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Abstract: In 2012, Karplus and Diederichs demonstrated that the Pearson correlation coefficient
CC1/2 is a far better indicator of the quality and resolution of crystallographic data sets than more

traditional measures like merging R-factor or signal-to-noise ratio. More specifically, they proposed

that CC1/2 be computed for data sets in thin shells of increasing resolution so that the resolution
dependence of that quantity can be examined. Recently, however, the CC1/2 values of entire data

sets, i.e., cumulative correlation coefficients, have been used as a measure of data quality. Here, we

show that the difference in cumulative CC1/2 value between a data set that has been accurately mea-
sured and a data set that has not is likely to be small. Furthermore, structures obtained by molecular

replacement from poorly measured data sets are likely to suffer from extreme model bias.

Keywords: CC1/2; X-ray free-electron laser; femtosecond serial crystallography; photosystem II;
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Introduction
In his classic note on regression and the theory of evo-

lution in 1896,1 Karl Pearson introduced the statistic

now known as the Pearson correlation coefficient

(CC), and it has been widely used in the social and

behavioral sciences ever since.2 The Pearson CC of the

data obtained when the same set of observations are

made twice (xj,yj) is given by the following expression:
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The reflective CC, or CC0, is obtained when the

same expression is evaluated with the mean values

replaced by zero [Eq. (2)].
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Both Pearson and reflective CCs can provide useful

insights into the information content of experimental

data sets and the reproducibility of measurements.

Although some crystallographic applications of

reflective CC0 were reported in the 1960s,3,4 until

recently, they were seldom used. Those early studies

demonstrated that CC0 of the amplitudes of crystal-

lographic data sets are not good measures of overall

data quality because the range of values possible for

that statistic is so small. If two non-centrosymmetric

data sets are being compared, the value of CC0 will

be 100% if the two are identical, but fall only to

78.5% (5 p/4) if the two are completely unrelated

(see Supporting Information Materials). These limits

hold for the CC0 values obtained within thin shells

of constant resolution, and for cumulative (or
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overall) CC0 values. Another reason correlation coef-

ficients were slow to gain a foothold is that data

quality is seldom an issue in small molecule crystal-

lography. The data are usually accurately measured,

and the models derived from them often account

well for them [e.g., Ref. 5].

In structural biology the situation can be quite

different. The data are often harder to measure well,

and the models inferred from them commonly fail to

explain the data as accurately as they were mea-

sured.6 As Karplus and Diederichs pointed out a few

years ago, the Pearson CCs can play as useful a role

in this arena,7 as they do in electron microscopy

(EM), where CC0 (i.e., Fourier Shell Correlation)

have been used for years to estimate the resolution

of the EM maps.4,8,9

The CC1/2 is particularly useful for detecting the

presence of weak signals in the high-resolution

shells of crystallographic data sets. The measure-

ments used to estimate the intensities of each reflec-

tion are partitioned into two non-overlapping sets of

equal size that are then used to obtain two indepen-

dent sets of intensity estimates. CC1/2 is the Pearson

correlation coefficient obtained by comparing these

two sets of intensities. As mentioned earlier, the cal-

culations are usually done after the two sets of

intensities have been divided into thin shells of

increasing resolution so that the dependence of

CC1/2 on resolution can be determined. At low reso-

lution, the CC1/2 of crystallographic data sets is usu-

ally close to 100%, and it tends to fall off quite

rapidly as the resolution limit of the data is

reached.7,10 Strong reflections in a data set, which

are almost always better measured than weak

reflections, tend to dominate correlation coefficients,

and that is why CC1/2 is a better tool for detecting

signals in noisy data than data quality indexes that

treat each Bragg reflection equally, such as the frac-

tional intensity R(diff), which is the average frac-

tional intensity difference between the two half-data

sets. More important, CC1/2 can identify very weak

signals in noisy data because it is reliable and does

not involve a scaling issue (and even when scaling is

involved, it is scaling independent). In contrast, tra-

ditional R-factors such as Rsym, Rmerge, and Rmeas

(see Ref. 11 for definitions) may fail to do so because

their values are sensitive to the linear and Wilson B

scale factors applied to the individual images that

contributed to the two sets of intensities that are

being compared, and they can be hard to determine

accurately when the data are noisy.

Results and Discussion

The R(diff) and Pearson CC1/2 values of crystallo-

graphic data sets are related to one another. If the

distribution of intensities in an X-ray diffraction

data set obeys Wilson statistics,12 which it will if

properly measured, and the noise in those data is

Gaussian [OSM & Refs. 7,11], it can be shown that:

CC1=25
1

11aR2
diff

; (3)

where a is a constant that depends only on the

symmetry-related multiplicity, and that, typically,

has a value between 1.0 and 2.0. This relationship is

independent of both the average resolution of the

reflections in each resolution shell and the thickness

of those shells, which means that it is as applicable

to the CC1/2 values of entire data sets (i.e., cumula-

tive CC1/2
0s) as it is to the CC1/2 values of individual

resolution shells. R(diff) in this equation is a lower-

bound estimate because it assumes that the intensities

being compared can be, and have already been, prop-

erly scaled.

The data released recently for four X-ray free-

electron laser (XFEL) structures of photosystem II

(PSII) [5WS5, 5WS6, 5WS0, and 5GTI]13 are

complete enough so that one can see whether Eq. (3)

applies to real data. As Figure 1 shows, both the

CC1/2 values for thin shells of resolution from these

data sets and their cumulative CC1/2 values conform

to the upper bound curve predicted by Eq. (3) (i.e.,

the a51.0 curve). Analyses done on other data sets

(data not shown), as well as studies published by

Karplus and Diederichs11 further support the con-

clusion that Eq. (3) is generally valid.

When cumulative CC1/2 values are compared to

the dependence of CC1/2 on resolution from the same

data sets, it becomes obvious that cumulative CC1/2

values are insensitive measures of data quality. The

cumulative CC1/2 values of the four PSII data sets

Figure 1. The relationship between intensity CC1/2 and R(diff)

values. The two theoretical limits for the relationship between

these two quantities are shown using cyan and magenta solid

lines. CC1/2 and R(diff) values have been computed for four

XFEL experimental data sets for PSII (5WS5, black spheres;

5WS6, red; 5WS0, green; 5GTI, blue) as a function of resolu-

tion. Those data follow the magenta curve, as do their cumu-

lative CC1/2 values (see the horizontal and vertical dotted

lines having the same colors)
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mentioned above range between 99.4% and 99.7%,

even though CC1/2 falls to � 50% in the highest reso-

lution shell in each of them. The cumulative CC1/2

value of another, unrelated data set (4LR3),10 which

was obtained using conventional synchrotron meth-

ods, is only one percent smaller, 98.5%, even though

the CC1/2 value of that data set in its highest resolu-

tion shell is much worse, 13.5%.

Problems can arise when cumulative CC1/2

values fall below � 95%, as is the case for some of the

other XFEL data sets reported for PSII.14–17 For

example, the 3.0-Å resolution data set for 5KAF has a

cumulative CC1/2 value of only 53.2%, and the cumu-

lative CC1/2 value for the 2.8-Å resolution data set

that corresponds to 5KAI is only 54.2%.17 These

cumulative CC1/2 values imply that the lower-bound

value of R(diff) for these two data sets, as a whole, is

likely to be 92% to 93% (Fig. 1)! In two of the other

XFEL data sets (4IXR and 4IXQ) that have been

reported for PSII the cumulative CC1/2 values are

66.5% and 79.1%, respectively,15 which suggests

R(diff) values that are only slightly better, � 71% and

51%. Thus by normal crystallographic standards, the

quality of all of these data sets is very poor.

The four data sets just discussed are similar in

quality to many of the other XFEL data sets that have

been deposited in the PDB. Diederichs and colleagues

have expressed concern about the quality of some of

them, and about the wisdom of using cumulative CC1/2

values as measure of data set quality.7,18,19 It has been

recommended that individual values at both low and

high resolution bins should be reported, instead of just

an overall value.11 Nevertheless, cumulative CC1/2 val-

ues are sometimes the only data quality statistics

reported [e.g., Refs. 17,20]. It should be noted that the

overall CC value is also being used as a measure of the

correspondence between cryo-EM maps and the atomic

models derived from them [e.g., Ref. 21]. This practice

too is suspect.

How much structural information can there

really be in the data sets that have quality statistics

like those of the four data sets mentioned above?

Rossmann has asked the same question about other

XFEL data sets.22,23 The reply sometimes given is

that the quality of data cannot be as bad as it seems

because the electron density (ED) maps obtained

from them by molecular replacement “look good,”

and the model R-factors appear acceptable. We have

explored this issue computationally in two different

ways. First, starting with the 5KAI model for

PSII,17 a 2.80-Å resolution ED map was calculated

using model phases, and a set of amplitudes

obtained by Fourier transformation of a molecular

model that was generated from 5KAI by changing

the positions of all protein atoms at random so that

the distribution of their displacements is a Gaussian

function with r|Dr| 5 1.038 Å (see OSM). This

shifted-coordinate model is unphysical, and its

transform differs from that of its parent structure,

on average, by 42.5% in amplitude and by 67.6% in

intensity, which is a lot. Nevertheless, the cumula-

tive intensity Pearson CC between these two data

sets is 75%, consistent with the arguments made

above about the insensitivity of that statistic to data

quality. Furthermore, the ED map computed using

these coordinate-shifted amplitudes and model

phases is strikingly similar to the one obtained

using the measured amplitudes and model phases

[Fig. 2(A,B), top panels]. In fact, the fit of the origi-

nal protein model to the ED map calculated using

both the amplitudes and phases obtained from the

coordinate-shifted model is reasonably good, and not

obviously worse than its fit to the ED map computed

using coordinate-shifted amplitudes but the original

model phases (data not shown).

In the second test, the 5KAI experimental data

were divided into 100 thin shells of resolution, each

containing the same number of reflections. A second

data set was obtained from the first by assigning

measured amplitudes to Bragg indices at random

within each shell (see OSM). This procedure is

called random permutation, and it has used in the

past to investigate the statistical properties of small

molecule crystallographic data.24 The average Pear-

son CC between the parent data and the randomized

data in each shell was zero for all intents and pur-

poses: � 20.001 6 0.021. Furthermore, on average,

amplitudes had changed by 55.7% and intensities by

101.9%, which is close to what would be seen if dif-

fraction data sets were compared that had been

obtained from two unrelated, non-centrosymmetric

crystals that happened to have the same symmetry

and unit cell dimensions (58.6% and 100%).25,26 Nev-

ertheless, the cumulative Pearson CC between the

permuted data set and its parent was 22%, rather

than the 0% one might have anticipated (see below).

Figure 2(A,C) (top panels) show the same small

region of the ED map (qobs) one computed using the

original amplitudes and model phases [Fig. 2(A),

Supporting Information Fig. S1A], and the other

computed using these randomized amplitudes and

the original model phases (qchimeric) [Fig. 2(C), Sup-

porting Information Fig. S1B]. Once again, the simi-

larity of the two is striking. This observation should

not come as a surprise because similar results were

reported for computations carried out using small

molecule data over half a century ago.27–29

What these computations illustrate is the

impact that model bias can have on the outcomes of

a structure determination that depend on molecular

replacement, a problem that has long been recog-

nized, but may still be underappreciated. It should

also serve as a warning that the claim that an ED

map “looks good” is no guarantee that the data on

which it is based are meaningful.

The similarity between qobs and qchimeric maps is

easy to understand.
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qobs rð Þ5FT Fobs; aobsð Þ; (4)

qchimeric rð Þ5FT Falt; aobsð Þ

5FT Fobs; aobsð Þ1FT Falt2Fobsð Þ; aobs½ �

5qobs rð Þ1FT DFð Þ; aobs½ �; (5)

where FT indicates Fourier transformation, experi-

mentally observed structure factors are Fobs and aobs,

Falt are the randomly altered amplitudes, and DF are

differences between the experimental and altered

amplitudes. The second term in the last line of Eq. (5)

is a difference Fourier map. It is well known, of

course, that if the amplitudes identified here as Falt

derive from crystals that are isomorphous to those

used to produce the Fobs data, and the structures of

the molecules in the two crystals are closely related,

but not identical, the FT[DF,aobs] map obtained will

reveal the specific differences between the two

Figure 2. Electron density (ED) maps. (A) A portion of the ED map computed for 5KAI using observed amplitudes and model

phases with the 5KAI model superimposed. (B) The ED map for the same region as (A) computed by combining amplitudes

obtained from a model that was derived from 5KAI by altering the locations of all protein atoms at random by the standard

deviation of 1.038 Å with (unaltered) 5KAI phases. The position of the atoms in the partially randomized model used to compute

the amplitudes used are shown as colored spheres. (C) The ED obtained for the same region shown in (A) using random permu-

tated amplitudes and phases from the original model. The 5KAI model is again superimposed. The first row shows map fea-

tures contoured at 11.5r for an a-helix next to the oxygen-evolving complex (OEC) of photosystem II. The lower two rows

contoured at 10.5r for and 11.0r show map features in solvent channels

Wang et al. PROTEIN SCIENCE VOL 26:2410—2416 2413



structures.30–32 However, for the computations just

described, the amplitude differences are completely
uncorrelated with the structure that gave rise to the

model phases. Thus, this component of the chimeric
maps should consist of random features that extend

throughout the unit cell, including its solvent chan-

nels, and bear no relationship to qobs(r) (Fig. 2). That
this is in fact the case is evident in the lower panels

in Figure 2 that are centered on the solvent region in

the crystal of interest, which show a much larger por-
tion of the unit cell than the top panels. The solvent

region is almost featureless in the map computed
using model phases and the observed amplitudes [Fig.

2(A), lower panels]. It is significantly noisier in the

map computed using model phases, but amplitudes
derived from a randomly distorted model [Fig. 2(B),

lower panels], and it is as feature-filled as the parts of
the unit cell that contain protein in the map obtained

with random permutated intensities and model

phases [Fig. 2(C), lower panels]. There are other indi-
cations that all is not well with the two randomized

data sets. First, the R factors that measure the corre-

spondence between the observed amplitudes and the
computed data are poor: 42.5% and 55.7%, and the

density histograms within the protein-containing
regions of the two maps are obviously abnormal.

It is straightforward to convert intensity R(diff)

estimates into estimates of intensity and amplitude

R(sigma) values (OSM),4 and when this is done one

finds that the intensity R(sigma) values for the

5KAF and 5KAI data sets17 should be 65.1% to

65.8%, and their amplitude R(sigma) values should

be 37.6% to 38.0%. In light of what has just been

said, it is quite surprising that the amplitude free R-

factors reported for the models derived from these

two data sets are significantly lower than these

lower bound estimates of amplitude R(sigma) values

of the data from which they derive: 30.30% (5KAF)

and 29.97% (5KAI).17 How can a model derived from

a set of data explain those data more accurately

than the data explain themselves? These observa-

tions suggest that both models are over-fitted, and

one has to ask why the cross validation procedures

used, which are supposed to prevent over-fitting,33

failed to do so in both cases.

Examples of poor quality data sets can also be

found in the electron crystallographic literature. For

example, the overall data merging R-factor34

reported for a data set obtained from proteinase K

crystals at a resolution between 21.91 and 1.30 Å

was 62.9%. Yet, the authors were able to produce

what appears to be an outstanding electrostatic

potential (ESP) map of that molecule by molecular

replacement, even though the model they used for

molecular replacement took no account of the impact

that partial charges have on electron scattering fac-

tors, which are known to be large.35–38 In addition, a

recent analysis done by Spence and colleagues has

demonstrated that a number of electron

crystallographic structures are computational arti-

facts because the influence of model bias had on the

ESP density functions on which they are based.39

In the past, structural biologists were more con-

cerned about the quality of their diffraction data

than the quantity, and often adopted a very conser-

vative approach40 to this problem by, for example,

rejecting all the data they had measured beyond the

resolution at which the average signal-to-noise ratio

dropped to 2.0. The introduction of the CC1/2 method

for evaluating resolution limits has encouraged

structural biologists to use high resolution data they

would otherwise have ignored, and by so doing, they

have been able to arrive at better models.7,10,11,41

Nevertheless, the fact that it is a good idea to

use high-resolution data that have a CC1/2 value of,

say, 50%, does not mean that it is a good idea to use

data sets that have a cumulative CC1/2 value of 50%.

The cumulative Pearson CC1/2 statistic is not very

sensitive to the overall quality, as we have demon-

strated above, and while we have not found a rigor-

ous way to estimate a lower bound value for this

parameter, that bound is clearly greater than zero,

and it is easy to understand why. If the average

intensities of the reflections in two data sets have

the same dependence on resolution, then, even if the

two data sets are completely unrelated, their cumu-

lative Pearson CC will be greater than zero because

(i) strong reflections predominate at low resolution

and weak reflections predominate at high resolution,

and (ii) the two uncorrelated data sets are likely to

have similar mean intensity values within each reso-

lution shell. It appears from the results described

above that the cumulative CC1/2 of a data set that

has been well measured by traditional reproducibility

criteria, such as R(diff), R(split), R(sigma), R(merging),

R(meas), or R(pim) (see Ref. 11, for definitions), will

certainly exceed 90%.

Over the last few decades, molecular replacement

has become the preferred method for solving crystal

structures in structural biology. It is usually the case

that the molecular model used is not a fully accurate

representation of the molecules in the crystals of

interest, and the hope is that the ED map that ulti-

mately emerges will not be identical to that antici-

pated for the starting model, and that new insights

will emerge when those differences are interpreted.

This expectation is unlikely to be satisfied if the qual-

ity of the data set under consideration is low because

of the overwhelming impact that model-phase bias

will have on outcomes, as discussed above. Indeed,

the recent literature provides an example of a failure

of just this kind that resulted when an XFEL data

set having a resolution of 1.35 Å, and a cumulative

CC1/2 of 81.3% was used to compute a difference map

[Figure 6A in Ref. 20].

In conclusion, the CC1/2 method Karplus and

Diederichs devised for assessing data quality was an
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important advance in macromolecular crystallogra-

phy.11 By contrast, although related, the cumulative

CC1/2, is a statistic best avoided because it is ill

behaved, and less informative than more traditional

statistics like R(merge).11 When it is used, it must

be supplemented with other relevant statistics.
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