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A direct approach to one photon interference contributions in the coherent
control of photodissociation

Victor S. Batistaa) and Paul Brumer
Chemical Physics Theory Group, Department of Chemistry, and Photonics Research Ontario,
University of Toronto, Toronto, Ontario M5S 3H6, Canada

~Received 13 March 2001; accepted 29 March 2001!

Formally exact quantum mechanical expressions for cumulative transition matrix elements
m jk(j,E)5(n^ j um«uE,j,n2&^E,j,n2um«uk&, central to one photon coherent control scenarios of
photodissociation, are derived. The resultant approach bypasses the need for solving the complete
state-to-state quantum mechanical reactive scattering problem to obtain control results. These exact
expressions are implemented both quantum mechanically and via a semiclassical initial value
representation method to investigate coherent control in the generic photodissociation of a triatomic
into more than one product. The semiclassical approach is shown to provide an accurate description
of bimolecular control in this system. ©2001 American Institute of Physics.
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I. INTRODUCTION

Developing new laser techniques for controlling t
quantum dynamics of polyatomic systems is one of the
portant challenges in modern photochemistry. The most s
cessful of these approaches is coherent control,1,2 where
quantum interference effects are manipulated to alter the
namics. With coherent control having been demonstra
both computationally and experimentally for simple pho
dissociation reactions, the challenges ahead range from
vestigating yield control in complex molecular environmen
to demonstrating routes to new products in realistic po
atomic reactions.

Progress in coherent control relies heavily on theoret
and computational approaches which allow an understan
of the dominant interference phenomena and provide
means of designing new control scenarios. However, s
approaches are currently restricted to small systems, a l
tation of modern computational quantum mechanics. T
purpose of this paper is to develop an efficient and rigor
semiclassical approach to simulate coherent control
narios to allow applications to larger molecular systems.
focus on coherent control scenarios involving interferen
via one photon routes. This includes controlled photodis
ciation via bichromatic coherent control3 or weak field
pump–dump schemes.4

We consider photodissociation from an initial bou
stateu i & to the final continuum stateuE,j,n2&. Here,E,j,n
denote the total energy, arrangement channel and inte
quantum numbers of the product state with which the c
tinuum stateuE,j,n2& correlates. In coherent control of pho
todissociation involving one photon routes, the probability
forming a desired product is a sum of terms, some co
sponding to the direct photodissociation of a bound stateuk&
of the form mkk5(n^kum«uE,j,n2&^E,j,n2um«uk&, and

a!Current address: Department of Chemistry, Yale University, New Hav
Connecticut 06520-8107.
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some to terms of the formm jk5(n^ j um«uE,j,n2&
3^E,j,n2um«uk&. The latter correspond to interference b
tween one photon absorption routes to the continuum fr
level u j & and from leveluk&. Both of these terms involve a
sum over all final states. It therefore appears that obtain
m jk requires solving the scattering problem at the compl
state-to-state level, a task which becomes increasingly d
cult as the size of the system increases. In this paper
show that this is not the case, i.e., that a direct method
obtaining these terms, based on a correlation function
proach, considerably simplifies this computation.

In particular, in this paper we make two contribution
towards the goal of developing useful methods for coher
control computations. First, we develop formally exact qua
tum expressions for cumulative transition matrix eleme
that circumvent the need to solve the reactive scatte
problem at the complete state-to-state level. Second,
implement this approach semiclassically via the initial va
representation~SC-IVR! to examine a specific control sce
nario, bichromatic control, on a~collinear! polyatomic prob-
lem dissociating to two chemically distinct products, a
show that the results are in very good agreement with ex
quantum computations.

In recent years, there has been a rebirth of interest in
SC-IVR approach, a method originally due to Miller,5 as a
means of including quantum effects in molecul
dynamics.6–21 However, to date, the only SC-IVR applica
tion to coherent control is our recent study of bichroma
coherent control of nonadiabatic ICN photodissociation.22 In
that work, the SC-IVR was shown capable of reproduc
both amplitudes andphasesof the m i j in an approach tha
required solving the full scattering problem at the asympto
state-to-state level. The resultant semiclassical photof
mentation ratios were found to be in good agreement w
quantum simulations. Here we extend this approach, dea
with a reactive photodissociation problem via the ‘‘direc
,

1 © 2001 American Institute of Physics
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implementation procedure of the SC-IVR for computatio
of cumulative transition matrix elements.

The paper is organized as follows: In Sec. II, and
Appendix, we review the bichromatic coherent control s
nario and derive formally exact expressions for the cumu
tive transition matrix elements. Sections III and IV descri
procedures to implement these expressions in terms of
SC-IVR, and also in terms of exact quantum mechan
methods based on the split-operator propagation schem23

Section V evaluates these expressions for a simple exam
of unimolecular decomposition, and compares the semic
sical results with full quantum mechanical simulations. T
Appendix contains a derivation of an important express
for the projection operator onto fixed total energy and s
cific product channel. Section VI contains a summary a
conclusions.

II. COHERENT CONTROL IN A CONTINUUM STATE

We consider bichromatic coherent control3 in the unimo-
lecular decomposition reaction of a generic polyatomic m
lecular systemABC that photodissociates according to

ABC1\v →
~j51!

C1AB~n!

→
~j52!

A1BC~n!. ~2.1!
-

o
co

t
he
la
tio
om

st
y
ss
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Herej51,2 denotes the final arrangement andn denotes the
internal states of the product.

The moleculeABC is prepared in an initial superpos
tion state,

uC0~ j ,k!&5uFg&@cj u j &1ckuk&], ~2.2!

whereuFg& is the ground electronic state wave function, a
u j & is the nuclear eigenstate of energyEj associated with
excitation in thejth vibrational state. The system is subs
quently photo-excited with two CW lasers with a total ele
tric field «̄(t),

«̄~ t !5 «̄ je
2 i (v j t1u j )1 «̄ke

2 i (vkt1uk)1c.c., ~2.3!

where the field amplitudes«̄ j and «̄k are time independen
vectors of lengthu«̄ j u, andu«̄ku. The quantitiesu j anduk , in
Eq. ~2.3!, are the phases of the two CW fields. If the freque
cies v j and vk are chosen such that\vk1Ek5\v j1Ej

5E, then bothu j & and uk& are raised by the laser field t
continuum statesuE,j,n2& of an electronic excited state wit
energyE. These two photoexcitation routes interfere wi
one another, and assuming that the field is sufficiently w
to allow the use of first order perturbation theory, the relat
probability ratio R(j,j8,E), of producing product in ar-
rangement channelj to that in arrangementj8, at energyE,
is given by3
R~j,j8;E!5
um j j ~j,E!u1x2umkk~j,E!u12x cos~u j2uk1F jk~j,E!!um jk~j,E!u

um j j ~j8,E!u1x2umkk~j8,E!u12x cos~u j2uk1F jk~j8,E!!um jk~j8,E!u
. ~2.4!
nsi-

ho-

-
od-

er-
to
Here, x is the ratio of controllable parametersx
5u(cku«̄ku)/(cj u«̄ j u)u, and F jk(j,E) is the phase of the cu
mulative transition matrix elementm jk(j,E),

m j ,k~j,E!5um jk~j,E!ueiF jk(j,E)

5^C0( j )uF (
n50

`

uE,j,n2&^E,j,n2uG uC0~k!&,

~2.5!

whereuC0( j )&[m«u j &, andm« is the dipole operator along
the direction of the field. Note that the off-diagonalm jk

manifest the interference between components of the c
tinuum wave function which are excited by independent
herent excitation pathways.

Equations~2.4! and ~2.5! show that the relative produc
yields can be experimentally controlled by changing eit
the composition of the initial superposition state, or the re
tive phase or amplitude associated with the photoexcita
laser pulses. Essentially all simulations to date have c
puted the cumulative transition matrix elementsm j ,k(j,E),
according to Eq. ~2.5!, after solving first the time-
independent scattering problem at the complete state-to-
level. The only exception to this has been our recent stud
ICN coherent control,22 where the photodissociation proce
n-
-

r
-
n
-

ate
of

was described in the time dependent picture, and the tra
tion matrix elements were computed according to

m j ,k~j,E!5 lim
t→`

(
n50

`

^C t~ j !uE,j,no&^E,j,nouC t~k!&.

~2.6!

HereuE,j,no& are the asymptotic states associated with p
tofragments that are in product channelj, at energyE, and
internal staten. The quantitiesuC t( j )& and uC t(k)& result
from time evolvinguC0( j )& and uC0(k)& according to the
excited state HamiltonianĤ. Hence, all methods imple
mented to date have required resolution into individual pr
uct states.

We wish to derive an expression that allows the det
mination ofm jk without the need to compute dynamics in
each product channel. To do so we first rewrite Eq.~2.5!.
The Appendix shows that the sum in brackets, in Eq.~2.5!,
can be written as

(
n50

`

uE,j,n2&^E,j,n2u5 P̂jd~E2Ĥ !, ~2.7!

to obtain

m j ,k~j,E!5^C0~ j !uP̂jd~E2Ĥ !uC0~k!&. ~2.8!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Here, P̂j is the projection operator onto asymptotic produ
channelj, defined as

P̂j5 lim
t→`

eiĤ t/\hj~R!e2 iĤ t/\, ~2.9!

and,hj(R) is a function of the dissociating bond lengthR,
associated with asymptotic channelj. Specifically,hj(R) is
one on the right of the dividing surfaceR5Rj and zero on
the left ~see Fig. 1!.

Substituting Eq.~2.9! into Eq.~2.8!, gives thatm j ,k(j,E)
can be computed according to

m j ,k~j,E!5~2p\!21E
2`

`

dteivt/\z j ,k~j,t !, ~2.10!

with E5\v, i.e., as the Fourier transform of the surviv
amplitudez j ,k(j,t),

z j ,k~j,t !5^C0
j~ j !uC t~k!&. ~2.11!

Here,uC0
j( j )& is defined according to

uC0
j~ j !&[ P̂juC0~ j !&5 lim

t→`

eiĤ t/\hje
2 iĤ t/\uC0~ j !&,

~2.12!

and is the wave packet component of the initial stateuC0( j )&
that correlates with the asymptotic product channelj.

Semiclassical and quantum mechanical calculations,
ported in Sec. V, are essentially straightforward implem
tations of Eq.~2.10!, where the survival amplitudesz j ,k(j,t)
are obtained according to Eqs.~2.11! and~2.12!. These equa-
tions provide an efficient procedure to obtain cumulat
transition matrix elements, solely in terms of survival amp
tudes. These survival amplitudes are expected to decay q
rapidly during the early time relaxation process in the co
tinuum state, since the initially interacting constituents of

FIG. 1. Excited state potential-energy surface for unimolecular dissocia
@Eq. ~2.1!#. Here, r 5r BC and R5r AB1r BCmC /(mC1mB), are the Jacobi
coordinates associated with the vibrational and translational coordin
respectively, in photofragmentation channelj52. Shown are the dividing
surfacesR5R1 andR5R2, the asymptotic cutsS1 andS2 in the free inter-
action regions, and the position of the absorbing potentiale2 that would
absorb the wave packet componentsC t

1(1) andC t
1(2) that correlate with

asymptotic product channelj51. Also shown are contour plots for th
modulus of the initial wave packet,C0(1), that results from photoexcitation
of the ground vibrational state, and the time evolved wave packet com
nentsC t

1(1) andC t
2(1) at t540 fs after photoexcitation of the system.
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
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system separate from one another according to alterna
reaction pathways, and cease to interact thereafter.

Finally, two comments are in order. First, we note th
Eq. ~2.10! provides the useful computational check that

(
j

Im@m j ,k~j,E!#50, ~2.13!

when bothC0( j ) and C0(k) are real functions. Here Im@ #
denotes the imaginary part function of its argument. Eq
tion ~2.13! follows from noting that, according to Eq.~2.10!,
the sum

(
j

m j ,k~j,E!5^C0~ j !ud~E2Ĥ !uC0~k!&, ~2.14!

is real, since

^C0~ j !ud~E2Ĥ !uC0~k!&

5~2p\!212 ReF E
0

`

dteivt/\z j ,k~ t !G , ~2.15!

when C0( j ) and C0(k) are real wave functions withj Þk,
and always whenj 5k. Here the survival amplitudesz j ,k(t)
@Eq. ~2.15!#, are defined as

z j ,k~ t ![^C0~ j !ue2 iĤ t/\uC0~k!&5^C0~ j !uC t~k!&.
~2.16!

Second, we note that the survival amplitudesz j ,k(j,t)
could also be computed in terms of the flux through t
dividing surface,R5Rj , according to the time average ove
motion

z j ,k~j,t !5^C0~ j !uhjuC t~k!&

1E
0

`

dt8^C t8~ j !uF̂juC t1t8~k!&, ~2.17!

whereF̂j , in Eq. ~2.17!, is the flux operator defined as

F̂j[S i

\ D @Ĥ,hj#. ~2.18!

Equation~2.17! follows from Eqs.~2.11! and~2.12!, by not-
ing that

lim
t→`

eiĤ t/\hje
2 iĤ t/\

5hj1
i

\E0

`

dt8eiĤ t8/\~Ĥhj2hjĤ !e2 iĤ t8/\. ~2.19!

A semiclassical procedure for implementing Eq.~2.17! is
presented in Sec. IV B.

III. QUANTUM MECHANICAL APPROACH

The quantum mechanical procedure to comp
m jk(E,j) in terms of Eqs.~2.10!, ~2.11!, and~2.12!, requires
the propagation of each wave packet componentuC0(k)&
and uC0( j )& which comprise the initial superposition stat
We do so in accord with the standard split-operator propa
tion scheme.23

Computations of survival amplitudesz j ,k(j,t) involve
projections of the time evolved wave packetuC t(k)& onto

n

s,

o-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the initial state componentuC0
j( j )& that correlates with

asymptotic product channelj. To computeuC0
j( j )& we re-

place the infinite time limit, in Eq.~2.11!, by a finite propa-
gation time,t,

uC0
j~ j !&5eiĤ t/\hje

2 iĤ t/\uC0~ j !&. ~3.1!

The quantityuC0
j( j )& is obtained, according to Eq.~3.1!, by

propagatinguC0( j )& forward for time t, applying hj and
then propagating the resultant wave packet backward
time for time t. Doing so only requires evolving the initia
stateuC0( j )& for the minimum timet after which there is no
significant overlap between the wave packet component
iting in channelj and the wave packet components asso
ated with the other photofragmentation channels. Note tht
can be much shorter than the relaxation time necessar
reach the asymptotic noninteracting region.

The result of this procedure to prepareuC0
j( j )&, is to

absorb completely those wave packet components that do
correlate with the asymptotic product statej. This prepara-
tion of uC0

j( j )& can also be performed according to

uC0
j~ j !&5eiĤ t/\e2 i (Ĥ2 i êj)t/\uC0~ j !&, ~3.2!

by performing the forward propagation in the presence of
appropriate absorbing potential,ê j .24–27 Note, that here we
take advantage of the underlying simplicity of photodissoc
tion dynamics in the continuum state, where the system c
not recross back to the interaction region after reachin
specific product region. The absorbing potential is chose
be zero in the interaction region where the relevant dynam
for determining the survival amplitude occurs, and
‘‘switched on’’ to absorb the product in the region of pro
ucts that do not correlate with channelj ~see Fig. 1!. The
finite propagation timet, in Eq. ~3.2!, can then be chosen a
the minimum propagation time~in the presence of the ab
sorbing potential!, necessary to absorb all wave packet co
ponents that do not correlate with the asymptotic prod
statej.

IV. SEMICLASSICAL APPROACH

Section IV A describes a semiclassical procedure
compute the cumulative transition matrix elementsm jk(E,j)
in terms of Eq. ~2.10!, where the survival amplitude
z j ,k(j,t) are obtained according to Eqs.~2.11! and ~2.12!.
Section IV B describes a semiclassical procedure to com
the survival amplitudesz j ,k(j,t), according to Eq.~2.17!, in
terms of the flux through a dividing surface along the dis
ciative coordinate.

A. Absorbing boundary: Semiclassical implementation
of Eqs. „2.10… and „2.11…

The semiclassical implementation of Eq.~2.10!, is quite
straightforward. The survival amplitudesz j ,k(j,t) are com-
puted, by writing Eq.~2.12! in the form of Eq.~3.2!, accord-
ing to

z j ,k~j,t !5^C0~ j !ue2 iĤ t/\eiĤ t/\e2 i (Ĥ2 i êj)t/\uC0~k!&,
~4.1!
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
in

x-
i-

to

ot

n

-
n-
a
to
s

-
t

o

te

-

and the three time evolution operators, in Eq.~4.1!, are com-
bined into one overall SC-IVR time propagation, accordi
to

z j ,k~j,t !5~2p\!2NE dp0E dq0ei [St(p0 ,q0)1 i et]/\

3Ct~p0 ,q0!^C0~ j !upt ,qt&^p0 ,q0uC0~k!&,

~4.2!

where the exponential damping factore2et, arising from the
absorbing potential,28 is

et[E
0

t

dt8e~q~q0 ,p0 ;t8!!, ~4.3!

and can be approximated according to

e2et5hj~Rt!, ~4.4!

since its only effect, in the long time limit (t→`), is to
eliminate the contributions of trajectories that do not dis
ciate into channelj.

Equation~4.2! is obtained by using the Herman–Kluk,29

or coherent state IVR for the time evolution operator. T
quantitiesqt[qt(p0 ,q0), andpt[pt(p0 ,q0), in Eq.~4.2!, are
the coordinates and momenta evolved for timet from the
initial phase space point (p0 ,q0), using the HamiltonianH of
the excited state. The classical action along this traject
St(p0 ,q0), is obtained by integrating the following equatio

dSt

dt
5pt•q̇t2H~pt ,qt!, ~4.5!

along with the usual classical equations of motion,

dq~ j !

dt
5

]H~q,p!

]p~ j !
and

dp~ j !

dt
52

]H~q,p!

]q~ j !
. ~4.6!

The Hamiltonian H(pt ,qt), in Eqs. ~4.5! and ~4.6!
above, is

H~q,p!5 1
2 p•m21

•p1V~q!, ~4.7!

written in terms of normal mode coordinates and momentaq
and p, respectively. V~q!, in Eq. ~4.7!, is the dissociative
excited state potential energy that describes the photodi
ciation reaction for the generic moleculeABC.

The pre-exponential factor in the integrand of Eq.~4.2!
is given by

Ct~p0 ,q0!5Adet@M #, ~4.8!

where M is a linear combination of components of th
monodromy matrix,

M ~ j ,k!5
1

2 S ]qt~k!

]q0~ j !
1

g~ j !

g~k!

]pt~k!

]p0~ j !
2

1

2i\g~k!

]pt~k!

]q0~ j !

22i\g~ j !
]qt~k!

]p0~ j ! D , ~4.9!

where g( j ) are the constant parameters in the coher
states,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ob
or

fo
hi

h
th

e
ag

s
t

tin

or-
first

the
he
re
e
of
in

asily
e of

in

the
A;
m-
ing
ical

ts of
ni-
the
full

e–
g
ed
nta
ined
ket
der
in-
pti-
ion

tial
e

in
es
e
nde-

10325J. Chem. Phys., Vol. 114, No. 23, 15 June 2001 Coherent control of photodissociation
^quqt ,pt&5)
j 51

N S 2g~ j !

p D 1/4

expS 2g~ j !@q~ j !2qt~ j !#2

1
i

\
pt~ j !@q~ j !2qt~ j !# D , ~4.10!

and similarly for^quq0 ,p0&.
The various time dependent partial derivatives are

tained by numerically integrating the following equations f
the stability matrix

d

dt S ]pt~ i !

]z~ j ! D52 (
k51

N S ]2H~pt ,qt!

]pt~k!]qt~ i !

]pt~k!

]z~ j !

1
]2H~pt ,qt!

]qt~k!]qt~ i !

]qt~k!

]z~ j ! D
d

dt S ]qt~ i !

]z~ j ! D51 (
k51

N S ]2H~pt ,qt!

]pt~k!]pt~ i !

]pt~k!

]z~ j !

1
]2H~pt ,qt!

]qt~k!]pt~ i !

]qt~k!

]z~ j ! D ,

wherez5p0 or q0.30

B. Flux evaluation: Semiclassical implementation
of Eq. „2.17…

The first term on the r.h.s. of Eq.~2.17! can be computed
according to the standard implementation of the SC-IVR
computations of survival amplitudes. Also, in general, t
term can be neglected since the dividing surface ofhj can be
chosen sufficiently far from the Franck–Condon region. T
discussion that follows concerns practical aspects of
semiclassical implementation of Eq.~2.17! and disregards
the first term on the r.h.s of Eq.~2.17!.

The second term in Eq.~2.17! can also be written in the
form

z jk~j,t8!5~2p\!21E
0

`

dt^C0~ j !u

3eiĤ t8/\F̂je
2 iĤ (t1t8)/\uC0~k!&. ~4.11!

Using the Herman–Kluk,29 or coherent state IVR for the
time evolution operator,z jk(j,t8) becomes a double phas
space average over initial conditions for the time aver
over motion,

z jk~j,t8!5~2p\!22N21E dp0E dq0E dp08E dq08E
0

`

dt

3ei (St1t8(p0 ,q0)2St(p08 ,q08))/\

3Ct* ~p08 ,q08!Ct1t8~p0 ,q0!3^C0~ j !up08 ,q08&

3^pt8 ,qt8uF̂jupt1t8 ,qt1t8&^p0 ,q0uC0~k!&. ~4.12!

The integration variables (p0 ,q0) and (p08 ,q08), in Eq. ~4.12!,
are the initial conditions for pairs of classical trajectorie
Propagating first a trajectory that evolves according
qt81t[qt81t(p0,q0) andpt81t[pt81t(p0,q0), the time aver-
age over motion could be evaluated while one is compu
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
-

r
s

e
e

e

.
o

g

the second trajectory of each pair,qt8[qt(p08 ,q08), and p8t

[pt(p80 ,q80). Doing thet integral, in Eq.~4.12!, thus would
not entail any extra effort in the calculation, other than st
ing the time dependent quantities associated with the
trajectory. Also, the structure of Eq.~4.12! allows doing the
calculation for many different values oft8, i.e., all from the
same set of trajectories. We have found, however, that
implementation of this method is not as efficient as t
implementation procedure described in Sec. IV A, whe
survival amplitudes are obtained from the very early tim
relaxation dynamics. Hence, we utilize below the method
Sec. IV A. The direct semiclassical procedure described
this section, however, has the advantage that could be e
generalized to simulate coherent control in the presenc
nonadiabatic photodissociation dynamics, as formulated
terms of the Meyer–Miller Hamiltoninan.31,22

V. RESULTS

Results are presented in two sections after describing
specific model Hamiltonian and the initial state in Sec. V
Sec. V B compares the semiclassical results for survival a
plitudes and transition matrix elements to the correspond
cumulative, and state-to-state resolved quantum mechan
results. Section V C then presents our semiclassical resul
bichromatic coherent control, after photoexcitation of an i
tial superposition state to various final energy states in
continuum, and compares them to the corresponding
quantum mechanical calculations.

Semiclassical results are converged with 53105 trajec-
tories, integrated using the standard fourth-order Rung
Kutta algorithm,32 according to the parallel programmin
model described in Ref. 6. Trajectories are initializ
through Monte Carlo sampling of coordinates and mome
according to localized phase space distributions, determ
by the coherent state transform of the initial wave pac
components. This excited state population is created un
the artifice that the photolysis event promotes molecules
stantaneously from the ground electronic state to the o
cally allowed excited state that is resonant with the excitat
wavelength.

A. Model Hamiltonian and initial state

The nuclear wave function that represents the ini
population in the excited electronic state is assumed to b

^quC0~ j !&5S a~1!a~2!

p2 D 1/4

H j~Aa~1!/\q~1!!

3e~21/2! @a(1)q(1)22a(2)q(2)2#, ~5.1!

whereH j is a Hermite polynomial of degreej. The coordi-
natesq(1) and q(2), in Eq. ~5.1!, are the symmetric and
antisymmetric stretching normal modes of theABC mol-
ecule. The initial state for the control studies, introduced
Eq. ~2.2!, involves a linear superposition of vibrational stat
with j 50 and j 51. The transition dipole that couples th
ground and excited electronic states is assumed to be i
pendent of nuclear coordinates~Condon approximation!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 2. Comparison of semiclassical~solid lines!, and quantum mechanical results~dashes! for the modulus, real, and imaginary parts of the surviv
amplitudesz12(j), z11(j), andz22(j), with j5~1,2! as a function of time. Panels~a!, ~b!, and~c! correspond to photodissociation channelj52, while panels
~d!, ~e!, and~f! correspond to channelj51.
ia
su
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We examine a simple collinear model for photodissoc
tion where the ground electronic state potential energy
face is defined as a sum of two Morse potentials,

Vnm~r nm!5Dnm@e2anm(r nm2r nm
e )21#22Dnm , ~5.2!

wherenm5AB, or nm5BC labels the corresponding mo
lecular fragment. The Morse potentials are parametrized
follows: DAB50.0874 a.u.,aAB50.87094 a.u.,r AB

e 54.043
a.u., DBC50.1069 a.u.,aBC50.9155 a.u.,r BC

e 53.685 a.u.
The masses for the molecular fragmentsA, B, and C are
chosen to be those of I, CH2, and Br, respectively. Specifi
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
-
r-

as

cally, mA5126.904mH , mB514.011mH, and mC

579.904mH , respectively, wheremH is the mass of a hy-
drogen atom.

The excited state potential energy surface,V(r AB ,r BC),
is defined in terms of the internal coordinatesr AB and r BC

according to the following expression:

V~r AB ,r BC!5~AABe2bABr AB1VBC~r BC!! f ~x!

1~ABCe2bBCr BC1VAB~r AB!!~1.02 f ~x!!

1D2e2a2(r AB2r AB
e )2a3(r BC2r BC

e ), ~5.3!
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FIG. 3. Comparison of the semiclassical results~solid lines! for the cumulative transition matrix elementsm12(j51,2), as a function of the total energyE in
the continuum state, to state-resolved~dashes! and cumulative~broken dashes! quantum mechanical calculations. Panels~a! and ~b! show the real and
imaginary parts ofm12(j51,2), respectively. Note the difference in scale of the ordinate of panel~b!. Panel~c! shows the modulusum12(j51,2)u, and panel
~d! the phasesF12 , as a function of final energyE in the continuum.
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where VBC(r BC) and VAB(r AB) are the Morse potentials
introduced by Eq.~5.2!, that parametrize the ground ele
tronic state; AAB50.37, bAB51.5, a254.8, a354.8, D2

50.08824. The functionf (x), in Eq.~5.3!, is defined accord-
ing to

f ~x!51/~11eah(x2xh)!, with x5r BC /~r AB1r BC!,
~5.4!

where,ah590, andxh50.44643.33

All forces and second derivatives necessary for integ
ing the equations of motion are calculated using finite diff
ence expressions. Full quantum mechanical results
obtained using the fast Fourier transform~FFT! method
with an extended grid of 1024 points in both ther and R
Jacobi coordinates, defined in the range of coordina
uR29.5 a.u.u,3 a.u. andur 26 a.uu,3 a.u.

B. Survival amplitudes and transition matrix elements

Figure 2 compares the semiclassical results~solid lines!,
with the corresponding full quantum mechanical resu
~dashes! for the modulus, real, and imaginary parts of su
vival amplitudesz12(j), z11(j), andz22(j), with j5~1,2!, as
a function of time. Panels~a!, ~b!, and ~c! correspond to
photodissociation channelj52, while panels~d!, ~e!, and~f!
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
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show the corresponding quantities for channelj51. The
comparison shows that the semiclassical survival amplitu
are in excellent agreement with quantum mechanical res
so good, in fact, that the dashed and solid lines often over
Figure 2 shows that both the diagonal and off-diagonal s
vival amplitudes decay for this particular model syste
within 7 fs (;290 a.u.!. This relaxation time is significantly
shorter than the time necessary to reach the asymptotic
interacting region at;40 fs after photoexcitation of the sys
tem. Figure 2 also shows a significant difference between
diagonal and the off-diagonal survival amplitudes; wh
z11(j51,2) andz11(j51,2) are symmetric relative tot50,
and satisfy the condition thatz j j (j,t)5z j j* (j,2t), the off-
diagonal survival amplitudesz jk(j51,2) are slightly asym-
metric relative tot50. For example, note that the maximu
of uz jk(j51,2)u at positive times is slightly higher than th
maximum at negative times. This asymmetry results from
asymmetric potential energy surface, and makes its Fou
transform m12 a complex quantity with nonzero real an
imaginary parts.

Figure 3 shows the comparison of semiclassical~solid
lines!, and quantum mechanical~dashes! results for the real
@panel ~a!# and imaginary@panel ~b!# parts ofm12(j51,2).
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Figure 3, also compares of the modulusum12(j51,2)u @see
panel~c!#, and phaseF12(j51,2) @panel~d!# of the cumu-
lative transition matrix elementsm12(j51,2), as a function
of the total energyE in the continuum state, obtained accor
ing to the semiclassical method~solid lines!, the quantum
state-resolved~dashes! approach, and quantum cumulativ
~broken dashes! methodology. Although one can see sm
differences, both the modulus and the phase of the cum
tive transition matrix elements obtained semiclassica
are in very good agreement with full quantum mechani
simulations over the whole energy range. The semicla
cal results are able to reproduce the correct shape
um12(j51,2)u, and the position of the amplitude nodes as
function ofE, as well as the energy dependence of the ph
F12(j51,2)u, that is found to be in almost quantitativ
agreement with full quantum mechanical calculations in b
photofragmentation channels. Figure 3 shows that the m
important features ofm12(j51,2) include the energy posi
tion of the node, the quality of the node~the amplitude does
not totally vanish at the node!, and the change in sign o
m12(j51,2) when going through the energy nod
(DF1251/2p). These features can be understood in ter
of the symmetry properties of the product of the two wa
packet components that contribute tom12(j51,2) at eachn,
as defined by Eq.~2.6!. The comparison of real and imag
nary parts shows more clearly the level of agreement
tween the quantum and semiclassical results for a model
tem where the imaginary parts ofm12(j51,2) are much
smaller than the real parts throughout the whole ene
range.

Figure 4 compares the semiclassical results~solid lines!
for the diagonal cumulative matrix elementsm11(j51,2)
@see panel~a!#, and m22(j51,2) @see panel~b!#, with the
corresponding state-resolved@dashes#, and cumulative~bro-
ken dashes! quantum mechanical results. One sees that w
the exception of small deviations there is almost quantita
agreement between semiclassical and full quantum mech
cal calculations of the cumulative transition amplitudes as
ciated with ground and excited vibrational states, for b
photodissociation channels.

C. Coherent control of photofragmentation product
yields

Figure 5 shows the percentage product yields 1
3A/(A1C), obtained from Eq.~2.4!, after photodissocia-
tion in the continuum. Bichromatic coherent control is sim
lated for an initial superposition of vibrational states w
quantum numbersn51 and n52, respectively. Figure 5
compares the SC~solid lines! and full quantum mechanica
~dashed lines! results obtained at various photoexcitation e
ergies. Percentage product yields are presented in the for
contour plots for the photoexcitation energies indicated
panels ~a!–~f!, as a function of both the relative puls
phase parameter,Q1–Q2, and the relative amplitudeS
5(c1

2«̄1
2/(c2

2«̄2
21c1

2«̄1
2).

Figure 5 shows that the model system considered he
is particularly challenging, since the relative product yie
change only moderately as a function of the relative ph
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parameter. However, the overall comparison between SC
full quantum dynamics simulations of coherent control, in
cates that the structure of the diagrams, the trend in th
structures with photoexcitation energy, and the range
quantum mechanical product yields, are reproduced by
semiclassical calculations within an error of approximat
1%–5%.

At the lowest photoexcitation energy@see panel~a!#,
there is maximum control atS<0.5, where the production o
A can be reduced from 50% to 40%, by changing the rela
phase parameter from 0° to 180°. At higher values oS
~whenS→1), the semiclassical and full quantum mechani
product yields still agree with one another within an error
1%–5%, and show a qualitatively different behavior fro
that observed at smaller values ofS. The major difference to
note is that the degree of yield control becomes only wea
dependent on the relative phase parameter,Q1–Q2 at larger
S, and is therefore no longer possible to control the fin
outcome of the chemical reaction via interference effects

At higher photoexcitation energies@panel ~b!# the SC
and full quantum mechanical product yields again ag
within about 1%–5% error and show a diagram structure

FIG. 4. Comparison between the semiclassical results~solid lines! for the
cumulative matrix elementsm11(j) andm22(j), with j5(1,2), and the cor-
responding state-resolved~dashes! and cumulative~broken lines! quantum
mechanical results. Panel~a! shows the comparison ofm11(j51,2), and
panel~b! displays the corresponding results form22(j51,2).
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FIG. 5. Contour plots of the relative product yields 1003A/(A1C), for bichromatic coherent control of an initialABC superposition state with symmetri
stretch vibrational quantum numbersn51 andn52, respectively. The photoexcitation energy is indicated in each panel, relative to the energy of the is
fragments.
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5%
a function of controllable parameters that is completely d
ferent from the diagram obtained at lower photoexcitat
energies. The degree of yield control is found to be ma
mum in the 0.9<S<1.0 range, where the production ofA
can be reduced from more than 45% to less than 35%
changing the relative phases from about 0° to 180°.

At even higher photoexcitation energies@panel ~c!# the
contour diagram is once again totally different from the d
grams obtained at lower photoexcitation energies, howe
the SC and full quantum mechanical calculations agree
predicting that a maximum degree of yield control can
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
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achieved in the 0.9<S<1.0 range. Within this range of rela
tive amplitude parameter the production ofA is less than
38%, at approximately 30°, and can be increased to m
than 45%, by changing the relative phases to the 280°–3
range.

Coherent control vanishes when the final energy
. 3.0 eV@panel~f!#. Panel~f! shows than SC and full quan
tum calculations agree in predicting that there is practica
no coherent control at this particular final energy, in terms
contour lines of percentage yields that agree within 1%–
error.
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Finally, at intermediate photoexcitation energies@panels
~d! and ~e!#, SC and full quantum mechanical calculatio
agree once again with one another within the same e
range and predict that moderate coherence control is re
ered.

VI. CONCLUSIONS

In this article we have derived formally exact quantu
mechanical expressions for cumulative transition matrix e
ments, and we have shown that these expressions prov
useful means for simulating one photon control scenar
such as bichromatic control of an initial superposition sta
without having to solve the complete state-to-state quan
mechanical reactive scattering problem.

We have shown how to implement these exact quan
mechanical expressions both quantum mechanically,
semiclassically by using an initial value representat
method, in order to investigate quantum control in a gene
reaction that describes unimolecular decomposition i
more than one possible product.

We have demonstrated the capabilities of the semic
sical approach by comparing the semiclassical results to
quantum mechanical calculations of photofragmentat
product yields, as controlled by the relative pulse phase,
the relative amplitude parameters. We have shown that s
classical results, obtained through quantization of the cla
cal Hamiltonian, according to the Herman–Kluk SC-IV
methodology, together with stationary phase MC metho
were able to reproduce the correct structure of the rela
product yield diagrams for various different photoexcitati
energies. These results demonstrate that the cumulative
IVR methodology, developed in this paper, is an efficie
and reliable approach to describe laser induced quantum
terferences between alternative photodissociation pathw

According to the present implementation, semiclass
simulations of coherent control require only the evaluation
survival amplitudes. The SC-IVR has already been succ
fully implemented for computing survival amplitudes, ass
ciated with diagonal transition matrix elements, for syste
of up to 35 coupled degrees of freedom.10 Therefore, one
expects that the computational method developed in this
per should be a tractable and reliable approach for simula
coherent control in systems of high dimensionality. Su
work is in progress.34
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APPENDIX: DERIVATION OF EQ. „3.6…

In this Appendix we show that

P̂E,j[ (
n50

`

uE,j,n2&^E,j,n2u5 P̂jd~E2Ĥ !, ~A1!
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where the spatial projection operatorP̂j is defined as

P̂j5 lim
t→`

eiĤ t/\hj~R!e2 iĤ t/\. ~A2!

Here,hj(R) is a function of the dissociating bond lengthR
associated with asymptotic channelj. The functionhj(R) is
defined as 1~0! on the right~left! of a dividing surfaceR
5Rj . The scattering statesuE,j,n2&, in Eq.~A1!, satisfy the
Schrödinger equation,

~Ĥ2E!uE,j,n2&50, ~A3!

and are normalized according to

^E8,j8,n82uE,j,n2&5d~E2E8!dj,j8dn,n8 . ~A4!

First, we insert the delta functiond(Ĥ2E), into Eq.
~A1!, according to

P̂E,j5 (
n50

` E
2`

`

dE8d~Ĥ2E!uE8,j,n2&^E8,j,n2u,

~A5!

and then we evoke time-dependent scattering theory35 to ex-
press the scattering statesuE,j,n2& in terms of the
asymptotic free statesuE,j,no&,

uE,j,n2&5 lim
t→`

ei (Ĥ2E)t/\uE,j,no&. ~A6!

Substituting Eq.~A6! into Eq. ~A5! we obtain

P̂E,j5 lim
t→`

eiĤ t/\d~Ĥ2E!

3F (
n50

` E
2`

`

dE8uE8,j,no&^E8,j,nouGe2 iĤ t/\. ~A7!

Here,uE8,j,no& are free states of photofragments that evo
according to the free Hamiltonian in thej channel,

Ĥo[ lim
R→`

Ĥ5
K2

2m
1en , ~A8!

in the recoil direction ofpositivemomentaK ~conjugate to
the jacobi coordinateR), energyE8, and internal quantum
statesn of energyen .

Hence, we can change integration variables, in Eq.~A7!,
to obtain

P̂E,j5 lim
t→`

eiĤ t/\d~Ĥ2E!

3F (
n50

` E
0

`

dKuK,no&^K,nouGe2 iĤ t/\, ~A9!

where the free statesuK,no&, introduced by Eq.~A9!, are
normalized according to

^K8,n8ouK,no&5d~K2K8!dn,n8 . ~A10!

Equation~A9! involves the sum over a complete set in t
space of the vibrational coordinate. However, the trans
tional scattering wavefunctions are not complete, since t
cover only the range of positive momenta. In order to co
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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plete the integration range in Eq.~A9!, we introduce the step
functionhj(K), defined as 1~0! for positive~negative! values
of its argument, and obtain

P̂E,j5 lim
t→`

eiĤ t/\d~Ĥ2E!

3F (
n50

` E
2`

`

dKhj~K !uK,no&^K,nouGe2 iĤ t/\ .

~A11!

After substituting the closure,

1̂5 (
n50

` E
2`

`

dKuK,no&^K,nou, ~A12!

we can rewrite Eq.~A11! in terms of the translation momen
tum operatorK̂,

P̂E,j5 lim
t→`

d~Ĥ2E!eiĤ t/\hj~K̂ !e2 iĤ t/\. ~A13!

Equation~A1! can be directly obtained from Eq.~A13!, by
replacing the momentum projection operator,

P̂j5 lim
t→`

eiĤ t/\hj~K̂ !e2 iĤ t/\, ~A14!

by the spatial projection operator introduced in Eq.~A2!.
These two projection operators are equivalent, as explic
shown in Appendix A of Ref. 36.

Finally, we note that Eq.~A13! can also be written in the
symmetric form,

P̂E,j5 P̂jd~Ĥ2E!P̂j5 lim
t→`

eiĤ t/\hjd~Ĥ2E!hje
2 iĤ t/\,

~A15!

noting thatP̂j
25 P̂j , and thatP̂j andd(Ĥ2E) commute.

Comment: The procedure described in Sec. IV A,
more efficient than a more standard ‘‘forward-backwar
approach, such as

zj,k~j,t!5~2p\!2NE
2`

`

dps~2pips!
21Edp0E dq0

3eiSt(p0 ,q0)/\Ct~p0 ,q0!3^C0~ j !upt ,qt&

3^p0 ,q0uC0~k!&, ~A16!

where the partial contribution of a single trajectory wou
require forward propagation from the initial phase po
(p0 ,q0) to the resulting phase point (pt ,qt) at timet, then a
‘‘momentum jump’’ at timet,

pt85pt1psF]s~q!

]q G
q5qt

, ~A17!
Downloaded 05 Jun 2001 to 130.132.58.224. Redistribution subject to A
ly

’

t

then backward propagation from the phase point (pt8 ,qt) to
phase point (p08 ,q08), and finally propagation for timet, from
phase point (p08 ,q08) to phase point (pt ,qt) ~see Ref. 31!.
Note that in contrast to Eq.~4.2!, the integrand in Eq.~A16!
does not include any damping factor. Therefore, accordin
Eq. ~A16!, all contributions of trajectories that do not phot
dissociate into channelj would have to be cancelled ou
through destructive interference.
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