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A direct approach to one photon interference contributions in the coherent
control of photodissociation
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Formally exact quantum mechanical expressions for cumulative transition matrix elements
wik(E,E)=2n(j| . |E,&,n7)(E,&,n" |u.|k), central to one photon coherent control scenarios of
photodissociation, are derived. The resultant approach bypasses the need for solving the complete
state-to-state quantum mechanical reactive scattering problem to obtain control results. These exact
expressions are implemented both quantum mechanically and via a semiclassical initial value
representation method to investigate coherent control in the generic photodissociation of a triatomic
into more than one product. The semiclassical approach is shown to provide an accurate description
of bimolecular control in this system. @001 American Institute of Physics.
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I. INTRODUCTION some to terms of the formuj=2,(jlu|E,&n")
X(E,&n"|u,|k). The latter correspond to interference be-

Developing new laser techniques for controlling theyyeen one photon absorption routes to the continuum from
quantum dynamics of polyatomic systems is one of the imyg, o |j) and from level|k). Both of these terms involve a

portant challenges in modern photochemlstry. The most SU%um over all final states. It therefore appears that obtaining
cessful of these approaches is coherent cohtralyhere

guantum interference effects are manipulated to alter the d)/’-L jk réquires solving the scattgrmg problem_ at the _complgtg
namics. With coherent control having been demonstrate&tate'to'State_Ievel' a task Wh|ch_ becomes mcrez_;\smgly diffi-
both computationally and experimentally for simple photo-CUIt as the S,'Z? of the systemllncreases. I.n this paper we
dissociation reactions, the challenges ahead range from if10W that this is not the case, i.e., that a direct method for
vestigating yield control in complex molecular environmentsebtaining these terms, based on a correlation function ap-
to demonstrating routes to new products in realistic poly-Proach, considerably simplifies this computation.
atomic reactions. In particular, in this paper we make two contributions
Progress in coherent control relies heavily on theoreticatowards the goal of developing useful methods for coherent
and computational approaches which allow an understandingontrol computations. First, we develop formally exact quan-
of the dominant interference phenomena and provide &m expressions for cumulative transition matrix elements
means of designing new control scenarios. However, sucthat circumvent the need to solve the reactive scattering
approaches are currently restricted to small systems, a limproblem at the complete state-to-state level. Second, we
tation of modern computational quantum mechanics. Themplement this approach semiclassically via the initial value
purpose of this paper is to develop an efficient and rigorougepresentatiorfSC-IVR) to examine a specific control sce-
semiclassical appr(_)ach to simulate coherent control SC&ario, bichromatic control, on &ollinea) polyatomic prob-
narios to allow applications to larger molecular systems. We,, dissociating to two chemically distinct products, and

focus on coherent control scenarios involving interferenceshow that the results are in very good agreement with exact
via one photon routes. This includes controlled photodisso-

o . . ) . ntum computations.
ciation via bichromatic coherent contfobr weak field quantum computations . . .

In recent years, there has been a rebirth of interest in the
pump—dump schemés.

We consider photodissociation from an initial bound SC-VR apprqach, fa method originally due t(,) Milfeas a
state|i) to the final continuum statE,é,n~). Here,E,£,n  Mmeans of including quantum effects in molecular

denote the total energy, arrangement channel and interng_Vn"’"”r"csfé_21 However, to date, the only SC-IVR applica-
guantum numbers of the product state with which the conlion to coherent control is our recent study of bichromatic
tinuum statgE,£,n~) correlates. In coherent control of pho- coherent control of nonadiabatic ICN photodissociaffom
todissociation involving one photon routes, the probability ofthat work, the SC-IVR was shown capable of reproducing
forming a desired product is a sum of terms, some correboth amplitudes anghasesof the w;; in an approach that
sponding to the direct photodissociation of a bound dtgte  required solving the full scattering problem at the asymptotic
of the form w=2n(k|luE &N WE,ENn"|u, lk), and state-to-state level. The resultant semiclassical photofrag-
mentation ratios were found to be in good agreement with

dCurrent address: Department of Chemistry, Yale University, New Haven,ql_Ja'ntum Sm_“"lat'ons' Here \_Ne_ extend this approach, _deahng
Connecticut 06520-8107. with a reactive photodissociation problem via the “direct”
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implementation procedure of the SC-IVR for computationsHere £=1,2 denotes the final arrangement andenotes the
of cumulative transition matrix elements. internal states of the product.

The paper is organized as follows: In Sec. I, and the  The moleculeABC is prepared in an initial superposi-
Appendix, we review the bichromatic coherent control sce-ion state,
nario and derive formally exact expressions for the cumula- . .
tive transition matrix ele)r/nents. Sef:)tions [l and IV describe [Wo(.k))=|Pg)lcli) + k)1, 22
procedures to implement these expressions in terms of thehere|d) is the ground electronic state wave function, and
SC-IVR, and also in terms of exact quantum mechanicalj) is the nuclear eigenstate of energy associated with
methods based on the split-operator propagation schgmeexcitation in thejth vibrational state. The system is subse-
Section V evaluates these expressions for a simple examptgiently photo-excited with two CW lasers with a total elec-
of unimolecular decomposition, and compares the semiclagyic field &(t),
sical results with full quantum mechanical simulations. The _
Appendix contains a derivation of an important expression  e(t)=g;e (*i"* 4+ g e (@ W ¢ c, (2.3
for the projection operator onto fixed total energy and spe- i _ — — . _
cific product channel. Section VI contains a summary and'ere the field amplitudes; ande are time independent

conclusions. vectors of lengtie;|, and|e,|. The quantitiess; and 6, , in
Eq.(2.3), are the phases of the two CW fields. If the frequen-
Il. COHERENT CONTROL IN A CONTINUUM STATE cies w; and wy are chosen such thdtw,+E =% w;+E;

=E, then both|j) and|k) are raised by the laser field to
continuum statefE, £,n~) of an electronic excited state with
‘energy E. These two photoexcitation routes interfere with
one another, and assuming that the field is sufficiently weak

We consider bichromatic coherent contriol the unimo-
lecular decomposition reaction of a generic polyatomic mo
lecular systemABC that photodissociates according to

ABC+%w &V to allow the use of first order perturbation theory, the relative
— C+AB(n) probability ratio R(¢,¢',E), of producing product in ar-
(é=2) rangement channgl to that in arrangemerd’, at energyg,
— A+BC(n). (2.1) s given by

R(£.6E)= | i (£,E)]+X?| i €,E) |+ 2x €0K 0 — O+ Py (£,E)) | ik (£, E)|

= . (2.4
| i (87 E) |+ X2 i € E) |+ 2x cog 6; — b+ Py (£7,E)) | i (€', E)|

Here, x is the ratio of controllable parameters was described in the time dependent picture, and the transi-
=|(clexl)/(cile)], and @ (&,E) is the phase of the cu- tion matrix elements were computed according to
mulative transition matrix element;,(§,E),

/“'ij(g’E) _ |Mjk(§'E)|ei<I)jk(§,E) Mj,k(giE) :tlijrlnzo <\I,t(J )|E1§!n0><E1€:1no|\Pt(k)>'

(2.6

=(Vo(j) ZO [E,&n ) E &7 [ [[Wo(k)), Here|E,£,n°) are the asymptotic states associated with pho-
"~ tofragments that are in product changelat energyE, and
(2.9 internal staten. The quantitiegW(j)) and |¥(k)) result
from time evolving|¥(j)) and|W¥(k)) according to the

where [Wo(j))=uli), and . is the dipole operator along excited state Hamiltoniard. Hence, all methods imple-

the direction of the field. Note that the off-diagonaly . RN
manifest the interference between components of the cor{l}qcinst;?;g date have required resolution into individual prod-

tinuum wave function which are excited by independent co- ; . .
y P We wish to derive an expression that allows the deter-

herent excitation pathways. mination of u; without the need to compute dynamics into
Equations(2.4) and (2.5) show that the relative product ik : )
q 2.4 2.9 b each product channel. To do so we first rewrite Ej5).

yields can be experimentally controlled by changing either : : )
the composition of the initial superposition state, or the reIa—The Appe_ndlx shows that the sum in brackets, in &),
tive phase or amplitude associated with the photoexcitatioﬁan be written as

laser pulses. Essentially all simulations to date have com- = A .

puted the cumulative transition matrix elemenpis,(¢,E), > |E,&,n")(E,&,n"|=P:8(E—H), (2.7
according to Eq.(2.5), after solving first the time- n=0

independent scattering problem at the complete state-to-stagg obtain

level. The only exception to this has been our recent study of

ICN coherent controf? where the photodissociation process Mj'k(g,E)=(\If0(j)|l5§5(E— I:|)|\If0(k)). (2.8
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system separate from one another according to alternative
reaction pathways, and cease to interact thereafter.

Finally, two comments are in order. First, we note that
Eq. (2.10 provides the useful computational check that

Eg Im[ ) (£,E)]=0, 2.13

when bothW(j) and Wy (k) are real functions. Here Inh
denotes the imaginary part function of its argument. Equa-
tion (2.13 follows from noting that, according to E¢R.10),

the sum

25 i k(EE)=(Vo())|8(E—R)|[Wo(k)), (2.14

FIG. 1. Excited state potential-energy surface for unimolecular dissociatio
[Eg. (2.1)]. Here,r=rgc and R=r g+ rgcme/(mc+mg), are the Jacobi
coordinates associated with the vibrational and translational coordinate
respectively, in photofragmentation changet2. Shown are the dividing
surfaceR=R; andR=R,, the asymptotic cut§, andS, in the free inter- w
action regions, and the position of the absorbllng potertjathat woul_d :(Zﬂﬁ)712 Re{f dte wt/hfj,k(t)
absorb the wave packet componemé(l) andV;(2) that correlate with 0

asymptotic product channgl=1. Also shown are contour plots for the . . .
modulus of the initial wave packet/o(1), that results from photoexcitation WhenWq(j) and¥ (k) are real wave functions with#k,
of the ground vibrational state, and the time evolved wave packet compoand always Whe|j|: k. Here the survival amplitude§ k(t)
nentsW (1) andW?(1) att=40 fs after photoexcitation of the system.  [Eq. (2.15], are defined as '

gj,k<t>s<‘1fo<j>|e‘ﬁ“ﬁl%<k>>=<%u>|*1n<k>>-(2 )

Is real, since

W o) S(E—HF)|Wo(K))

; (2.19

Here, I5§ is the projection operator onto asymptotic product

channel¢, defined as Second, we note that the survival amplitudgg(é,t)
~ . . could also be computed in terms of the flux through the
P.=lim e"'h(R)e ", (2.9  dividing surfaceR=R;, according to the time average over
e motion
and, h¢(R) is a function of the dissociating bond lengt £ k(ED)= (W) e P(K))

associated with asymptotic chanrdelSpecifically,h,(R) is

one on the right of the dividing surfad®=R; and zero on 2 ia
the |eft(see F|g J_ ¢ + J'O dt <\Pt’(J)|F§|\Pt+t’(k)>y (2-17)

Substituting Eq(2.9) into Eq.(2.8), gives thaiu; «(£,E) ~
can be computed according to whereF,, in Eq.(2.17), is the flux operator defined as

o , . i

u,—,k(f.E>=(2wﬁ>‘1f_ dté“’z (&0, (210 ng(g)[""hg]- (218
with E=/iw, i.e., as the Fourier transform of the survival Equation(2.17 follows from Eqgs.(2.11) and(2.12, by not-
amplitude(; «(¢,1), ing that

&K ED=(TE()[ W (k). 21y lim e"he

Here,|\If§(j)> is defined according to _
. = N v P
[WE(1)) =P Wo(j))=lim e he MV W ())), =het 5 f dt'e™ " (Hhe—hH)e " (219

t—oo
(212 A semiclassical procedure for implementing E&.17) is

and is the wave packet component of the initial sfdtg(j)) ~ Presented in Sec. IV B.
that correlates with the asymptotic product charhel

Semiclassical and quantum mechanical calculations, rdll: QUANTUM MECHANICAL APPROACH
ported in Sec. V, are essentially straightforward implemen- The quantum mechanical procedure to compute
tations of Eq.(2.10, where the survival amplitudes (,t) wik(E,§) in terms of Eqs(2.10), (2.11), and(2.12), requires
are obtained according to Eq8.11) and(2.12. These equa- the propagation of each wave packet comporldng(k))
tions provide an efficient procedure to obtain cumulativeand | ¥ (j)) which comprise the initial superposition state.
transition matrix elements, solely in terms of survival ampli- We do so in accord with the standard split-operator propaga-
tudes. These survival amplitudes are expected to decay quiten schemé?
rapidly during the early time relaxation process in the con- ~ Computations of survival amplitudes (§,t) involve
tinuum state, since the initially interacting constituents of theprojections of the time evolved wave pacKkat(k)) onto
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the initial state component\lfg(j)) that correlates with and the three time evolution operators, in E41), are com-
asymptotic product channél To compute|‘lf§(j)) we re-  bined into one overall SC-IVR time propagation, according
place the infinite time limit, in Eq(2.11), by a finite propa- to

gation time, 7,

|q,g(j)>:ei|:|r/hh§efi|:|r/ﬁ|q,0(j)>_ (3.1 §j,k(§,t)=(2wﬁ)—NJ deJ dqoeilst(poﬂo)ﬂef]/h
The quantity| W§(j)) is obtained, according to E¢3.1), by X C(Po,do)(Wo(i) [Pt ae){Po.do| Wo(K)),
propagating|Wo(j)) forward for time 7, applying h, and 4.2

then propagating the resultant wave packet backwards in
time for time 7. Doing so only requires evolving the initial where the exponential damping factr -, arising from the
state|Wo(j)) for the minimum timer after which there is no  absorbing potentigf is
significant overlap between the wave packet component ex-
iting in channel¢ and the wave pac_ket components associ- e.= | dt’e(q(do,po:t’)), 4.3
ated with the other photofragmentation channels. Note#hat 0
can be much shorter than the relaxation time necessary to ) .
reach the asymptotic noninteracting region. and can be approximated according to
The result of this procedure to prepdr‘]f%(j)), is to e “=hy(R,), (4.4)
absorb completely those wave packet components that do not
correlate with the asymptotic product stdteThis prepara- since its only effect, in the long time limitr{—<=), is to

tion of |¥§(j)) can also be performed according to eliminate the contributions of trajectories that do not disso-
‘0 ot i (A2 1l ] ciate into channet.
[We(j))y=e"""e DT Wo())), (3.2 Equation(4.2) is obtained by using the Herman—KI&k,

by performing the forward propagation in the presence of aPl coherent state IVR for the time evolution operator. The

appropriate absorbing potential, .>*~>" Note, that here we quantitiess; = (Po, do), aNdP:=pi(Po, o). In E. (4.2), are

take advantage of the underlying simplicity of photodissocia-f[he coordinates and momenta evolved for titnkom the

. I : initial phase space poinpg,qp), using the Hamiltoniai of
tion dynamics in the cont|_nuum S.t ate, Where the system “@Mhe excited state. The classical action along this trajectory,
not recross back to the interaction region after reaching

specific product region. The absorbing potential is chosen %(po,qo), is obtained by integrating the following equation:

be zero in the interaction region where the relevant dynamics ¢ .

for determining the survival amplitude occurs, and is gy =Pv G~ H(Pu.a0, (4.5
“switched on” to absorb the product in the region of prod-

ucts that do not correlate with channgl(see Fig. 1 The  along with the usual classical equations of motion,
finite propagation timer, in Eq.(3.2), can then be chosen as

the minimum propagation timén the presence of the ab- da(j) _ dH(a,p) dp(j) _ H(a.p) 6
sorbing potentig| necessary to absorb all wave packet com- dt ap(j) dt aq(j) '
E;rtlsgts that do not correlate with the asymptotic product The Hamiltonian H(p,,q), in Eqs. (4.5 and (4.6)
' above, is
H(a,p)=zp-m *-p+V(q), 4.7)

IV. SEMICLASSICAL APPROACH written in terms of normal mode coordinates and momemta,

Section IVA describes a semiclassical procedure t®Nd p, respectively. \q), in Eq. (4.7), is the dissociative
compute the cumulative transition matrix elemeatg(E, £) e_xc!ted state_ potential energy that describes the photodisso-
in terms of Eq.(2.10, where the survival amplitudes Ciation reaction for the generic molecut3C.

{; (&) are obtained according to Eq.1) and (2.12. The pre-exponential factor in the integrand of E4.2)
Section IV B describes a semiclassical procedure to computé given by

the survival amplitudeg; \(,t), according to Eq(2.17), in — e

terms of the flux through a dividing surface along the disso- Ci(Po,do) = VdetM], 4.8
ciative coordinate. where M is a linear combination of components of the

A. Absorbing boundary: Semiclassical implementation monodromy matrix,

of Egs. (2.10) and (2.11)

) ane et _ o a2 Lok v e 1 apk)
_The semiclassical |mplementat_|on of HQ.10), is quite (k)= 2\000(j)  v(K) dpo(j)  2ify(k) dao(j)
straightforward. The survival amplitudes (¢§,t) are com-
puted, by writing Eq(2.12) in the form of Eq.(3.2), accord- o 90u(k)
: =2ihy(]) —— ], 4.9
ing to Ipo(j)
gj‘k(g,t)z(\lfo(j)|e“F‘”he“qT’ﬁe‘i(ﬁ‘igg)ﬂﬂxpo(k)), where y(j) are the constant parameters in the coherent
(4 states,
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14 the second trajectory of each pair,=q,(p;.dp), and p’;
) exp{ —y(Hla() —a(i)1? =p:(p’0.9’0). Doing thet integral, in Eq.(4.12), thus would
not entail any extra effort in the calculation, other than stor-
i ] ) ing the time dependent quantities associated with the first
+ gpt(l)[Q(l)_Qt(J)])= (410 {rajectory. Also, the structure of E¢4.12 allows doing the
calculation for many different values of, i.e., all from the

and similarly for(q|do.po)- _ o same set of trajectories. We have found, however, that the
The various time dependent partial derivatives are obymplementation of this method is not as efficient as the

tained by numerically integrating the following equations forimplementation procedure described in Sec. IV A, where

the stability matrix survival amplitudes are obtained from the very early time
d (ap(i) N PH(p, ) apy(K) relaxation dynami_cs. Hencg, we_utilize below the met_hod c_>f
gt ) ((9 Waad) 92(]) Sec. IV A. The direct semiclassical procedure described in
Pe G J this section, however, has the advantage that could be easily
H(py. ) 3Qt(k)) generglizeo! to simulgte cphgrent contr'ol in the presence pf
JaqK)aai) 92()) nonadiabatic photodissociation dynamics, as formulated in

terms of the Meyer—Miller Hamiltoninatt:??
g(aqt<i>):+ . (azH(pt,qo apu(k)
dt\ az(j) k=1 | ap(K)ap(i) dz(j)
JH(py, ) 5’Qt(k))
Aq(K)ap(i) az(j) )’
wherez=p, or q,.%°

2y(j)

ks

<q|qt.pt>=£[l (

9z(})

k=1

V. RESULTS

Results are presented in two sections after describing the
specific model Hamiltonian and the initial state in Sec. V A,
Sec. V B compares the semiclassical results for survival am-
plitudes and transition matrix elements to the corresponding
B. Flux evaluation: Semiclassical implementation cumulative, and state-to-state resolved quantum mechanical
of Eq. (2.17) results. Section V C then presents our semiclassical results of
bichromatic coherent control, after photoexcitation of an ini-

The first term on the r.h.s. of E(R.17) can be computed a1 gperposition state to various final energy states in the
accordlng to the stan(_jard |mplgmentat|on of.the SC-IVR f‘?rcontinuum, and compares them to the corresponding full
computations of survival amplitudes. Also, in general, th'squantum mechanical calculations.

term can be' qeglected since the dividing surfacbgorfa.n be Semiclassical results are converged witk B0° trajec-
chosen sufficiently far from the Franck—Condon region. Thejes integrated using the standard fourth-order Runge—
discussion that follows concerns practical aspects of the algorithm®

X o X X 32 according to the parallel programming
semiclassical implementation of E(.17) and disregards o4l described in Ref. 6. Trajectories are initialized
the first term on the r.h.s of Eq2.17).

' ) ) through Monte Carlo sampling of coordinates and momenta
The second term in Ed2.17) can also be written in the  50crding to localized phase space distributions, determined
form by the coherent state transform of the initial wave packet
o components. This excited state population is created under
gjk(fvt’):(%ﬂi)*lfo dt(Wo(j)| the artifice that the photolysis event promotes molecules in-
stantaneously from the ground electronic state to the opti-
% eiﬁt’/ﬁﬁ§e7“:|(t+t’)/h|\1}0(k)>_ (4.1  cally allowed excited state that is resonant with the excitation

wavelength.
Using the Herman—KIuk® or coherent state IVR for the g

time evolution operatorf;,(£,t') becomes a double phase A. Model Hamiltonian and initial state
space average over initial conditions for the time average The nuclear wave function that represents the initial

over motion, population in the excited electronic state is assumed to be
o 1/4
- ,t’=2ﬁ‘2N‘1Jd Jd Jd’Jd'fdt : a(Da(2)
Gl &.0)=(2mh) Po | 4o ] dPo | 4do ] @¥oi)=| =5 | H(Ja@ihaw)
« i (Stet/(Po.G0) — (PG G /A PRI — 50
X CY (P9,40) Ct+t/(Po,do) X (W o(])|Po,do) whereH; is a Hermite polynomial of degreie The coordi-

;e natesq(1l) andq(2), in Eq. (5.1, are the symmetric and
X(Pe .Gt F el Prrer e ){Po, Aol Wo(K)). (4.12 antisymmetric stretching normal modes of tA&C mol-

The integration variableg,q,) and (pg,q4), in Eq.(4.12), ecule. The initial state for the control studies, introduced in
are the initial conditions for pairs of classical trajectories.Eq.(2.2), involves a linear superposition of vibrational states
Propagating first a trajectory that evolves according towith j=0 andj=1. The transition dipole that couples the
Oi' + =0 +1(Po,To) @andpy =P +1(Po,do), the time aver- ground and excited electronic states is assumed to be inde-
age over motion could be evaluated while one is computingrendent of nuclear coordinatéSondon approximation
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FIG. 2. Comparison of semiclassic@olid lineg, and quantum mechanical resulsashes for the modulus, real, and imaginary parts of the survival
amplitudess1x(£), £11(€), and{,(€), with ¢=(1,2) as a function of time. Panels), (b), and(c) correspond to photodissociation chanéel2, while panels
(d), (e), and(f) correspond to channél=1.

We examine a simple collinear model for photodissociacally, m,=126.904m,, mg=14.011m,, and mc
tion where the ground electronic state potential energy sur=79.904m,,, respectively, wheren,, is the mass of a hy-
face is defined as a sum of two Morse potentials, drogen atom.

e The excited state potential energy surfaeé; sg.rsc),

Vim(Fm) =Dl € “nnlfom™fm) 112 =Dy, (52 is defined in terms ofF:he internal cg%rdina@i/\:ndlar(;)c
wherenm=AB, or nm=BC labels the corresponding mo- according to the following expression:
lecular fragment. The Morse potentials are parametrized as

- ~ Bagr
follows: Dag=0.0874 a.U.caxs=0.87094 a.u.Sa=4.043 V(T ag Tec) = (Aage P49 A8+ Vpc(rpe)) T(X)
a.u.,Dgc=0.1069 a.u.,agc=0.9155 a.u.,rg.=3.685 a.u. +(Agce PBCTBCH V1 5(1 ap)) (1.0— (X))
The masses for the molecular fragmewtsB, and C are . .
chosen to be those of I, GHand Br, respectively. Specifi- +D,e “2Tas~"ap) ~@3(lec™rBO), (5.3
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FIG. 3. Comparison of the semiclassical res(islid lineg for the cumulative transition matrix elemenis,(£=1,2), as a function of the total ener&yin
the continuum state, to state-resolv@hshes and cumulative(broken dashgsquantum mechanical calculations. Pangls and (b) show the real and
imaginary parts ofu1,(£=1,2), respectively. Note the difference in scale of the ordinate of gahePanel(c) shows the modulufu,,(¢=1,2)|, and panel
(d) the phases;,, as a function of final energk in the continuum.

where Vge(rge) and Vap(rag) are the Morse potentials, show the corresponding quantities for changel1l. The

introduced by Eq(5.2), that parametrize the ground elec- comparison shows that the semiclassical survival amplitudes
tronic state; Axg=0.37, Bag=1.5, @,=4.8, @3=4.8, D,  are in excellent agreement with quantum mechanical results;
=0.08824. The functiof(x), in Eq.(5.3), is defined accord- 5o good, in fact, that the dashed and solid lines often overlap.

Ing to Figure 2 shows that both the diagonal and off-diagonal sur-
f(x)=21/(1+ e *=X))  with X=rgc/(rag+ge), vival amplitudes decay for this particular model system
(5.4  within 7 fs (~290 a.u). This relaxation time is significantly
where, @, = 90, andx,=0.44643% shorter than the time necessary to reach the asymptotic non-

All forces and second derivatives necessary for integratiNteracting region at-40 fs after photoexcitation of the sys-
ing the equations of motion are calculated using finite differ-tem. Figure 2 also shows a significant difference between the
ence expressions. Full quantum mechanical results adiagonal and the off-diagonal survival amplitudes; while
obtained using the fast Fourier transfortRFT) method ¢11(£é=1,2) and{,,(£=1,2) are symmetric relative to=0,
with an extended grid of 1024 points in both theand R and satisfy the condition thagt”(g,t)=§}*j(§,—t), the off-
Jacobi coordinates, defined in the range of coordinategiagonal survival amplitudes; (£=1,2) are slightly asym-
IR-9.5 aul<3 au. andr-6 ay<3 au. metric relative tat=0. For example, note that the maximum
of |j(é=1,2)| at positive times is slightly higher than the
maximum at negative times. This asymmetry results from an

Figure 2 compares the semiclassical resgdadid lines, asymmetric potential energy surface, and makes its Fourier
with the corresponding full quantum mechanical resultsransform s, a complex quantity with nonzero real and
(dashes for the modulus, real, and imaginary parts of sur-imaginary parts.
vival amplitudes’15(£€), £11(€), andZ, (), with é=(1,2), as Figure 3 shows the comparison of semiclassisallid
a function of time. Panel$a), (b), and (c) correspond to lines), and quantum mechanicélashepresults for the real
photodissociation channék 2, while panelgd), (e), and(f) [panel(a)] and imaginary{panel(b)] parts of u1(£=1,2).

B. Survival amplitudes and transition matrix elements
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Figure 3, also compares of the modulys,(¢=1,2)| [see 9 L '
panel(c)], and phaseb,,(£=1,2) [panel(d)] of the cumu- (a)
lative transition matrix elementa,(£=1,2), as a function ‘ (£=1)

of the total energ¥ in the continuum state, obtained accord- 7z
ing to the semiclassical methadolid lineg, the quantum 6 - =
state-resolveddashey approach, and quantum cumulative ’C_\? 20 (£=2)
(broken dashgsmethodology. Although one can see small I \
differences, both the modulus and the phase of the cumula-~=
tive transition matrix elements obtained semiclassically %3 | n
are in very good agreement with full quantum mechanical
simulations over the whole energy range. The semiclassi-
cal results are able to reproduce the correct shape of
|m1(é=1,2)|, and the position of the amplitude nodes as a | .
function of E, as well as the energy dependence of the phase -2 0 2 4 6
®,,(£€=1,2)|, that is found to be in almost quantitative Energy,eV
agreement with full quantum mechanical calculations in both 9 ! |
photofragmentation channels. Figure 3 shows that the most
important features ofx15(£=1,2) include the energy posi- : (b)
tion of the node, the quality of the nodhe amplitude does ‘A
not totally vanish at the nodleand the change in sign of !
m1(€=1,2) when going through the energy node 3
(Ad,,=+/—). These features can be understood in terms -ﬁ

P

of the symmetry properties of the product of the two wave & (¢=1)

packet components that contributegg,(é=1,2) at eac, 3 !

as defined by Eq(2.6). The comparison of real and imagi- 37 ] Vi B
nary parts shows more clearly the level of agreement be- ! T

tween the quantum and semiclassical results for a model sys y ¢ (22) SN

=~

tem where the imaginary parts qf;,((=1,2) are much /

smaller than the real parts throughout the whole energy 0 2' 1 B
rangg. - - o Energy,eV

Figure 4 compares the semiclassical res(dtdid lineg

for the diagonal cumulative matrix elements;,({=1,2) FIG. 4. Comparison between the semiclassical regstifid lines for the
[see panel@], and u,y(é=1,2) [see panelb)], with the  cumulative matrix elementay(£€) and uay(£), with £=(1,2), and the cor-
Corresponding state-resolvédash@ and cumulativdbro- respond_lng state-resolvédashes and cumulatlvq(broken line$ quantum
ken dashgsquantum mechanical results. One sees that Witrg]ecr‘an'CaI results. Pané) shows the comparison qiy,(§=1,2), and
the exception of small deviations there is almost quantitative

agreement between semiclassical and full quantum mechani-

Cfal calcu_lations of the cumulative t_rans.ition amplitudes aSSOE)arameter. However, the overall comparison between SC and
ciated .W'th grgund and excited vibrational states, for bothfull quantum dynamics simulations of coherent control, indi-
photodissociation channels. cates that the structure of the diagrams, the trend in these
structures with photoexcitation energy, and the range of
quantum mechanical product yields, are reproduced by the
semiclassical calculations within an error of approximately
1%—-5%.

Figure 5 shows the percentage product yields 100 At the lowest photoexcitation enerdgee panel(@)],
X A/(A+C), obtained from Eq(2.4), after photodissocia- there is maximum control &<0.5, where the production of
tion in the continuum. Bichromatic coherent control is simu-A can be reduced from 50% to 40%, by changing the relative
lated for an initial superposition of vibrational states with phase parameter from 0° to 180°. At higher valuesSof
quantum numbers’=1 and v=2, respectively. Figure 5 (whenS—1), the semiclassical and full quantum mechanical
compares the S@solid lineg and full quantum mechanical product yields still agree with one another within an error of
(dashed linesresults obtained at various photoexcitation en-19—-5%, and show a qualitatively different behavior from
ergies. Percentage product yields are presented in the form gfat observed at smaller values®fThe major difference to
contour plots for the photoexcitation energies indicated imote is that the degree of yield control becomes only weakly
panels (a)—(f), as a function of both the relative pulse dependent on the relative phase paraméer 0, at larger
phase parameter®);—0,, and the relative amplitudS g and is therefore no longer possible to control the final
= (c2e2/(c2e2+c2e3). outcome of the chemical reaction via interference effects.

Figure 5 shows that the model system considered herein At higher photoexcitation energidpanel (b)] the SC
is particularly challenging, since the relative product yieldsand full quantum mechanical product yields again agree
change only moderately as a function of the relative phaswithin about 1%—5% error and show a diagram structure as

|
[\
o

anel(b) displays the corresponding results fo,(¢=1,2).

C. Coherent control of photofragmentation product
yields
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FIG. 5. Contour plots of the relative product yields *0&/(A+ C), for bichromatic coherent control of an initiAlB C superposition state with symmetric
stretch vibrational quantum numbers-1 andv=2, respectively. The photoexcitation energy is indicated in each panel, relative to the energy of the isolated
fragments.

a function of controllable parameters that is completely dif-achieved in the 08 S<1.0 range. Within this range of rela-
ferent from the diagram obtained at lower photoexcitationtive amplitude parameter the production Afis less than
energies. The degree of yield control is found to be maxi-38%, at approximately 30°, and can be increased to more
mum in the 0.<S<1.0 range, where the production &f than 45%, by changing the relative phases to the 280°-300°
can be reduced from more than 45% to less than 35% byange.
changing the relative phases from about 0° to 180°. Coherent control vanishes when the final energy is
At even higher photoexcitation energigsanel(c)] the > 3.0 eV[panel(f)]. Panel(f) shows than SC and full quan-
contour diagram is once again totally different from the dia-tum calculations agree in predicting that there is practically
grams obtained at lower photoexcitation energies, howeveno coherent control at this particular final energy, in terms of
the SC and full quantum mechanical calculations agree irontour lines of percentage yields that agree within 1%—5%
predicting that a maximum degree of yield control can beerror.
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Finally, at intermediate photoexcitation energipanels  where the spatial projection operateg is defined as
(d) and (e)], SC and full quantum mechanical calculations

agree once again with one another within the same error P.= lim e""h(R)e Y%, (A2)
range and predict that moderate coherence control is recov- toee

ered. Here, h(R) is a function of the dissociating bond leng&h
associated with asymptotic changelThe functionh(R) is
VI. CONCLUSIONS defined as (©) on the rightleft) of a dividing surfaceR

. . . =R;. The scattering statég,£,n"), in Eq.(Al), satisfy the
¢
In this article we have derived formally exact quantumSChr-- linger equation,

mechanical expressions for cumulative transition matrix ele-
ments, and we have shown that these expressions provide a (H — E)|E,£,n")=0, (A3)
useful means for simulating one photon control scenarios, ] ]
such as bichromatic control of an initial superposition state@nd are normalized according to
without havmg to_ solve the .complete state-to-state quantum (E",&' ,n'7|E,&N )= 8(E—E') S¢S - (A4)
mechanical reactive scattering problem.
We have shown how to implement these exact quantum  First, we insert the delta function(H—E), into Eq.
mechanical expressions both quantum mechanically, an@Al), according to
semiclassically by using an initial value representation w0
method, in order to investigate quantum control in a generic 5 _ ” P Srpy / —\/E’ -
reaction that describes unimolecular decomposition into PE‘g_ngo f—wdE S(H-E)[E".&n KB &n
more than one possible product. (A5)
We have demonstrated the capabilities of the semiclas;
sical approach by comparing the semiclassical results to fu
guantum mechanical calculations of photofragmentatio
product yields, as controlled by the relative pulse phase, an
the relative amplitude parameters. We have shown that semi- |E ¢ n~)=lim ei(ﬁfE)t/h|E,§,n0>_ (A6)
classical results, obtained through quantization of the classi- t—o
cal Hamiltonian, according to the Herman—Kluk SC-IVR _— : .
methodology, together wit% stationary phase MC methods,SUbStItlJtlng Eq(A8) into Eq. (A5) we obtain
were able to reproduce the correct structure of the relative,?)E = lim eiﬁn/ﬁé(l:'_E)
product yield diagrams for various different photoexcitation ™ (.«
energies. These results demonstrate that the cumulative SC-
IVR methodology, developed in this paper, is an efficient
and reliable approach to describe laser induced quantum in-
terferences between alternative photodissociation pathways.
According to the present implementation, semiclassical"ereJE’*gvno> are free states of photofragments that evolve
simulations of coherent control require only the evaluation of2ccording to the free Hamiltonian in tiechannel,
survival amplitudes. The SC-IVR has already been success- K2
fully implemented for computing survival amplitudes, asso- H°=lim H= 2—+ €n, (A8)
ciated with diagonal transition matrix elements, for systems R—e K
of up to 35 coupled degrees of freedé?nThereforg, ON€ i the recoil direction ofpositivemomentaK (conjugate to
expects that the computational method developed in this pgpe jacobi coordinat®), energyE’, and internal quantum
per should be a tractable and reliable approach for simulating;stesn of energye, .

coherent control in systems of high dimensionality. Such  yence we can change integration variables, in(Bq)
work is in progress? to obtain

3

nd then we evoke time-dependent scattering tHéooyex-
ress the scattering statg€,é,n~) in terms of the
symptotic free statd€, ,n°),

©

x| > foc dE'|E’, & n°WE",&n° e HUE (A7)
n=0 J —x
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X e—il:II/ﬁ’ (Ag)

> f dK|K,n°)(K,n°|
n=0 JO

APPENDIX: DERIVATION OF EQ. (3.6) (K'",n"°|K,n%=8(K—K")8, . (A10)
In this Appendix we show that Equation(A9) involves the sum over a complete set in the
- space of the vibrational coordinate. However, the transla-
IE’E,gE 2 IE,&,n WE,én | = |5§6(E—I:I), (A1) tional scattering Wavefuncthns are not complete, since they
n=0 cover only the range of positive momenta. In order to com-
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plete the integration range in EGA9), we introduce the step

functionh,(K), defined as () for positivenegative values
of its argument, and obtain

Pe .= lim e 5(F—E)

t—oo

> f dKh(K)|K,n°{K,n°| e A

n=0 J -
(A11)
After substituting the closure,
i=> J dK|K,n°)(K,n°|, (A12)
n=0 J -

we can rewrite Eq(A11) in terms of the translation momen-

tum operatoiK,,

Pee=lim 8(A—E)efh,(R)e v, (A13)
t

— 00

Equation(Al) can be directly obtained from E¢A13), by
replacing the momentum projection operator,

P.=lim e"h,(R)e MU, (A14)

t—o0

by the spatial projection operator introduced in E42).

Coherent control of photodissociation ~ 10331

then backward propagation from the phase popit,¢,) to
phase point;,ds), and finally propagation for timg from
phase point §;,q;) to phase point if;,q;) (see Ref. 3L
Note that in contrast to Ed4.2), the integrand in Eq(A16)
does not include any damping factor. Therefore, according to
Eq. (A16), all contributions of trajectories that do not photo-
dissociate into channef would have to be cancelled out
through destructive interference.
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