Supporting Information

A quantitative assessment of (bacterio)chlorophyll assignments in the cryo-EM structure of the *Chloracidobacterium thermophilum* reaction center

Christopher J. Gisriel^{1,†}, David A. Flesher^{2,†}, Zhuoran Long¹, Jinchan Liu², Jimin Wang², Donald A. Bryant³, Victor S. Batista¹, and Gary W. Brudvig^{1,2,*}

¹Department of Chemistry, Yale University, New Haven, CT 06520, USA.

²Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

³Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.

[†]These authors contributed equally.

*To whom correspondence should be addressed: gary.brudvig@yale.edu

Supplementary Fig. 1 Heat maps of Chl *a* and BChl *a* C3 cone scans moving away from the C3¹ carbon atom derived from calculated cryo-EM maps at 2.0-, 2.2-, 2.5-, 3.0, and 3.5-Å resolutions.

Supplementary Fig. 2 Cone scans of Chl *a* and BChl *a* C3 at expected bond distances derived from calculated cryo-EM maps at 2.0-, 2.2-, 2.5-, 3.0, and 3.5-Å resolutions.

Supplementary Fig. 3 Perspective of C7 and C8 carbons in Chl a and BChl a molecules of theoretical ESP maps.

Supplementary Fig. 4 Comparison of central metal signals of (B)Chl cofactors in the electron transfer chain.

Supplementary Fig. 5 Multiple sequence alignment of PscA sequences from chloroacidobacterial species.

Supplementary Table 1 List of (B)Chl types sorted by local resolution.

Supplementary Data 1 Files for generation of cone scan data (external).

Supplementary Data 2 Coordinate file for altered CabRC structure where the three acetyl moieties of the BChl *a* molecules in sites A902, A906, and a908 are flipped.

Supplementary Fig. 1 Heat maps of Chl *a* and BChl *a* C3 cone scans moving away from the C3¹ carbon atom derived from calculated cryo-EM maps at 2.0-, 2.2-, 2.5-, 3.0, and 3.5-Å resolutions. The top images show the part of the structure being scanned.

Supplementary Fig. 2 Cone scans of Chl *a* and BChl *a* C3 at expected bond distances derived from calculated cryo-EM maps at 2.0-, 2.2-, 2.5-, 3.0, and 3.5-Å resolutions. The top images show the part of the structure being scanned.

Supplementary Fig. 3 Perspective of C7 and C8 carbons in Chl *a* and BChl *a* molecules of theoretical ESP maps. Chl *a* and BChl *a* are shown in green and yellow, respectively.

Supplementary Fig. 4 Comparison of central metal signals of (B)Chl cofactors in the electron transfer chain. For each panel, the site name and local resolution are shown in the bottom right. All maps are shown at 12.7σ .

с. с. с.	thermophilum aggregatum sp. CP2_5A validum	MASFSSYANGVKRWYQKLELPMPPERIFGAHMMLIGGLACLIGTYFFASMTMWNDGYVNL MASFSSYANGVKRWYQKLELPMPPERIFGAHMMLIGGLACLIGTYFFASMTMWNDGYVNL MASFSSYANGVKRWYQKLELPMPPERIFGAHMMLIGGLACLIGTYFFASMTMWNDGYVNI MASFSSYANGVKRWYQKLELPMPPERIFGAHMMLIGGLACLIGTYFFASMTMWNDGYVNI ******	60 60 60 60
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	TLRPRLISLGIYDPYDTEQIQRVWLPLIGEFSTSKLPFFGQYPLTMTDFRLFGWGCFHIG TLRPRLISLGIYDPYDTEQIQRVWLPLIGEFSTSKLPFFGQYPLTMTDFRLFGWGCFHIG TLRPRLISLGIYDPYDTEQIQKVWLPLIGEFSAKHLPFFGQYPLTMTDFRLFGWGSFHIG TLRPRLISLGIYDPYDTEQIQRVWLPLIGEFSTKHLPFFGQYPLTMTDFRLFGWGSFHIG ************************************	120 120 120 120
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	LGLWLVYAGAAHYYGARGGATIGEIFWLLPYVPGLKGLCQIKWFTPEGPWYKVGLPWGSF LGLWLVYAGAAHYYGARGGATIGEIFWLLPYVPGLKGLCQIKWFTPEGPWYKVGLPWGSF LGLWLIYAGAAHYYGARGGATIGEIFWLLPYVPGLKGLCQIKWFTPEGPWYKVGLPWGSF LGLWLIYAGAAHYYGARGGATIGEIFWLLPYVPGLKGLCQIKWFTPEGPWYKVGLPWGSF *****:	180 180 180 180
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	ANTPWPIL <mark>R</mark> RTYADALSPHTI <mark>Y</mark> IGLLFFIWGFVLWFVLDKPPVPLQPAQVMTPNGLMPLE ANTPWPILRRTYADALSPHTVYIGLLFFIWGFVLWFVLDKPPVPLQPAQVMTPNGLMPIE ANTPWKILRRTYADALSPHTIYIGLLFFIWGAVLWLVLDKPPVPLQPAQVMTPNGMMPIE ANTPWRILRRTYADALSPHTIYIGLLFFIWGAVLWFVLDKPPVPLQPAQVMTPNGMLPIE ***** *******************************	240 240 240 240
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	QAPFPYGWFDPYLNQVMHPMNTINGETTMCFVWGVLFVALGAYWWYRPPRSINITHLEDT QAQFPYGWFDPYLNQVMHPMNTINGETTMCFVWGVLFVALGAYWWYRPPRSINITHLEDT QAQFPYGWYDPYLRQVMHPMNTINGETTMCFVWGVLFVALGAYWWYRPPRSVNITHLEDT X* *****:****	300 300 300 300
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	KAVFHV <mark>H</mark> LTAIG <mark>Y</mark> VSFALAIVGFLALRNHPS <mark>Y</mark> LMLNDMNVIIYGKKIVNPGRMIHNMITF KAVFHVHLTAIGYVSFALAIVGFLALRNHPSYLMLNDMNVIIYGKKIVNPGRMIHNMITF KAVFHVHLTAIGYVSFALAIVGFLALRNHPSYLMLNDMNVIIYGKKIVNPGRMIHNMITF KAVFHVHLTAIGYVSFALAIVGFLALRNHPSYLMLNDMNVIIYGKKIVNPGRMIHNMITF ******	360 360 360 360
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	NHVQVGLLYVAAGVFHGGQYLHGLNISGAYKQARSKFITWFQNPDLQTKIVGTTMFVSFV NHVQVGLLYVAAGVFHGGQYLHGLNISGAYKQARSKFITWFQNPDLQTKIVGTTMFVSFV NHVQVGLIYVAAGVFHGGQYLHGLNISGAYRQARSKFITWFQNPDLQTKIVGTTMFVSFV NHVQVGLIYVAAGVFHGGQYLHGLNISGAYKQARSKFITWFQNPDLQTKIVGTTMFVSFV *******:	420 420 420 420
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	TVVFGYGMICWNTGAELDLNFGIYQFRSFRAIQMDGEAGNIGYRVFRPKNPWDPTAGGDW TVVFGYGMICWNTGSELDLNFGIYQFRSYRAIQMDGEAGNVGYRVFRPKNPWDPTAGGDW TVVFGYGMICWNTGSELDLNFGIYQFRSYRAIQMDGEAGNVGYRVFRPKNPWDPTAGGAW TVVFGYGMICWNTGSELDLNFGIYQFRSYRAIQMDGEAGNVGYRVFRPKNAWDPTAGGDW **************	480 480 480 480
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	VKNPDGTAKLVKARNLQVGDRILNEELGIGSSPTYSFTTIEEINYKPEWGQPKLYAVQWG VKNPDGTAKLVKARNLQVGDRILNEELGIGSSPTYSFTTIEEINYKPEWGQPKLYAVQWG VTNPDGTAKLVKARNLQVGDRILNEELGIGSSPTYSFTTIEEINYKPEWGQSKLYAVQWG VTNPDGTAKLVKARNLQVGDRILNEELGIGSSPTYSFTTIEEINYKPEWGQSKLYAVQWG *.*****	540 540 540 540
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	SWTHFLRKVNPLFWVDKGIWYLQNQKTFEATRKADEAYLAAHLKAVSLLNQIDDAQTEEA SWTHFLRKVNPLFWVDKGIWYLQNQKTFEAARKADEAYLAAHLKAVSLLNQLDEAQTEDA SWTHFLRKVNPLFWVDKGIWYLQNQKTFEASRKADEAYLAAHLKAVSLLNQLDEAKSDED SWTHFLRKVNPLFWVDKGIWYLQNQKTFEASRKADETYLAAHLKAVSLLNQLDDAKTDDD *******	600 600 600
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	KQKAQAELDKFRPELEKAHANMLEWNERLASTPAVLYSNLRDQHRDGEINDAIFFWLMIG KNKAQAELDKFRPELEKVHASMLEWNERLASTPAVLYSNLRDQHRDGEINDAIFFWLMIG KKKAQEAVDQFRPDLEKAHASMLEWNERLASTPAVLYSNLRDQHRDGEINDAIFFWLMIG KKKAQEALDKFRPDLEKAHAAMLEWNERLASTPAVLYSNLRDQHRDGEINDAIFFWLMIG *:*** :*:	660 660 660
с. с. с.	thermophilum aggregatum sp. CP2_5A validum	GWLFGFIPLLRIAFHNYQSPWYRDFEWRKQSPDFPCIGPVKGGTCGVSIQDQLWFCILFS GWLFGFIPLLRIAFHNYQSPWYRDFEWRKQSPDFPCIGPVKGGTCGVSIQDQLWFCILFS GWLFGFIPLLRIAFHNYQSPWYRDFEWRKQSPDFPCIGPVKGGTCGVSIQDQLWFCILFS *******	720 720 720 720

C. C. C.	thermophilum aggregatum sp. CP2_5A	IKPLSAIAWYLDGGWIATMMARGNEAYYLTHNISHTGGVFLYMWNETTWIWTDNHLTAML IKPLSAIAWYLDGGWIATMMARGNEAYYLTHNISHTGGVFLYMWNETTWIWTDNHLTAML IKPLSAIAWYLDGGWIATMMARGNEAYYLTHNISHTGGVFLYMWNETTWIWTDNHLTAML	780 780 780
С.	validum	1KPLSA1AWYLDGGW1ATMMARGNEAYYLTHN1SHTGGVFLYMWNETTW1WTDNHLTAML ************************************	/80
С.	thermophilum	LLGHLIWFVSFALWFKDRGSRAEGGDIQSRWVRLMGKRLGIKTLQEVRFPVSNLATAKLW	840
С.	aggregatum	LLGHLIWFVSFALWFKDRGSRAEGGDIQSRWVRLVGKRLGIKTLQEVRFPVSNLATAKLW	840
C .	sp. CP2 5A	LLGHLIWFVSFALWFKDRGSRAEGGDIQSRWVRLMGKRLGIKTLQEVRFPVSNLATAKLW	840
С.	validum	LLGHLIWFVSFALWFKDRGSRAEGGDIQSRWVRLMGKRLGIKTLQEVRFPVSNLATAKLW ************************************	840
С.	thermophilum	GTVFFYTGTFVLVFL <mark>Y</mark> FADGFFQNR 865	
С.	aggregatum	GTVFFYTGTFVLVFLYFADGFFQNR 865	
С.	sp. CP2 5A	GTVFFYTGTFVLVFLYFADGFFQNR 865	
С.	validum	GTVFFYTGTFVLVFLYFADGFFQNR 865	

Supplementary Fig. 5 Multiple sequence alignment of PscA from chloroacidobacterial species. Highlighted residues are involved in H-bonding with the C3 acetyl moiety of BChl *a* molecules in the CabRC structure (PDB 7VZR). The sequences used in the alignment are as follows: *C. thermophilum*, NCBI reference number WP_014100663.1; *Chloracidobacterium aggregatum*, WP_211422155.1; *Chloracidobacterium* sp. CP2_5A, GenBank reference number OYT70531.1; *Chloracidobacterium validum*, NCBI reference number WP_211428666.1.

Supplementary Table 1 List of (B)Chl types sorted by local resolution. The residue name, residue number, and chain correspond to those annotated in PDB 7VZR.

Zn-BChl a' molecules										
Residue Name	Residue Number	Chain	Resolution (Å)							
2GO	901	А	2.185							
2GO	903	а	2.186							
BChl a molecules										
Residue Name	Residue Number	Chain	Resolution (Å)							
BChl a	908	А	2.228							
BChl a	910	а	2.231							
BChl a	909	А	2.259							
BChl a	911	а	2.259							
BChl a	903	А	2.303							
BChl a	904	а	2.312							
BChl a	908	а	2.317							
BChl a	906	А	2.318							
BChl a	902	А	2.325							
BChl a	905	а	2.341							
BChl a	909	а	2.361							
BChl a	907	А	2.367							
BChl a	905	А	2.403							
BChl a	907	а	2.418							
BChl a	904	А	2.495							
BChl a	906	а	2.499							
Chl a molecul	es									
Residue Name	Residue Number	Chain	Resolution (Å)							
Chl a	931	А	2.193							
Chl a	910	А	2.205							
Chl a	912	а	2.218							
Chl a	915	а	2.227							
Chl a	901	а	2.245							
Chl a	933	A	2.246							
Chl a	912	А	2.260							
Chl a	914	а	2.285							
Chl a	913	а	2.323							
Chl a	911	А	2.348							

Supplementary Data 1 Files for generation of cone scan data (external). These files can be found at <u>https://github.com/DavidAFlesher/CabRC_ConeScans_2023</u>.

Supplementary Data 2 Coordinate file for altered CabRC structure where the three acetyl moieties of the BChl *a* molecules in sites A902, A906, and a908 are flipped and water molecules are added.