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comparisons with the more common wave packet employing isotropic states. Ground state
and thermal properties are compared between the models with differences occurring primarily
in the electronic subsystem. Especially, the electrical conductivity of dense hydrogen is
investigated where a 15% increase in DC conductivity can be seen in our wave packet model
compared with other models.

This article is part of the theme issue ‘Dynamic and transient processes in warm dense
matter’.

1. Introduction
The establishment of high power lasers facilities during the last decades has been instrumental in
the achievements towards inertial confinement fusion (ICF) [1–3], but also for the creation of high-
density and high-temperature conditions [4] otherwise only found in astrophysical objects [5,6].
Furthermore, X-ray lasers are now able to reach complementary high-pressure regions in phase
space [7,8]. One of the exotic states now accessible is warm dense matter (WDM), which exists
in gas giants [9–13], brown [14] and white dwarf stars [15,16], the crust of neutron stars [17,18]
and during the compression of an ICF capsule [19]. WDM is a strongly coupled quantum plasma,
with ions moving in a partially degenerate electron fluid with kinetic energy comparable with
the ion–ion interaction energy [20]. Consequently, WDM inherits properties from both condensed
matter systems and classical plasmas, a challenging combination to model. Various computational
techniques are commonly used to describe these systems, yielding similar thermodynamic [21]
and acoustic properties [22,23], although dynamic properties differ by orders of magnitude [24].
These uncertainties limit our understanding of, for example, the Jovian interior [25], or the
modelling of ICF implosions [26].

The three main complications in modelling WDM are electron degeneracy, strong ion
correlations and the separation in time scales between the electron and ion dynamics. A full
solution would require a quantum mechanical treatment of the electrons, resolving electron
dynamics while considering phenomena on the ion time scale. Consequently, explicit models
of ionic motion span a wide range of theories, including classical systems with effective ion–
ion interactions [27–29], classical electrons with effective quantum statistical potentials (QSP)
[30–32], Bohmian mechanics [33], density functional theory molecular dynamics (DFT-MD) using
both orbital-free [34,35] and Kohn–Sham [12,36,37] DFT-variants, phenomenological quantum
hydrodynamics based on DFT-functionals [38–40], time-dependent DFT [41–43] and quantum
Monte-Carlo and path integral Monte-Carlo [13,44,45] approaches. Coarse-grained models with
effective interactions are fundamentally based on reconstructing some equilibrium property,
the choice of which is arbitrary and limited to a specific thermodynamic condition, whereas
experimental realizations are commonly non-stationary [7,46–50]. Furthermore, models rooted in
the Born–Oppenheimer approximation—where the electrons are treated adiabatically—e.g. DFT-
MD, cannot capture a dynamic electron response, believed to be important for the description
of dynamic properties such as some transport coefficients [51], stopping power [39] and energy
transfer between the electronic and ionic subsystems. However, time-dependent approaches are
computationally costly, and are typically limited in terms of particle numbers and time scales of
studied phenomena.

Wave packet molecular dynamics (WPMD) [52,53] is a family of models in which the electron
dynamics are computed explicitly, while simulating hundreds to thousands of particles over
ionic time scales. This is made possible by restricting the wave function of each electron to a
parameterized functional form. We present an extension to existing wave packet formulations—
applicable to the WDM regime—in which the wave packets can be elongated in arbitrary
directions. The model accounts for the long-range behaviour of electrostatic interactions and
of fermionic properties by effective Pauli interactions, while implemented within the scalable
molecular dynamics framework LAMMPS [54] to treat systems with thousands of particles.
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In the following section, the theoretical model is described, after which §3 outlines the
numerical details and performance of the implementation. The model is compared with other
computational techniques in §4, where we apply it to ground state and dynamic properties
of a dense hydrogen plasma. We compute some structural and transport properties, which are
compared with an isotropic wave packet model. We conclude with a summary of our results.

2. Theoretical description
Originally proposed in the 1970s as an approximate solution to Schrödinger’s equation [55,56],
wave packet models can systematically be derived from variations of the action,

S =
∫

dt 〈Q|ih̄ d
dt

− Ĥ|Q〉, (2.1)

where Ĥ is the system Hamiltonian and the state, |Q〉 = |Q(Qμ)〉, is restricted to some manifold,
M, defined by the adopted wave packets and parameterized by its parameters Qμ. The
resulting time evolution reproduces the true quantum dynamics to the best of its ability being
restricted to the manifold, M, during short time scales of length δt. Concretely, it can be shown
〈�(t, δt)|�(t, δt)〉 is minimized to O(δt3), where |�(t, δt)〉 = |Ψ (t + δt)〉 − |Q(t + δt)〉 and |Ψ (t + δt)〉
is the true solution to Schrödinger’s equation starting from |Ψ (t)〉 = |Q(t)〉 [52]. The long-time
evolution is constrained by appropriate conservation laws, most notably energy conservation [57].

In general, the equations of motion are quasi-Hamiltonian

ih̄
∑
ν

Cμν
dQν

dt
= ∂H

∂Q∗
μ

, (2.2)

where

H= 〈Q|Ĥ|Q〉
〈Q|Q〉 ≡ 〈Ĥ〉 and Cμν = ∂2

∂Q∗
μ∂Qν

ln
(
〈Q(Q∗

μ)|Q(Qν )〉
)

. (2.3)

Fermions are described by states antisymmetric under exchange and Slater-determinants have
been considered in [58–60]. However, this approach scales unfavourably with particle number N.
Instead, here we employ a product state

|Q〉 = |q1〉 ⊗ |q2〉 ⊗ · · · ⊗ |qN〉, (2.4)

of single-particle orbitals, |qi〉, and ⊗ is the tensor product. Exchange effects are approximated by
Pauli potentials of the type first introduced by Klakow et al. [61,62]. This structure simplifies Cμν ,
which becomes block diagonal, and the orbitals |qi〉 only couple through the energy H.

(a) Wave packets
The choice of wave packet shape is central to the model, dictating the states that can be described
[63]. Most commonly, isotropic Gaussians are used—primarily motivated by computational
ease—yet other variants exist, see Grabowski [53] and references therein. To account for local
gradients, an anisotropic wave packets form is introduced

〈x|qi〉 = ((2π )3 det(Σ i))
−1/4 × exp

[
−ξ

ᵀ
i

(
1
4
Σ−1

i − i
h̄
Πi

)
ξ i + i

h̄
pᵀ

i ξ i

]
, (2.5)

where ξ i = x − ri. The wave packet is parameterized by 18 degrees of freedom, the position ri,
momentum pi and two symmetrical 3 × 3 matrices, Σ i, describing the elongation and orientation
and Πi the associated momentum to Σ i. A similar type of wave packet has been treated
previously, describing molecular binding in water molecules [64], and is generally believed to
improve the description of molecular states [53].
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The equations of motion for the functional form (2.5) have a classical-looking structure, for the
‘classical’ degrees of freedom [64]

dri

dt
= ∂H

∂pi
and

dpi
dt

= −∂H
∂ri

, (2.6a)

and the ‘internal’ dynamics of the wave packet follow as

d
dt

Σiαβ = ταβ
∂H

∂Πiαβ

and
d
dt

Πiαβ = −ταβ
∂H

∂Σiαβ

, (2.6b)

where Σiαβ = (Σ i)αβ and Πiαβ = (Πi)αβ are the components of the symmetric matrices. The pre-
factor ταβ is unity if α = β and one half otherwise, which accounts for the symmetric structure of
Σ i and Πi where Σiαβ (Πiαβ ) and Σiβα (Πiβα) are treated as symbolically the same. Specifically,
we consider a charged system of classical ions, with position RI, momentum PI, charge ZIe and
mass MI, and quantum electrons with position x̂i and momentum p̂i operators as well as charge
−e and mass m. The system is described by the Hamiltonian

Ĥ =
∑

I

P2
I

2MI
+

∑
I<J

ZIZJe2

|RI − RJ|
+

∑
i

p̂2
i

2m
+

∑
i<j

e2

|x̂i − x̂j|
−

∑
i

∑
I

ZI e2

|x̂i − RI|
, (2.7)

the state average of which is required for the time evolution. The average kinetic energy〈
p̂2

i
2m

〉
= p2

i
2m

+ 2
m

Tr
{
ΠiΣ iΠi

}
+ h̄2

8m
Tr

{
Σ−1

i

}
(2.8)

includes both a classical contribution and a part internal to the wave packet. The last term in
equation (2.8) is the so-called shape-kinetic energy [65], which keeps Σ i positive definite and
the wave packet well defined during the time evolution. The interaction terms have not been
evaluated explicitly and the following section is dedicated to the treatment of these terms.

(b) Generalized Ewald summation
Within molecular dynamics, it is desirable to truncate pair-interactions at some distance such that
the computation formally scales as O(N) [66]. However, in our case the electrostatic interaction is
long-range [67] and it is beneficial to perform the split [68,69]

1
r

= erfc(gr)
r

+ erf(gr)
r

, (2.9)

chosen so that the first term can be truncated at a distance of order g−1, while the second term
is regular as r → 0 and efficiently evaluated in Fourier space. The Ewald parameter g is chosen
to optimize performance. Below we present a self-consistent treatment of both terms, as the
long-range part has only been mentioned once for isotropic wave packets [70] and is commonly
neglected.

(i) Short-range forces

In the case of a Gaussian interaction kernel, the required state average can promptly be evaluated
[71,72]. Therefore, we construct a Gaussian decomposition of the interaction kernel,

erfc(gr)
r

�
∑

p
cp e−αpr2

, (2.10)

where the coefficients cp and αp are fitting parameters. A robust numerical scheme to perform
the decomposition is described in appendix A, where typically only 5–15 modes are required. By
approximating the potential form, the notion of energy conservation is retained. We note that this
is not the case for methods based on Taylor expansions [64] or on direct numerical evaluations
[73], due to either truncation errors or numerical noise.
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(ii) Long-range forces

To limit surface effects in a finite size simulation, the simulation box is periodically repeated.
Periodic images are included in accordance with the standard treatment of Ewald summation
with particles positioned at ri + Ln for all n ∈ Z

3 and L being the length of a cubic simulation cell.
The interaction energy is

∑
i<j

〈
V(xij)

〉 → 1
2

′∑
i,j

∑
n∈Z3

〈
V(xij � Ln)

〉 = 1
2

∑
i,j

∑
n∈Z3

〈
V(xij � Ln)

〉
︸ ︷︷ ︸

Ek

−1
2

∑
i=j

〈
V(xij)

〉
︸ ︷︷ ︸

Es

, (2.11)

where V is the long-range part of the Coulomb interaction in equation (2.9). The special case i = j
is excluded when n = 0 (denoted by the primed sum) resulting in two distinct terms, the main
contribution Ek and the self-energy Es. In appendix B, we evaluate Ek in reciprocal space to be

Ek = 1
2L3

∑
k �=0

4π

k2 e−k2/(4g2)|ρ̃uc(k)|2, (2.12)

where ρ̃uc(k) is the charge density

ρ̃uc(k) = e
∑

i

Zi e−ik·ri e− 1
2 kᵀΣ ik, (2.13)

and k = 2πn/L. Equation (2.12) converges rapidly due to the exponential factor. The self-energy
term, Es, is independent of ri and does not influence the classical degrees of freedom directly.
Although for distributed particles, it does depend on Σ i and influences the internal dynamics.
Based on the decomposition of the long-range interaction kernel (appendix A) the self-energy is
evaluated in appendix B.

(c) Pauli interactions
The difference in the kinetic energy between a pair-wise antisymmetrized state and the product
state has often been used as a Pauli potential to correct for the fermionic structure of electrons
[61,62,70]. The electron force field (eFF) model introduced fitting parameters in the Pauli
interaction to achieve stable bounds for elements with Z ≤ 6 [74] and has been widely used with
minor modifications [22,23,75–80]. Angermeier & White [81] considered exchange contributions
to the interaction terms while including a correlation potential with a free parameter. This
treatment of the Pauli interaction is extended here to anisotropic Gaussian states.

We construct the potential by considering two electrons, i and j, with the Hamiltonian

Ĥ2 =
p̂2

i + p̂2
j

2m
+ e2

|x̂i − x̂j|
+ Vbg(x̂i, t) + Vbg(x̂j, t), (2.14a)

with a background interaction from all other particles in the system

Vbg(x, t) =
∑
k �=i,j

e2
∫

d3xk
|〈xk|qk〉|2
|x − xk|

−
∑

I

ZI e2

|x − RI|
, (2.14b)

where k (I) runs over all other electrons (ions) in the system. The two-electron system can be
characterized based on its spin structure either as a singlet or a triplet state, requiring either a
symmetric or antisymmetric spatial state

Singlet: |qi〉 ⊗ |qj〉 + |qj〉 ⊗ |qi〉 Triplet: |qi〉 ⊗ |qj〉 − |qj〉 ⊗ |qi〉, (2.15)

written here in terms of single-particle orbitals |qi〉.
For equal spin particles only the spatially antisymmetric state is allowed and the Pauli

potential VP
ij is the difference between 〈Ĥ2〉 for the triplet and the product state |qi〉 ⊗ |qj〉. In the

case of opposite spin particles, the spatial state depends on the spin structure, but along the lines
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of Angermeier & White [81] a correlation potential is introduced based on the singlet state, ρVC
ij ,

multiplied by the parameter ρ. Therefore, the potentials are

VP/C
ij = ∓〈qiqj|Ĥ2|qjqi〉 − 〈qiqj|Ĥ2|qiqj〉

∣∣〈qi|qj〉
∣∣2

1 ∓ ∣∣〈qi|qj〉
∣∣2 , (2.16)

which can be shown to scale as |〈qi|qj〉|2 for large particle separations. Due to Gaussians being
localized states, this gives a short-range interaction between particles i and j. The background
term Vbg introduces a long-range dependence in terms of the third particle and is accounted for
by a type of Ewald summation, see appendix C. The state averages of the interaction terms in
equation (2.16) are evaluated based on the Gaussian mode decomposition.

The correlation potential, the spin interaction between opposite spin electrons, is constructed
based on the same premise as the Pauli potential in a pair-wise approximation, however, with an
additional parameter ρ which needs to be chosen a priori. In the case of a ground state helium
or molecular hydrogen, the electronic structure is well described by a single state and ρ = 1 is an
appropriate choice. For a free electron gas, this would overestimate the correlation effects as the
appropriate two-particle state is not simply the singlet state, and therefore ρ < 1 is more suitable.

Lastly, the above-presented schemes—although widely used—are in general limited to the
weakly and moderately degenerate systems, cause considering the example of Pauli blocking.
The Pauli potential in equation (2.16) appears to be divergent as the orbital overlap tends to
unity; however, the numerator vanishes as well when |qj〉 → |qi〉 resulting in only a finite energy
barrier. The remaining part of the Pauli exclusion should be accounted for by the left-hand side
of equation (2.2) by a complete antisymmetrization scheme.

(d) Confining potentials
It has been well documented that at sufficiently high temperatures wave packets tend to expand
indefinitely [22,58,70,82–84] and the wave packet may extend over multiple ions without the
ability to localize on multiple sites [85]. If a wave packet is spread too large, it effectively ceases
to interact with other particles as the charge density effectively becomes flat. Multiple approaches
to counter this expansion have been proposed, see [79,83,86]. Currently, we employ an additional
potential energy term of the form

VΣ = 1
2

Aw

N∑
i=1

3∑
α=1

(σi,α − lw)2θ (σ 2
i,α − l2w), (2.17)

where σ 2
i,α is the αth eigenvalue of Σ i and θ (x) is the Heaviside step function. The parameters

lw and Aw set the width of a free particle σfree(lw, Aw) � lw by balancing the shape-kinetic energy.
This potential is rotationally invariant and acts only on wave packets with a width larger than
lw. Furthermore, the confinement reduces to the commonly used potential based on a harmonic
potential centred at the particle position in the limit of lw → 0. In this specific limit, the potential
has also been used to address the heat capacity in the classical limit [87].

3. Numerical realization
The standard velocity-Verlet integrator almost exclusively used for MD simulations is not
appropriate for our model because of the momentum-dependent Pauli potentials [52] resulting
in a non-separable Hamiltonian. This prevents a straightforward generalization of the velocity-
Verlet algorithm which is based on the ability to separate the Hamiltonian into terms where the
dynamics following from each term in isolation can be solved exactly [88]. Explicit Runge–Kutta
methods of orders 2 and 4 are employed instead. Furthermore, this momentum dependence of the
potential affects the interpretation of temperature in the system, further described in appendix D.

The time integrator, the generalized Ewald summation and the Pauli interaction, are all
natively implemented in LAMMPS [54], a MD framework written in C++ which uses MPI to

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

05
 J

ul
y 

20
23

 



7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220325

...............................................................

5 � 102 1 � 103 2 � 103 5 � 103
2 � 10–2

5 � 10–2

1 � 10–1

2 � 10–1

5 � 10–1

1

2

�N1.3

�N1.1

N

w
al

l t
im

e 
pe

r 
tim

e 
st

ep
 (

s)
no. MPI = 8

no. MPI = 16

no. MPI = 32

no. MPI = 64

no. MPI = 72

(a)

20 21 22 23 24 25 26
10–3

10–2

10–1

1

10

no. MPI

full pair
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(b)

Figure 1. Scaling of computational cost for a quasi-neutral system with N protons, density corresponding to rs = 2 and
temperature equal to the Fermi temperature. (a) Scaling with particle number for different levels of parallelization, in the
range between N1.1 and N1.3. The Ewald parameter g was optimized to within±0.5a−1

B for each case. (b) MPI parallelization
of the computation for a system of N = 2000 ions with a fixed Ewald parameter. Showing the full computation (circles),
pair interaction (squares), Ewald summation (diamonds), communication between MPI processes (upwards triangles) and the
synchronization time different processors need to wait for each other due to an unbalanced load (downwards triangles), which
is compared with the optimal scaling based on the single thread performance (dashed).

distribute the computation [89]. Figure 1 b shows the computational time for a varying degree of
parallelization for a fixed system of 2000 protons and an equal number of electrons. In particular, a
good scaling of the pair interaction and the Ewald summation is established as the computation is
distributed. The synchronization time, the time different processes need to wait for each other due
to an unbalanced load caused by statistical fluctuations in the number of particles in the region
assigned to each processor, limits the efficiency of the parallelization when only a few particles
are assigned to each process. In the future, dynamic load balancing could potentially address this
issue; however, it should be noted that the point of the plateau moves further out as the size of
the system is increased.

Furthermore, figure 1 a also demonstrates the scaling of computational cost with particle
number for a test system where rs = (4π/3na3

B)−1/3 = 2 where n is the proton number density
and aB is the Bohr radius. Close to linear scaling in particle number is demonstrated, showing
the feasibility of employing this modelling technique for large systems of particles. The exact
exponent varies in the range 1.1–1.3, depending on the degree of parallelization, caused by
different limiting factors in the computation. The synchronization time is most likely one of these
factors for the high parallelization case.

4. Test systems

(a) Ground state properties
Ground state properties of the wave packet models can be obtained by the introduction of a
generalized friction term into the equations of motion (2.6). Some care is needed to guarantee
continuous energy loss due to the momentum dependence of the Pauli potential. This is further
described in appendix E.

The ground state of isolated atoms is spherically symmetric and does not use the additional
degrees of freedom of the elongated wave packets. One of the simplest physical systems which
naturally breaks this symmetry are diatomic molecules and in particular diatomic hydrogen (H2),
where the ability for the wave packet to stretch is believed to be crucial for molecular binding [53].
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–0.6

2EH
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2EH

δ (aB)

E
 (

E
h)
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exact

Figure 2. Ground state energy ofH2-molecule, E, as a function of nuclear separationδ, computed for the fullwavepacketmodel
(elongated), the isotropic one (isotropic) and the virtually exact result from Angermeier & White [81] (exact). The ground state
is modelled as a triplet state, withρ = 1 in the correlation potential (2.16). The equilibrium displacement is marked for the two
wave packet models (vertical lines) and the energy of two isolated hydrogen atoms for the wave packets as well as the exact
result are shown with horizontal markers.

The ground state energy of H2 within the wave packet model for both elongated and isotropic
Gaussians is shown in figure 2 for a varying nuclear separation δ. The elongated wave packets
demonstrate an improvement over the isotropic ones when δ < 2.8aB, above which the electron
density is localized on each ion and close to spherically symmetric. Furthermore, the isotropic
model transitions to an electron density localized on each nucleus at a significantly shorter nuclear
separation, δ ≈ 1.8aB, compared with our model at δ ≈ 2.8aB.

The energy difference between our model and the exact result is close to constant for nuclear
separation larger than the equilibrium position. In this respect, the presented wave packet model
is as good a descriptor of the molecular ground state, H2, as the atomic one, 2 × H, suggesting
that for further improvements one needs a more versatile description of the isotropic atomistic
limit first. The present model has the ability to treat each direction separately and what is limiting
the agreement is the restriction on functional form.

(b) Binary collisions
The dynamical properties of the wave packet model have been tested for electron–ion scattering
against a full numerical solution of the Schrödinger equation realized by the SOFT code [90–92].
The resulting trajectory data for impact parameters in the range of 0.6–3.0aB is shown in figure 3,
alongside the time evolution of the extent of the wave function, which is compared with the
result from both isotropic and elongated wave packets. The centre of mass trajectories agree
well between all three different sets of simulations over long-length scales. In the full numerical
solution, the electron density can split and partially bind to the ion core, a qualitative feature
the wave packets cannot reproduce due to their limited functional form. However, this is of
minimal importance for the trajectories discussed here. At these energies, only a minor fraction
of the electron wave packet gets bound so that the centre of mass agrees well with the mode
position in the full numerical simulation. The two wave packet models differ in the internal
degrees of freedom, where the isotropic wave packet does not have the flexibility of the complete
model. The isotropic wave packet model cannot reproduce the internal dynamics of the SOFT

computation as well as the elongated wave packet model for the larger set of impact parameters.
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Figure 3. Electron scattering of a fixed proton with different impact parameters b computed using elongated wave packets,
isotropic wave packets and SOFT. The trajectory of electron mass-centre (a) and the width of the electron wave function
along y-direction,

√
〈y2〉 − 〈y〉2, for two different impact parameters (b). The wave functions were initialized as isotropic

Gaussians with a width 1aB and velocity such that the total classical energy of each trajectory were (3/2) kBT and
kBT = 10 eV.

In the case of smaller impact parameters, the full numerical solution has wave packets with
non-Gaussian structure during the close approach between the electron and the ion, impacting
the subsequent evolution of the wave function. One of the more important characteristics for
determining the dynamic properties of the system is the energy transfer in particle collisions,
which is shown for the electron–proton scattering in figure 4. The energy transfer is calculated
by treating the proton dynamically in contrast to the case shown in figure 3. Differences between
the wave packet models can in particular be seen for intermediate impact parameters, between
the classical behaviour for large impact parameters and the symmetrical configuration when
b = 0. Furthermore, the difference is the most pronounced for smaller wave packets where the
asymmetry on the scale of the wave packet is more pronounced. The result suggests there might
be an appreciable difference in the dynamical properties of the two models.

(c) Transport properties
The previously shown demonstrations of the model were limited to the dynamics of a few
particles; however, one of the strengths of the wave packet models is in the treatment of large
collections of particles. We demonstrate this by studying a hydrogen plasma with degeneracy
parameter θ = kBT/EF = 1 and a density rs = 2 under WDM conditions. The system is modelled by
a thousand protons and an equal number of electron wave packets describing a spin un-polarized
electron fluid (with an equal number of spin-up and spin-down electrons). For this initial test
we set ρ = 1 in equation (2.16) and the width of the wave packets are regularized by the width
confinement where Aw = 3 Eh/a2

B and lw = 1aB. The initial random configurations of particles were
allowed to thermalize under the influence of periodic velocity re-scaling (see appendix D) for
75 fs, after which data were collected for 225 fs, a procedure repeated five times for each wave
packet model.

Figure 5a shows the static pair-correlation functions [27] for the two wave packet models under
consideration, computed classically without accounting for antisymmetrization of the electrons,
and such even equal spin electrons have a contribution at no separation where otherwise the
antisymmetrization completely set this limit. The static structures primarily differ in electronic
structure. The isotropic wave packets are seen to interact more strongly both with ions and
between themselves. A part of this stronger interaction is during a collision between a wave
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Figure 4. Transfer of (classical) kinetic energy�E/E from the electron to the ion in a single electron–ion scattering event as
a function of impact parameter b. Initial velocity set as in figure 3 with a temperature (a) kBT = 5 eV and (b) kBT = 10 eV.
The energy transferred differs between the isotropic and elongatedmodels, especially for intermediate impact parameters and
smaller wave packets. The result is shown for different free particle widthsw set by the confining potential in equation (2.17) by
varying lw with Aw = 3 Eh/a2B.
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Figure 5. (a) Radial distribution function for proton–proton (p–p), electron–electron (e–e) and proton–electron (p–e) in both
wave packet models described, elongated (solid) and isotropic (dashed). Qualitatively similar structures are seen between the
twomodels, where for isotropic wave packets the electrons have a stronger interaction between themselves as well as the ions.
The typical errors—estimated from thedistinct runs—are shown in the shadedarea only notable at small r. (b) Electron current
auto correlation function for thewave packetmodel (solid), describedwell by an exponential decay shownby the corresponding
fit (dashed). The system considered in both (a) and (b) is the one described in §4c.

packet and a proton. The isotropic wave function expands slower, as the appropriate expansion
is averaged over all directions, and the smaller wave packets have a more localized charge and a
stronger interaction.

One of the properties of interest for WDM systems is the electrical conductivity σ . The
conductivity relates to the microscopic dynamics in an atomistic simulation via [93],

σ (ω) = 1
3kB T V

∫∞

0
〈〈J(t) · J(0)〉〉 eiωt dt, (4.1)
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where 〈〈·〉〉 is a thermal average and J is the total charge current. The current is dominated by the
electron contribution, Je,

J ≈ Je = − e
m

Ne∑
i=1

〈p̂i〉, (4.2)

where we sum over all electrons. The current–current correlation function has roughly an
exponentially decaying behaviour and therefore in the vein of Mithen et al. [94] an exponential
form is fitted to reduce the influence of noise. Both the numerical data and the fit are shown in
figure 5 b with a high level of agreement. An exponential current–current correlation function
results in a Drude-like conductivity,

σ (ω) = σ0

1 + (ω/λ)2 + i
σ0ω/λ

1 + (ω/λ)2 , (4.3)

where σ0 and λ are related to the amplitude and time constant of the decaying correlation
function. Physically, σ0 is the DC conductivity while λ corresponds to the inverse of the mean
free scattering time. The wave packet models differ in their prediction of both constants.
For elongated wave packets, σ elo

0 = (34 300 ± 1 900) Ω−1 cm−1 and λelo = (1.48 ± 0.06) fs−1, while
for the isotropic model σ iso

0 = (29 800 ± 1 200) Ω−1 cm−1 and λiso = (1.73 ± 0.06) fs−1. This
corresponds roughly to a 15% increase in DC conductivity and a 15% decrease in the scattering
frequency as we extend the wave packet formulation. For a Drude-like conductivity, σ0 and λ are
strongly correlated, which can be understood by the constraints set by the fluctuation–dissipation
theorem [95]. Within this wave packet formulation the electron–electron scattering is explicitly
included in the dynamic formulation, not the case in the commonly used Kubo–Greenwood
formulation of conductivity for DFT-MD, preventing the DFT-based technique to achieve the
appropriate high-temperature limit [96].

5. Conclusion
Non-equilibrium modelling of quantum many-body systems is a formidable task that further
suffers from the large proton-to-electron mass ratio, resulting in vastly different time scales for
the evolution of electron and ion dynamics. Any dynamical treatment must, therefore, resolve
the electron motion, while extending over comparatively long-time scales to investigate ion
dynamics. Wave packet models address this with an ansatz for the electronic wave function
allowing the time evolution of a large number of particles to be performed over long-time scales,
while retaining quantum mechanical properties dynamically within the model.

We have extended the functional form of the wave packets used for modelling WDM by
allowing the wave packet to be elongated with arbitrary rotation. This in turn allows for a
dynamic response to gradients across the wave packet that should better represent quantum
dynamics. As a consequence of the non-isotropic states, explicit evaluation of the interaction
Hamiltonian has not been possible, and a generalized Ewald summation has been used
to appropriately evaluate both the short- and long-range effect of the Coulomb interaction.
Furthermore, a decomposition of the short-range interaction kernel into Gaussian modes has been
constructed and used for an explicit evaluation scheme.

Crucially, WDM systems are partially degenerate and the exchange interaction contributes
significantly to their evolution. A scalable approximation for this in terms of Pauli potentials
has been derived as they fundamentally depend on the wave packets used. The interactions
are implemented along with the complete dynamical description in LAMMPS, with good parallel
support and close to a linear scaling with particle number.

The elongated wave packet model is seen to improve the description of ground state hydrogen
molecules compared to isotropic wave packets where spherical symmetry is naturally broken.
The added degrees of freedom also further improve the dynamical description when compared
to full quantum mechanical treatments, which we demonstrate for electron–proton scattering.
Furthermore, in such collisions different energy transfers are observed between the models,
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illustrating an important variation in the predicted behaviour. Finally, the model is used to
investigate a partially degenerate hydrogen plasma. Differences between wave packet models
are seen both in the electronic structure and in the dynamics. A property of fundamental interest
for this type of system is the electrical conductivity, which we extracted from our wave packet
models. The electrical conductivity is dominated by electron motion and the DC conductivity was
seen to increase by approximately 15% when extending the functional form of the wave packet.
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Appendix A. Gaussian decomposition
The decomposition of the Coulomb interaction kernels described in §2b is solely introduced to
efficiently evaluate state averages and only needed to be computed once. The state averages of
the interaction kernel V can be reduced to a volume integration weighted by some Gaussian
profile. Therefore, the error in Gaussian approximation was quantified by the volume average of
the square errors

L=
∫ rmax

0
dr r2

∣∣∣V(r) −
∑

p
cp e−αpr2

∣∣∣2, (A 1)

which is finite without a small r cut-off. In the case of the short-range contribution, V(r) =
erfc(gr)/r, the integrals are convergent and rmax = ∞ was chosen. On the other hand, for the
long-range correction, V(r) = erf(gr)/r, a finite rmax is needed and has been chosen to rmax = 15aB.
The latter decomposition is only applied to terms in the Pauli interaction, see §2c, which are
exponentially suppressed by the overlap |〈qi|qj〉|2 for large distances and the self-energy for the
Ewald summation which is also exponentially suppressed for large distances, see appendix B.
Therefore, a finite rmax does not constitute a significant limitation.

The decomposition in terms of the coefficients cp and αp is based on the minimization of L.
For a fixed set of αp, the minimization is solved by inversion of the linear system of equations
∂L/∂cp = 0. However, instead of using a particular set of αp [72], a general minimization algorithm
was used to find the optimal αp’s, preconditioned with the optimal cp = cp({αp}). For the short-
range interaction the search was limited to αp > 0, where in the long-range case r−2

max/2 < αp < g2

was needed for a stable decomposition. Figure 6 demonstrates the final decomposition resulting
from this procedure described above, typical for the ones used in the main text. The singular
nature of the short-range interaction is approximated by a series of modes with successively larger
amplitude and shorter range.
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Figure 6. The Gaussianmode decomposition of the short-range interaction (a) and the long range interaction (b) with a Ewald
parameter g= 0.5.

Appendix B. Ewald summation
The main contribution Ek to the Ewald summation (2.11) is the interaction of the charge
distribution in the simulation box ρuc and the total surrounding charge distribution ρtot,

Ek =
∫

d3x1 d3x2
erf(g|x1 − x2|)

2|x1 − x2|
ρuc(x1) ρtot(x2), (B 1)

seen by exchanging the particle summation and state average in equation (2.11). The charge
distributions are based on the functional form of the wave packet and the image charges, namely

ρuc(x) =
∑

i

eZi|〈x|qi〉|2 and ρtot(x) =
∑
n∈Z3

ρuc(x − Ln), (B 2)

the Fourier transform of which, ρ̃uc(k), has been evaluated in equation (2.13). With the use of
Plancherel’s theorem and the Fourier convolution theorem, one can arrive at the expression (2.12),
which converges rapidly in K-space due to the exponential dependence on k. The k = 0 term
vanishes due to charge neutrality ρ̃uc(0) = 0.

In any given computation only a finite number of k-vectors may be used and the associated
error incurred by truncating equation (2.12) was described for the classical point particle case
by Kolafa & Perram [69]. It can be shown that the resulting force from the Ewald summation for
distributed particles is suppressed by factors exp(−0.5kᵀΣ ik) × exp(−0.5kᵀΣ jk) for each k-vector
and the force converges more rapidly—as the charge distribution now is more smooth—such that
the classical estimate still can be used as an upper bound. The calculations in the manuscript
were performed such that this error estimate was one thousand of the force two ions experience
an average distance apart.

The self-energy term can be formulated similarly

Es = −
∑

i

(eZi)
2

∫
d3x1|〈x1|qi〉|2

∫
d3x2

erf(g|x1 − x2|)
2|x1 − x2|

|〈x2|qi〉|2, (B 3)

where the integration could be performed if the kernel were Gaussian. The integrand is
exponentially small if x1 �≈ x2 and a Gaussian decomposition of the long-range interaction kernel
is used, using erf(gr)/r = ∑

p c̃p exp(−α̃pr2). The self-energy contribution is

Es = −1
2

∑
i

(eZi)
2
∑

p

c̃p√
det(I + 4α̃pΣ i)

, (B 4)

yielding the correct classical limit, Σ i → 0, as
∑

p c̃p = 2g/
√

π , if the decomposition retain the
correct value at r = 0.
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Appendix C. Log-range Pauli interaction
The background terms, Vbg, in the Pauli potential (2.14b) have a long-range behaviour and by
splitting the interaction in accordance with the Ewald summation discussed in §2b it may be
truncated and any residual long-range term is then accounted for. Once again the long-range
interaction can be formulated as the interaction between two distributions; one is the particle
overlap and other is the charge density from the background particles

VP/C
long =

∫
d3x1 d3x2

erf(g|x1 − x2|)
2|x1 − x2|

μP/C(x1)ρtot(x2) + VP/C
s , (C 1)

where

μP/C(x) = ±
∑
i<j

e
1 ∓ |〈qi||qj〉|2

[
2� {〈qj|x〉〈x|qj〉〈qj|qj〉

}

−
(
|〈x|qi〉|2 + |〈x|qj〉|2

)
|〈qi||qj〉|2

]
(C 2)

and the sum is restricted to electrons with relevant spins. A self-energy term VP/C
s is introduced

when the background terms do not have terms where k = i, j,

VP/C
s = ±

∑
i<j

∫
d3x1 d3x2

erf(g|x1 − x2|)
2|x1 − x2|

e2

1 ∓ |〈qi|qj〉|2
(
|〈x2|qi〉|2 + |〈x2|qj〉|2

)

×
[
2� {〈qj|x1〉〈x1|qj〉〈qj|qj〉

} −
(
|〈x1|qi〉|2 + |〈x1|qj〉|2

)
|〈qi|qj〉|2

]
. (C 3)

While the above expression has been evaluated in K-space and included in the force computation,
it has only a limited impact on the overall dynamics, and it could be omitted if computational
speed is needed.

Appendix D. Temperature measurements
The system temperature, T, is defined through the equipartition theorem,〈 〈

Qμ
∂H
∂Qν

〉 〉
= δμνkBT, (D 1)

where δμν is the Kronecker delta and 〈〈·〉〉 represents the thermal average in the microcanonical
ensemble commonly referred to as the NVE ensemble, due to a constant particle number, N,
volume, V and energy E. This corresponds to a time average in molecular dynamics in accordance
with the ergodic hypothesis [66]. We may define a temperature based on the classical degrees of
freedom Qμ = Qν = pi, 〈 〈

p2
i

m
+ pᵀ

i
∂V
∂pi

〉 〉
= 3kBT, (D 2)

and the internal ones, 〈 〈
4
m

Tr
{
ΠiΣ iΠi

} +
∑
αβ

Πiαβ τβα
∂V

∂Πiβα

〉 〉
= 6kBT, (D 3)

where V is the state average of the interaction terms of the Hamiltonian. The above two
definitions are combined, averaged over the particle index i and evaluated instantaneously to
monitor the temperature evolution of the system. Instantaneously, equations (D 2) and (D 3)
may differ, nonetheless converge to the same value by time averaging. Previously, Ma et al.
[79] has incorporated the width kinetic energy in the temperature measurement for isotropic
wave packets. When we employ isotropic wave packets we use equation (D 3) accounting for
the reduced degrees of freedom.
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Appendix E. Generalized friction
To achieve a continuous energy loss from friction, the equations of motion are modified
accordingly

dpi
dt

= −∂H
∂ri

+ Γ
p
i and

d
dt

Πiαβ = −ταβ
∂H

∂Σiαβ

+
(
Γ Π

i

)
αβ

. (E 1)

The resulting energy loss

d
dt

H= −
∑

i

⎛
⎝ ∂H

∂pᵀ
i

Γ
p
i +

∑
αβ

ταβ
∂H

∂Πiαβ

(
Γ Π

i

)
βα

⎞
⎠ , (E 2)

can be guaranteed to result in a monotonic energy decrease with the choice

Γ
p
i = mγp

∂H
∂pi

(
Γ Π

i

)
αβ

= m
8

γΠ

∑
γ

((
Σ−1

i

)
αγ

τγβ
∂H

∂Πiγβ

+ ταγ
∂H

∂Πiαγ

(
Σ−1

i

)
γβ

)
, (E 3)

which reduces the classical case in the absence of a Pauli potential and Σ iΠi = ΠiΣ i.
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