Eq. (46)

can be similarly expressed. The operator H̄ can be implemented with a photonic setup,42

whereas operators like H̄ in cQED approach can be implemented by driving cascaded three-

wave or four-wave mixing transitions using a dispersively coupled ancilla qubit, such as

|2, 0, g⟩ ↔ |0, 0, e⟩ ↔ |0, 1, g⟩, where |g⟩ and |e⟩ represent the ground and excited states of

the ancilla.43–45 A potentially more scalable approach for computing the expectation value of

photon transfer operators between arbitrary multimode Fock states is the recently introduced

subspace tomography in cQED,46 which does not rely on the H̄ operators and instead uses

phase space displacement operations that can be implemented efficiently. We refer the reader

to Appendix E for more details on the subspace tomography approach.

4.3 Hybrid variational approach

We have all the tools needed for applying a hybrid quantum-classical variational algorithm

for finding the ground state energy of the dihydrogen molecule

min
ψ
E =

⟨ψ|HB|ψ⟩
⟨ψ|ψ⟩

, (51)

where |ψ⟩ is a trial state approximating the bosonic state of Eq. (43) and HB is the mapped

bosonic Hamiltonian in Eq. (46). The hybrid algorithm can assign the computation of the

expectation value in Eq. (51) to a bosonic device while the energy function is optimized in a

classical processor. Similar to the hybrid algorithms designed for quantum computers with

qubits, one needs a robust ansatz for |ψ⟩ for the minimization in Eq. (51). We note that

bosonic ansatz has been recently explored for molecular electronic structure, combined with

the Jordan–Wigner transformation of the electronic Hamiltonian.47

We explore the universal bosonic ansatz of two qumodes for the mapped bosonic Hamil-
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Figure 6: The universal bosonic ansatz for two qumodes with an ancilla qubit, following Ref.
48. The qubit-qumode circuit is initialized in the state |g⟩⊗ |0, 0⟩B and then a block of ECD
gates and qubit rotations are acted sequentially, as defined in Eq. (54).

tonian of Eq. (46) here. Universal control of qumodes requires non-Gaussian resources,49,50

which in cQED can be provided by the third or higher-order nonlinearity of the ancilla

Josephson qubits or couplers.51–56 Multiple non-Gaussian elementary gates in cQED can be

used to construct a universal gate set, including, most notably, the ancilla-controlled rota-

tion (native for dispersive Hamiltonian),57 the selective number-dependent arbitrary phase

(SNAP) gate,51–53 and the conditional displacement gate.48,54 For example, one possible way

to implement an arbitrary multi-qumode unitary can be achieved by a sequence of echoed

conditional displacement (ECD) gates

ECD(β) = |e⟩ ⟨g| ⊗D(β/2) + |g⟩ ⟨e| ⊗D(−β/2), (52)

and ancilla rotations

R(θ, φ) = e−i
θ
2
(σx cosφ+σy sinφ), (53)

where D(α) = exp(αb† − α∗b) is the one-qumode displacement operator, |g⟩ , |e⟩ are the

ground and excited states of the ancilla qubit, and σx, σy are the one-qubit Pauli operators.48

Thus, a general ansatz for any bosonic Hamiltonian of two qumodes can be written as

|ψ⟩ = UB(βB,θB,φB) · · · U1(β1,θ1,φ1)
(
|g⟩ ⊗ |0, 0⟩B

)
, (54)
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Figure 7: Ground state energies of the dihydrogen molecule in the STO-3G minimal basis
for different H–H bond distances. The black line represents the exact energies in the basis
of Slater determinants. The brown dots and blue crosses represent the mapped bosonic
variational methods described in Section 4.3. Both the bosonic qutrit ansatz (brown dots)
and the ECD-rotation ansatz (blue crosses) of Eq. (56) reproduce the exact ground state
energies. For the ECD-rotation ansatz, the results are shown for B = 2 blocks.

where the initial state for the one ancilla qubit and the two qumodes is |g, 0, 0⟩ and the Uj

unitary is defined as

Uj =
(
|e⟩ ⟨g| ⊗ I⊗D(β2,j/2) + |g⟩ ⟨e| ⊗ I⊗D(−β2,j/2)

)(
R(θ2,j, φ2,j) ⊗ I⊗ I

)
×

(
|e⟩ ⟨g| ⊗D(β1,j/2) ⊗ I + |g⟩ ⟨e| ⊗D(−β1,j/2) ⊗ I

)(
R(θ1,j, φ1,j) ⊗ I⊗ I

)
. (55)

The two-qumode ansatz of Eq. (54) has B number of Uj blocks and is illustrated in Figure 6.

The strategy of using an ancilla qubit rotation and ECD gates can be similarly extended

for any number of qumodes.48 Additional strategies for multi-mode control such as based on

the conditional-NOT displacement56 and photon blockade55 have also been demonstrated

recently.
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Specifically for the ground state of H2 molecule in a minimal basis, the only relevant

Slater determinant basis states are |0, 1⟩F and |2, 3⟩F ,58 which becomes the qumode Fock

basis states |0, 0⟩B and |0, 2⟩B after the state mapping. This means the general ansatz of

Eq. (54) can be applied to find the ground state of H2 molecule, even without optimizing

the parameters on the first qumode. In that case, the following reduced version of Eq. (54)

is sufficient for the ground state of H2 molecule54

|ψ⟩ = UB(βB, θB, φB) · · · U1(β1, θ1, φ1)
(
|g⟩ ⊗ |0, 0⟩B

)
, (56a)

Uj =
(
|e⟩ ⟨g| ⊗ I⊗D(βj/2) + |g⟩ ⟨e| ⊗ I⊗D(−βj/2)

) (
R(θj, φj) ⊗ I⊗ I

)
, (56b)

where B is the number of blocks and {βj, θj, ϕj} needs to be optimized following Eq. (51). As

shown in Figure 7, the ECD-rotation ansatz of Eq. (56) with only B = 2 blocks can reproduce

the exact ground state energies for different H–H bond distances. Since the HB defined in

Eq. (46) can be thought of as a Hamiltonian of two qutrits, starting from the initial state

|0, 0⟩B and applying e−2iθ (−i|0⟩⟨2|+h.c.), which is a qutrit Ry gate,59,60 to the second qumode is

also an legitimate ansatz for the ground state, where the the scalar θ is optimized following

Eq. (51). As shown in Figure 7, both the general ECD-rotation and the qutrit ansatze can

reach the exact ground state energies of the H2 molecule. It is important to note that the

expectation value of HB for any Fock basis state that is absent in HB is naturally zero,

which allows the design of flexible bosonic ansatz without contaminating the trial energy in

Eq. (51), while potentially boosting the optimization.

5 Conclusions

We have introduced a general scheme for mapping the molecular electronic structure Hamil-

tonian in terms of projection operators of quantum harmonic oscillators or qumodes based

on an exact fermion to boson operator map that in turn is derived from a state mapping

between Slater determinants and Fock states of qumodes. Our work opens the door for
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simulating molecular electronic structure, and by extension, any number-conserving many-

fermion system, on bosonic quantum devices that use qumodes as the building blocks of

quantum information.

After mapping the fermionic Hamiltonian to a qumode Hamiltonian, one can consider

the electronic structure of interest as a bosonic problem and apply a bosonic ansatz as

the trial state for variationally finding the ground state using a classical-quantum hybrid

approach. This is related in spirit to the qubit coupled cluster approach, where a hardware-

efficient qubit ansatz is used after mapping the electronic structure Hamiltonian to a qubit

Hamiltonian.61 We have applied the techniques discussed above to the dihydrogen molecule

in a minimal basis, a system of two electrons that is mapped to a system of two qumodes.

We have shown how to compute the expectation values using bosonic quantum devices, and

shown that a minimal bosonic ansatz reproduces the exact energies for the potential energy

surface of the H2 molecule.

For a general electronic structure Hamiltonian of N electrons with M spin-orbitals, one

needs N number of qumodes with M − N + 1 number of accessible excitation levels. The

computation of the Hamiltonian expectation value needs to take care of a maximum of

O(M4N2) number of operator terms compared to a maximum of O(M4) number of terms

in the case of the traditional qubit-based approaches. However, the number of Hamiltonian

terms can potentially be reduced by applying tensor decomposition techniques to the one-

electron and two-electron integrals.62,63 Thus, scaling up the fermion to boson mapping

techniques discussed here for larger molecular systems is an exciting challenge, and we hope

that the present work inspires a new generation of algorithms for electronic structure theory

that harness the unique capabilities of bosonic quantum devices.
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A Justification of the state mapping

The state mapping in Eq. (20) is justified if we can prove that acting with bosonic operators

{b†j, bj} on the mapped fermionic states still preserve their commutation relations of Eq. (17).

We follow the derivation done in Ref. 30 here, although a similar justification was first given

by Ref. 29.

The first step to deduce the action of bosonic creation operators on a Slater determinant

is to apply Eq. (20) and Eq. (18) to get

b†j |p1, · · · , pN⟩F = b†j |q1, · · · , qN⟩B =
√
qj + 1 |q1, · · · , qj + 1, · · · , qN⟩B , (57)

which can be again mapped back to

b†j |p1, · · · , pN⟩F =
√
pN−j+1 − pN−j |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN + 1⟩F , (58)

where j < N . The same expression for the special case of j = N is given by

b†N |p1, · · · , pN⟩F =
√
p1 + 1 |p1 + 1, · · · , pN + 1⟩F , (59)

The action of bosonic annihilation operators on a Slater determinant can be similarly derived

as

bj |p1, · · · , pN⟩F =
√
pN−j+1 − pN−j − 1 |p1, · · · , pN−k, pN−k+1 − 1, · · · , pN − 1⟩F , (60)
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when j < N and

bN |p1, · · · , pN⟩F =
√
p1 |p1 − 1, · · · , pN − 1⟩F . (61)

Let us now combine Eq. (58) and Eq. (60) to arrive at

bjb
†
k |p1, · · · , pN⟩F =

√
(pN−k+1 − pN−k) (pN−j+1 − pN−j − 1)

× |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN−j + 1, pN−j+1, · · · , pN⟩F , (62)

where j < k. Similarly, by reversing the order of the bosonic operators, we get

b†kbj |p1, · · · , pN⟩F =
√

(pN−k+1 − pN−k) (pN−j+1 − pN−j − 1)

× |p1, · · · , pN−k, pN−k+1 + 1, · · · , pN−j + 1, pN−j+1, · · · , pN⟩F , (63)

where j < k. Thus, the right hand sides of Eq. (62) and Eq. (63) are the same, which proves

[bj, b
†
k] = 0 for j < k. The j > k case can be similarly derived as above. Let us now consider

the j = k case

bkb
†
k |p1, · · · , pN⟩F = (pN−k+1 − pN−k) |p1, · · · , pN⟩F . (64)

Similarly, by reversing the order, we get

b†kbk |p1, · · · , pN⟩F = (pN−k+1 − pN−k − 1) |p1, · · · , pN⟩F . (65)

Thus, Eq. (64) and Eq. (65) shows that [bk, b
†
k] = 1, which proves that the state mapping

preserves the relation [bj, b
†
k] = δjk.

B Derivation of the operator mapping

The derivation of the mapping {Ep
q} operators is shown in Ref. 30. We gain insight into the

derivation here by discussing all the steps for the specific cases of N = 1 and N = 2.
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Let us first discuss the operator mapping with an N = 1 system. The state mapping is

then simply |j⟩F ↔ |j⟩B, where the one-particle states are defined as

|j⟩F ≡ f †
j |−⟩F , |j⟩B ≡

b†j√
j!
|0⟩B . (66)

Let us figure out how the bilinear fermionic operators act on the state |j⟩B by using the

state mapping. The states {|j⟩F} are eigenstate of the number operator Ep
p , and combining

this with the state mapping leads to

Ep
p |j⟩F = δpj |j⟩B = (|j⟩ ⟨p|) |j⟩B = (|p⟩ ⟨p|) |j⟩B , (67)

where |p⟩ ⟨p| is the projection operator in the bosonic Fock basis with the subscripts “B”

suppressed to avoid symbolic clutter. Since |j⟩B can now be mapped back to |j⟩F , the

number operator is thus mapped as

Ep
p 7→ |p⟩ ⟨p| , (68)

p = 0, 1, · · · ,M − 1. Similarly, acting with the off-diagonal bilinear fermionic operator on

|j⟩F leads to

Eq
q+p |j⟩F = δqj f

†
j+p |−⟩F = δqj |j + p⟩F , (69)

which maps to the state |j + p⟩B. We can now combine Eq. (69) and Eq. (32) to arrive at

Eq+p
q |j⟩F = (σ†)p δq,j |j⟩B = (σ†)p (|q⟩ ⟨q|) |j⟩B . (70)

Since |j⟩B can now be mapped back to |j⟩F , the Eq+p
q operator can be mapped as

Eq+p
q 7→ (σ†)p |q⟩ ⟨q| , (71)
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where q = 1, · · · ,M−1 and p = 1, · · · ,M−p−1. Because of its adjoint relation (Ep
q )† = Eq

p ,

mapping bilinear fermionic operators {Ep
q} for p ≥ q is sufficient.

Let us now discuss the N = 2 case, for which the state mapping is given by, |p, q⟩F ↔

|j, k⟩B, where the states are defined in Eq. (23) and Eq. (24), and the relation between the

two sets of indices are given by Eq. (25). Let us start our derivation by writing down how

the number operator Er
r acts on an arbitrary Slater determinant

Er
r |p, q⟩F = (δp,r + δq,r) |p, q⟩F , (72)

and after applying the state mapping back and forth, we arrive at

Er
r |p, q⟩F 7→ (δk,r + δj+k,r−1) |j, k⟩B

=
[
δk,r +

∑
a+b=r−1

δj,a δk,b

]
|j, k⟩B

=
[
I⊗ |r⟩ ⟨r| +

∑
a+b=r−1

|a, b⟩ ⟨a, b|
]
|j, k⟩B

7→
[
I⊗ |r⟩ ⟨r| +

∑
a+b=r−1

|a, b⟩ ⟨a, b|
]
|p, q⟩F , (73)

where I is the identity operator acting on the first mode. We extended the projection operator

trick in the derivation of the N = 1 system here, i.e., the goal is to find a Kronecker delta

involving one of the indices (j and k) corresponding to the two modes. We can now redefine

the dummy indices above and express the mapping for the number operators as

Ep
p 7→ I⊗ |p⟩ ⟨p| +

∑
a+b=p−1

|a, b⟩ ⟨a, b| . (74)

Let us now map the off-diagonal operators. We first act Es+r
s on an arbitrary Slater deter-

minant

Es+r
s |p, q⟩F = δp,s f

†
p+rf

†
q |−⟩F + δq,s f

†
pf

†
q+r |−⟩F , (75)
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which can be further written as

Es+r
s |p, q⟩F = δp,s

( q−1∑
a=p+1

δp+r,a |p+ r, q⟩F −
∞∑

a=q+1

δp+r,a |q, p+ r⟩F
)

+ δq,s |p, q + r⟩F , (76)

where we have applied the definition of Slater determinants in Eq. (8). Similar to the

derivation for the N = 1 case, we now apply the state mapping and the normalized bosonic

operators. The third term of Eq. (76) then reduces to

δq,s |p, q + r⟩F 7→ δj+k,s−1 |j + r, k⟩B = (σ†
1)
r δj+k,s−1 |j, k⟩B , (77)

Similarly the first term of Eq. (76) can be rewritten as

δp,s

q−1∑
a=p+1

δp+r,a |p+ r, q⟩F 7→ δp,s

q−1∑
a=p+1

δp+r,a |j − r, k + r⟩B

= σr1 (σ†
2)
r

∞∑
a=0

δj,r+a δk,s |j, k⟩B , (78)

whereas the second term of Eq. (76) turns to

δp,s

∞∑
a=q+1

δp+r,a |q, p+ r⟩F 7→ δp,s

∞∑
a=0

δp+r,a+q+1 |r − 2 − j, j + k + 1⟩B

=
r−2∑
a=0

(σ†
1)
r−2−a σa1 (σ†

2)
a+1 δj,a δk,s |j, k⟩B . (79)

Applying the projection operator relation and the state mapping back to the Slater deter-

minants, the action of the Es+r
s on an arbitrary Slater determinant can now be written
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as

Es+r
s |p, q⟩F =

[
σr1 (σ†

2)
r

∞∑
a=0

|r + a, s⟩ ⟨r + a, s| −
r−2∑
a=0

(σ†
1)
r−2−a σa1 (σ†

2)
a+1 |a, s⟩ ⟨a, s|

+ (σ†
1)
r

∑
a+b=s−1

|a, b⟩ ⟨a, b|
]
|p, q⟩F . (80)

We can now redefine the dummy indices above and express the mapping for the off-diagonal

operators as

Eq+p
q 7→ σp1 (σ†

2)
p

∞∑
a=0

|p+ a, q⟩ ⟨p+ a, q| −
p−2∑
a=0

(σ†
1)
p−2−a σa1 (σ†

2)
a+1 |a, q⟩ ⟨a, q|

+ (σ†
1)
p

∑
a+b=q−1

|a, b⟩ ⟨a, b| . (81)

Thus, we have shown how to derive the DMS operator mapping for the N = 1 and N = 2

cases.
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C General DMS mapping expression

The expression for the DMS mapping of {Ep
q} with p > q is given by30

Eq+p
q 7→

∑
r1+···+rN
= q−N+1

(σ†
1)
p Pr1,··· ,rN +

∞∑
a=0

∑
r2+···+rN
= q−N+2

σp1(σ†
2)
p Pp+a,r2,··· ,rN

−
p−2∑
µ=0

∑
r2+···+rN
= q−N+2

(σ†
1)
p−2−µσµ1 (σ†

2)
µ+1 Pµ,r2,··· ,rN

+
N−1∑
k=2

[
Ik−1 ⊗

∞∑
a=0

∑
rk+1+···+rN
= q−N+k+1

σpk(σ
†
k+1)

p Pp+a,rk+1,··· ,rN

− Ik−2 ⊗
∞∑
a=0

p−2∑
µ=0

p+a−1∑
rk−1=a+1

∑
rk+1+···+rN
= q−N+k+1

T 1
p,k,µ Prk−1,µ,rk+1,··· ,rN

+ (−1)k
( ∞∑
r1=0

· · ·
∞∑
rk=0

−
∞∑
a=0

∑
r1+···+rk
= p+a−k

) ∑
rk+1+···+rN
= q−N+k+1

T 2
p,k,µ1,··· ,µk Pr1,··· ,rN

+
k−1∑
j=2

(−1)j Ik−j−1 ⊗
∞∑
a=0

( ∑
rk−j+···+rk
= p+a−j

∑
rk+1+···+rN
= q−N+k+1

T 3
p,k,j,rk−j+1,··· ,rk Prk−j ,··· ,rN

−
∑

rk−j+1+···+rk
= p+a−j

∑
rk+1+···+rN
= q−N+k+1

T 3
p,k,j,rk−j+1,··· ,rk |0⟩ ⟨0| ⊗ Prk−j+1,··· ,rN

)]
, (82)

where q = 0, · · · ,M − 2 and p = 1, · · · ,M − q − 1 and the operators {T µ} are defined in

Table 2. All the summations in Eq. (82) will naturally truncate following the highest Fock

state allowed for a qumode based on the state mapping of Eq. (21). There are O(N2) number

of terms in Eq. (82) that need to be taken care of in case of computing the expectation value

of the operator Eq+p
q . The expression for {Ep

q} with p < q can be found by taking the

Hermitian conjugate of Eq. (82), while the mapping for p = q is given by Eq. (31).
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D Derivation of the bosonic Hamiltonian for the dihy-

drogen molecule

Let us map each of the operator terms of the Hamiltonian in Eq. (45). The maps corre-

sponding to the operator terms with single bilinear fermionic operators are given following

Eq. (34)

E0
0 7→ I⊗ |0⟩ ⟨0| , (83a)

E1
1 7→ I⊗ |1⟩ ⟨1| + |0, 0⟩ ⟨0, 0| , (83b)

E2
2 7→ I⊗ |2⟩ ⟨2| + |0, 1⟩ ⟨0, 1| + |1, 0⟩ ⟨1, 0| , (83c)

E3
3 7→ |0, 2⟩ ⟨0, 2| + |1, 1⟩ ⟨1, 1| + |2, 0⟩ ⟨2, 0| , (83d)

where we have truncated the mapping expression based on the relevant bosonic subspace for

our problem. The expressions after mapping the symmetric operator terms using Eq. (36)

Table 2: Definitions for the intermediate operator terms used in Eq. (82).

Operator Definition

T 1
p,k,µ σp−1−µ

k−1 (σ†
k)
p−2−µ σµk (σ†

k+1)
µ+1

T 2
p,k,r1,··· ,rk (σ†

1)
p−1−k−(r1+···+rk) σr11 (σ†

2)
r1 · · ·σrk−1

k−1 (σ†
k)
rk−1 σrkk (σ†

k+1)
rk+1

T 3
p,k,j,µk−j+1,··· ,µk σ

p−j−(µk−j+1+···+µk)
k−j (σ†

k−j+1)
p−j−1−(µk−j+1+···+µk)

× σ
µk−j+1

k−j+1 (σ†
k−j+2)

µk−j+1 · · · σµk−1

k−1 (σ†
k)
µk−1 σµkk (σ†

k+1)
µk+1
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are

E0
1E

1
0 7→ |1, 0⟩ ⟨1, 0| + |2, 0⟩ ⟨2, 0| , (84a)

E0
3E

3
0 7→ |0, 0⟩ ⟨0, 0| + |1, 0⟩ ⟨1, 0| , (84b)

E1
2E

2
1 7→ |0, 0⟩ ⟨0, 0| + |1, 1⟩ ⟨1, 1| + |2, 1⟩ ⟨2, 1| , (84c)

E0
2E

2
0 7→ |0, 0⟩ ⟨0, 0| + |2, 0⟩ ⟨2, 0| , (84d)

E1
3E

3
1 7→ |0, 0⟩ ⟨0, 0| + |0, 1⟩ ⟨0, 1| + |2, 1⟩ ⟨2, 1| , (84e)

E2
3E

3
2 7→ |0, 1⟩ ⟨0, 1| + |1, 0⟩ ⟨1, 0| + |1, 2⟩ ⟨1, 2| + |2, 2⟩ ⟨2, 2| . (84f)

The rest of the operator terms are similarly mapped as

E0
1E

3
2 7→ |2, 0⟩ ⟨0, 1| , (85a)

E0
3E

1
2 7→ − |0, 0⟩ ⟨0, 2| . (85b)

We now combine Eq. (83), Eq. (84), and Eq. (85) to arrive at

HB =
(
h00 + h11 + v0110

)
|0, 0⟩ ⟨0, 0| +

(
h11 + h22 + v1221

)
|0, 1⟩ ⟨0, 1|

+
(
h00 + h22 + v0220 − v0202

)
|1, 0⟩ ⟨1, 0| +

(
h11 + h33 + v1331 − v1313

)
|1, 1⟩ ⟨1, 1|

+
(
h22 + h33 + v2332

)
|0, 2⟩ ⟨0, 2| +

(
h00 + h33 + v0330

)
|2, 0⟩ ⟨2, 0|

+ v0132
(
|0, 0⟩ ⟨0, 2| + h.c.

)
− v0312

(
|2, 0⟩ ⟨0, 1| + h.c.

)
. (86)
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We can simplify even more by taking advantage of the symmetries of the four spin-orbitals

of the H2 molecule in a minimal basis, which leads to the following relations8

h00 = h11, (87a)

h22 = h33, (87b)

v0220 = v1331 = v1221 = v0330, (87c)

v0202 = v0312 = v0132 = v1313. (87d)

Thus, we can finally map the Hamiltonian in Eq. (45) to the bosonic form below

HB =
(
h00 + h11 + v0110

)
|0, 0⟩ ⟨0, 0| +

(
h00 + h22 + v0220

)
|0, 1⟩ ⟨0, 1|

+
(
h00 + h22 + v0220 − v0202

)
|1, 0⟩ ⟨1, 0| +

(
h00 + h22 + v0220 − v0202

)
|1, 1⟩ ⟨1, 1|

+
(

2h22 + v2332

)
|0, 2⟩ ⟨0, 2| +

(
h00 + h22 + v0220

)
|2, 0⟩ ⟨2, 0|

+ v0202
(
|0, 0⟩ ⟨0, 2| + h.c.

)
− v0202

(
|2, 0⟩ ⟨0, 1| + h.c.

)
, (88)

which is equivalent to the Hamiltonian in Eq. (46).

E Subspace tomography for computing photon trans-

fer expectation values

The cQED-based subspace tomography approach described in Ref. 46 can be implemented

with the help of an ancilla transmon qutrit and can be divided into two broad parts. Let

us denote the three levels of the ancilla to be |g⟩, |e⟩, and |f⟩. The first part uses a unitary

operator coupled to the states |e, g⟩ that transforms the full density matrix of a qumode

state into a chosen subspace density matrix coupled to the |e⟩ state. The second part applies

phase displacement operator(s) followed by a photon-number state projection and measure

the corresponding probability in the |f⟩ state. We discuss the resulting expressions below.

37



Let us first understand the above protocol for one qumode, whose state can be represented

in the Fock basis as

|Ψ⟩ =
∞∑
n=0

Cn |n⟩ , (89)

where {Cn} are the complex-valued Fock basis coefficients. Let us assume we want to

compute the expectation value of the following photon transfer operator |j⟩ ⟨k| + h.c.

Tj,k = ⟨Ψ|
(
|j⟩ ⟨k| + h.c.

)
|Ψ⟩ = CjC

∗
k + CkC

∗
j , (90)

where the operator pairing for the off-diagonal parts ensure Hermiticity. The subspace

tomography approach will choose to handle the corresponding subspace density matrix

ρj,k =
( ∑
n=j,k

Cn |n⟩
) ( ∑

n=j,k

C∗
n ⟨n|

)
=

∑
n,m ∈ S

CnC
∗
m |n⟩ ⟨m| , (91)

where S represent the subspace chosen. Let us now apply the phase space displacement

operator D(α) = eαb
†−α∗b , which creates all possible photon excitation and deexcitation

from the Fock state it acts on

D(α) |n⟩ =
∞∑
j=0

dn,j |j⟩ , (92)

where {dn,j} are the known and easily tunable linear coefficients associated with the dis-

placement operator. The displacement operator transforms ρj,k as

R
(1)
j,k ≡ D(α) ρj,k D

†(α)

=
∑

n,m ∈ S

CnC
∗
m

[
D(α) |n⟩ ⟨m|D†(α)

]
=

∑
n,m ∈ S

CnC
∗
m

∑
j,k ∈ N

dn,j (dm,k)
∗ |j⟩ ⟨k| . (93)

38



The final observable can now be represented as

R
(2)
j,k,p ≡ Tr(|p⟩ ⟨p|R(1)

j,k |p⟩ ⟨p|) =
∑

n,m ∈ S

CnC
∗
m dn,p (dm,p)

∗. (94)

Assuming all {dn,p} coefficients to be real-valued, Eq. (94) can be rewritten as

R
(2)
j,k,p =

∑
n,m ∈ S

dn,p dm,p CnC
∗
m

= dj,p dj,p CjC
∗
j + dk,p dk,p CkC

∗
k + dj,p dk,p (CjC

∗
k + CkC

∗
j )

= d2j,p | ⟨j|Ψ⟩ |2 + d2k,p | ⟨k|Ψ⟩ |2 + dj,p dk,p Tj,k. (95)

Since R
(2)
j,k,p is the observable for the subspace tomography and {| ⟨j|Ψ⟩ |2} can be computed

by photon number counting as discussed in Section 4.2, the expectation value for the photon

transfer operator can be computed as

Tj,k =
1

dj,p dk,p

(
R

(2)
j,k,p − d2j,p | ⟨j|Ψ⟩ |2 − d2k,p | ⟨k|Ψ⟩ |2

)
. (96)

The generalization of the above approach to N number of qumodes is straightforward

with one phase space displacement operators acting on each of the qumodes. In this case,

we want to compute the expectation value of the photon transfer operator

Tj,k = ⟨Ψ|
(
|j⟩ ⟨k| + h.c.

)
|Ψ⟩ , (97)

where j is a vector of natural numbers and |j⟩ ≡ |j1, · · · , jN⟩B is a bosonic Fock state. The

corresponding subspace density matrix is

ρj,k =
( ∑

n=j,k

Cn |n⟩
) ( ∑

n=j,k

C∗
n ⟨n|

)
=

∑
n,m ∈ S

CnC
∗
m |n⟩ ⟨m| , (98)
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and the experimental observables are

R
(1)
j,k ≡ DN(α) · · ·D1(α) ρj,k D

†
1(α) · · ·D†

N(α), (99a)

R
(2)
j,k,p ≡ Tr(|p⟩ ⟨p|R(1)

j,k |p⟩ ⟨p|), (99b)

where Dp(α) is the displacement operator acting on the p-th qumode and |p⟩ ⟨p| is the

multimode projection operator. Similar to discussion above, Tj,k can then be expressed as

Tj,k =
1∏N

i=1 dji,pi dki,pi

[
R

(2)
j,k,p −

( N∏
i=1

d2ji,pi

)
| ⟨j|Ψ⟩ |2 −

( N∏
i=1

d2ki,pi

)
| ⟨k|Ψ⟩ |2

]
. (100)

Thus, it is possible to compute the expectation value of any photon transfer operator of the

form |j⟩ ⟨k| + h.c. using the subspace tomography approach.
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