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Optimization challenges span a wide array of fields, from logistics and scheduling to finance,
materials science, and drug discovery. Among these, Quadratic Unconstrained Binary Optimiza-
tion (QUBO) problems are especially significant due to their computational complexity and their
potential as a key application for quantum computing. In this work, we introduce an approach
for solving QUBO problems using hybrid qubit-qumode bosonic quantum computers—devices that
manipulate and measure the quantum states of light within microwave cavity resonators. We map
problems with soft and hard constraints onto the Hamiltonian of a hybrid quantum system, consist-
ing of a single qubit coupled to multiple qumodes. The optimal solution is encoded in the ground
state of the system, which is revealed by photon-number measurements. Trial states are prepared
through universal qubit-qumode circuits, employing echoed conditional displacement (ECD) gates
in combination with qubit rotations. Our approach demonstrates the immense potential of hybrid
quantum systems, showcasing their ability to efficiently tackle complex optimization problems in
both academia and industry.

I. INTRODUCTION

Variational Quantum Algorithms (VQAs) are a class
of hybrid methods that combine quantum and classi-
cal computing to address optimization problems. They
are particularly well-suited for near-term quantum de-
vices, which face constraints such as limited qubit counts
and high error rates1–4. VQAs can address a wide
range of real-world applications. These include molec-
ular property prediction and generation5,6, RNA folding
problems7, and protein-ligand docking8. They can also
be applied to training machine learning models9, solv-
ing structural design10, vehicle routing11, and capital-
budgeting problems12. VQAs are designed to approxi-
mate the ground states of Hamiltonians that encode op-
timization problems. Among the most prominent VQAs
are the Quantum Approximate Optimization Algorithm
(QAOA)13,14 and the Variational Quantum Eigensolver
(VQE)2,3,15. QAOA constructs parameterized quantum
circuit (PQC) ansatzes by using the Hamiltonian itself.
VQE, on the other hand, iteratively updates the param-
eters of an ansatz to minimize an expectation value com-
puted with a classical computer.

In this work, we demonstrate how to implement
VQAs for solving constrained optimization problems us-
ing hybrid qubit-qumode quantum devices. Our ap-
proach employs variational echoed conditional displace-
ment (ECD) ansatzes16–18, after transforming the opti-
mization tasks into quadratic unconstrained binary opti-
mization (QUBO) problems19,20. We demonstrate the

capabilities of the method as compared to QAOA in
solving a Binary Knapsack Problem (BKP)21. In solv-
ing the BKP problem, we demonstrate that the VQE
approach utilizing the ECD ansatz on a hybrid qubit-
qumode device outperforms the standard QAOA method
implemented with qubits. This finding is consistent with
recent studies22–25 which reveal the inherent limitations
of QAOA and the importance of developing more effec-
tive methods for addressing combinatorial optimization
problems.

Quantum devices built with a combination of qubits
and bosonic qumodes represent a new paradigm toward
quantum computing26–32. Qumodes are quantum har-
monic oscillators and the Fock basis of qumodes can have
countably infinite discrete levels in principle33, instead of
only two levels in the case of qubits. Quantum algorithms
based on qumodes can be more resourceful in tackling
multiple variables with fewer quantum information build-
ing blocks, leading to the development of qumode-based
combinatorial optimization algorithms34–37. These algo-
rithms so far have focused on the qumode-only hardware
architecture based on photonic quantum computing38–40,
where non-Gaussian quantum gates such as cubic phase
gates that are necessary for universality can be chal-
lenging to implement41. In contrast, coupling one or
multiple qumodes with a qubit can efficiently imple-
ment the universal gate sets for both qumodes and the
composite qubit-qumode system16–18,42,43. In the circuit
quantum electrodynamics (cQED) approach, this can be
achieved by coupling microwave cavities with a trans-
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FIG. 1. A constrained optimization problem is transformed into a QUBO problem, which is then solved by a qubit-qumode
device. The QUBO problem, which has a diverse range of applications, is transformed into a problem of finding the ground state
of qubit-qumode Hamiltonian. The ground state is represented by a paramterized quantum circuit involving qubit-qumode
gates and the cost function is computed by measuring photon numbers inside the qumodes.

mon qubit26,28, which has been recently shown to achieve
quantum error correction beyond break-even for logical
qubits44 and qudits45. Another unique feature of hy-
brid qubit-qumode devices is its native gates such as the
qubit-conditioned bosonic displacement operator that al-
lows exploring a different optimization space when used
for PQCs in variational methods18, which leads to deep
circuits if emulated on a qubit-only device30,46.
We demonstrate a method for solving optimization

problems with both soft and hard constraints using quan-
tum hardware that integrates qumodes with a qubit.
The computational task is framed as a quadratic uncon-
strained binary optimization (QUBO) problem19,20, with
the Hilbert space of the multi-qubit Hamiltonian mapped
onto the combined Hilbert spaces of a single qubit and
a multi-qumode device. Measurements in the computa-
tional basis of the multi-qubit Hamiltonian are translated
into photon number measurements of the qumodes. The
optimal binary solution is then reconstructed from pho-
ton number measurements on the hybrid qubit-qumode
system, using the bosonic ECD-VQE ansatz47 generated
by qubit-qumode ECD gates combined with qubit rota-
tions, as schematically shown in Figs. 1 and 3.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss how to map a constrained optimiza-
tion problem into a qubit-qumode Hamiltonian and how
to solve it using a hybrid quantum-classical variational
approach. We apply our method to two different opti-
mization problems in Section III. In Section IV, we ana-
lyze how noise can affect performance, before concluding
in Section V.

II. METHODS

In this section, we review how to represent a con-
strained optimization problem in terms of a qubit Hamil-

tonian before discussing how to implement it on a qubit-
qumode device. Then we introduce a variational ap-
proach to find the optimal solution as the ground state
of the qubit Hamiltonian.

A. Qubit Hamiltonian

Let us review how to transform a constrained optimiza-
tion problem into a QUBO form with the binary knap-
sack problem (BKP), a fundamental integer program-
ming problem in combinatorial optimization and oper-
ations research21. It can be defined as

max
x

V =

N0−1∑
j=0

vj xj , xj ∈ {0, 1}, (1a)

subject to W0(x) =

N0−1∑
j=0

wj xj ≤W, (1b)

where W is the total weight capacity of a knapsack, N0

is the number of items available, {vj} are the item val-
ues, and {wj} are the item weights. The BKP defined
in Eq. (1) is also called the 0-1 knapsack problem, and
is known to belong to the NP-hard computational com-
plexity class48–50. Many real-world optimization prob-
lems can be represented as a BKP51, such as molecular
drug discovery52.
The constrained optimization of Eq. (1) can be

transformed to an unconstrained problem by introduc-
ing auxiliary binary variables {yj} to have a QUBO
representation19,20

min
x,y

E = −V (x) + λ
[
W −W0(x)−

N1−1∑
j=0

2j yj

]2
, (2)
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where λ is the quadratic penalty weight and the sum
of N1 = ⌈log2(W + 1)⌉ terms. We can now write the
cost function E(x) as a function of {xj} variables where
the number of binary variables has increased to N0 +N1

including the auxiliary variables

min
x
E = −

N0−1∑
j=0

vj xj + λ
[
W −

N0−1∑
j=0

wj xj

−
N0+N1−1∑
j=N0

2j−N0 xj

]2
, (3)

which can now be mapped to a qubit Hamiltonian HQ of
N = N0+N1 qubits by substituting each xj 7→ 1

2 (Ij−Zj),
where I and Z are the identity and the Pauli-Z operators
and the subscript index represent the qubit site. The
binary variable to qubit operator mapping can be easily
justified by noting that the eigenstates of the Z operator
are the qubit basis states |0⟩ and |1⟩ with eigenvalues +1
and −1, respectively. The multi-qubit Hamiltonian can
then be written as

HQ = −
N0−1∑
j=0

vj
2

(Ij − Zj) + λ
[
W −

N0−1∑
j=0

wj
2

(Ij − Zj)

−
N0+N1−1∑
j=N0

2j−N0−1 (Ij − Zj)
]2
. (4)

The binary string x∗ representing the optimal solution
of Eq. (3) is now encoded into a tensor product of N
computational basis states

|ψ⟩ = |x∗0⟩ ⊗ · · · ⊗ |x∗N−1⟩ , (5)

and is the ground state of HQ. Similar to the BKP
problem discussed above, any constrained optimization
problem can be represented by a Hamiltonian HQ of the
form defined in Eq. (4) by representing the constraints
by auxiliary variables and designing a quadratic penalty
function.

B. Hilbert space mapping

Let us define a N -qubit Hamiltonian HD below that
can be written as a linear combination of terms each con-
sisting of only identity and Pauli-Z operators

HD =

NH∑
µ=1

gµ σ
(µ)
1 ⊗ · · · ⊗ σ(µ)

N =

NH∑
µ=1

gµ D(µ)
N , (6)

where σj = I, Z, the Hamiltonian coefficients {gµ} are
known, and the number of terms NH is assumed to be
a computationally manageable finite number. For exam-
ple, HQ defined in Eq. (4) consists of O(N2

0 +N
2
1 +N0N1)

terms. Each of theD(µ)
N terms is a diagonal operator since

I = |0⟩ ⟨0|+ |1⟩ ⟨1| , (7a)

Z = |0⟩ ⟨0| − |1⟩ ⟨1| . (7b)

Our goal is to compute ⟨ψ| D(µ)
N |ψ⟩ for a given state using

a combination of Pauli-Z measurements on a qubit and
photon number measurements on qumodes. The pho-
ton number measurements compute the probabilities of
finding the discrete Fock states {|n⟩}n∈N of a quantum
harmonic oscillator or number of photons in an optical
mode, and are the eigenstates of the bosonic number op-
erator, n̂ |n⟩ = â†â |n⟩ = n |n⟩, where â†, â are bosonic
creation and annihilation operators, respectively. For a
realistic setup, the maximum number of photons can be
set to finite integer L−1, where L is called the Fock cut-
off. From the Fock basis perspective, a qumode is thus
equivalent to a multilevel generalization of a qubit in L
dimensions, also known as a qudit53.
Let us first discuss it in the context of photon num-

ber measurements of one qumode for the sake of simplic-

ity. The observable ⟨ψ| D(µ)
N |ψ⟩ can be computed from

the histogram of all possible binary strings |q1, · · · , qN ⟩Q
from Pauli-Z measurements since

⟨ψ| Zp1 · · ·ZpN |ψ⟩ =
∑
b

(−1)
∑N

i=1 bpi P(b), (8)

where {b} represent all qubit basis states as bitstrings,
P(b) is the probability of measuring the state |b⟩ in the

measurements, and
∑N
i=1 bpi is the sum of the bit values

at positions {p1, · · · , pN}, which determines the sign for
each qubit in the Pauli word. Each of the binary bitst-
ings of N qubits can be in principle mapped to the Fock
space of a single qumode with L = 2N using the binary
mapping

|q1, · · · , qN ⟩Q ↔ |n⟩B , (9)

where n = 20 q1 + · · ·+2N−1 qN . Thus, the histogram of
binary strings can be generated by photon number mea-
surements on a single qumode instead of Pauli-Z mea-
surements on multiple qubits. A single qumode Hilbert
space with a realistic cutoff L can only handle map-
ping a few qubits realistically. However, we can expand
the Hilbert space significantly by working with multiple
qumodes, thus allowing the map of a large number of
qubits with fewer qumodes by a constant factor log2(L).
In this work, we will focus on a hardware setup with one
qubit and two qumodes, which can be readily generalized
to multiple qumodes. Thus, we will explore partitioning
the N -qubit Hilbert space such that it matches with the
combined Hilbert space of one qubit and two qumodes,
i.e., 2N = 2×L1×L2, where L1 and L2 are the Fock cut-
offs for the first and second qumodes, respectively. Thus,
the N -qubit state |q1, · · · , qN ⟩Q Hilbert space can now
be partitioned into three pieces and mapped to

|q1⟩Q ⊗ |q2, · · · , qN−j⟩Q ⊗ |qN−j+1, · · · , qN ⟩Q
↔ |q1⟩Q ⊗ |n⟩B ⊗ |m⟩B , (10)



4

Microwave cavity Dispersive coupling Readout resonatorTransmon qubit

FIG. 2. Schematic to implement quantum nondemolition
(QND) approach for photon number measurements for two
qumodes with computational measurements for the coupled
qubit. Two microwave cavities are dispersively coupled to a
coupler transmon qubit with a readout resonator for compu-
tational basis measurement of the coupler qubit. Each of the
cavities are also coupled to an ancillary transmon qubit with
a readout resonator which allows for photon number detec-
tion followed by the approach discussed in Ref. 46.

where 1 ≤ j ≤ N−2. For example, one possible partition
for the Hamiltonian HQ defined in Eq. (4) can be that
the N0 primary variables are represented by the qubit
and the first qumode, whereas the second qumode rep-
resents the N1 auxiliary variables. Let us discuss with a
simple example where a one-qubit two-qumode quantum
state |ψ⟩ is prepared followed by Pauli-Z measurement on
the qubit and photon number measurements on the two
qumodes. Let us also assume |ψ⟩ is originally represent-
ing a five-qubit Hamiltonian, which has been partitioned
such that the first qubit remains the same, where the rest
of the four qubits are grouped into two equal parts and
each mapped to one qumode. The measured bitstrings
of the first subsystem remains the same, i.e., |0⟩ and |1⟩.
For each of the second and third subsystems, the possible
bitstrings can be mapped as

|0⟩ ⊗ |0⟩Q 7→ |0⟩B , |0⟩ ⊗ |1⟩Q 7→ |1⟩B , (11a)

|1⟩ ⊗ |0⟩Q 7→ |2⟩B , |1⟩ ⊗ |1⟩Q 7→ |3⟩B . (11b)

For example, the one-qubit two-qumode basis state
|1⟩Q ⊗ |3⟩B ⊗ |2⟩B is same as the five-qubit basis state

|1, 1, 1, 1, 0⟩Q.
A novel characteristic of our approach is the use of

photon number measurements to output positive integers
that can be easily converted to binary strings for evalu-
ating the expectation value of the qubit-based Hamilto-
nian HQ as defined in Eq. (6) or HD of Eq. (4). Pho-
ton number measurements can be implemented using the

quantum nondemolition (QND) method, as described in
Ref. 46. The QND measurement relies on the disper-
sive coupling between the cavity mode and its ancillary
transmon qubit. In the dispersive regime, the transi-
tion frequency of the transmon qubit shifts depending
on the photon number in the cavity. This shift enables
the transmon to encode information about the cavity’s
photon state. A sequence of numerically optimized con-
trol pulses is applied to the transmon to extract this in-
formation. These pulses selectively drive the transmon
between its quantum states based on the binary repre-
sentation of the photon number. The transmon state
carrying photon number information is probed via a dis-
persive readout. This QND scheme achieves high reso-
lution and fidelity, resolving photon numbers up to 15
in single-shot experiments.46 We refer the reader to Fig-
ure 2 for a schematic of the hardware setup where photon
number measurements on two qumodes is combined with
computational basis measurements on a qubit.
While computing the expectation values of the Hamil-

tonian in binary basis is a generally effective strategy, we
may also rewrite the auxiliary binary variables {yj} in
Eq. (2) in the basis of the photon number cutoff L of the
qubits. As an example, we can use one integer variable
b,

min
x,y

E = −V (x) + λ
[
W −W0(x)− b

]2
, (12)

such that it has values b = 0, · · · , 2N1−1. By representing
the integer variable to the bosonic number operator b 7→
n̂, we can now map the qubit Hamiltonian HQ defined
in Eq. (4) to a qubit-qumode Hamiltonian of the form

HQ 7→ HQB = −
N0−1∑
j=0

vj
2

(Ij − Zj)

+ λ
[
W −

N0−1∑
j=0

wj
2

(Ij − Zj)− n̂
]2
, (13)

where the number operator n̂ is assumed to have the Fock
cutoff L = 2N1 − 1 and the corresponding qumode rep-
resents all of the auxiliary variables. This ensures that
the photon number measurements corresponding to the
Hilbert space of the auxiliary variables can be used di-
rectly without the integer-to-binary mapping, and which
can also lead to fewer Hamiltonian terms compared to
the qubit-only Hamiltonian defined in Eq. (4).
Finally, it is also possible to represent and evaluate

the Hamiltonian directly in the basis of the experimental
qubit-qumode device in the projection operator form

HQ 7→ HB =
∑

i∈{Q,B1,B2}

Li∑
n=0

Cin P(i)
n

+

i ̸=j∑
i,j∈{Q,B1,B2}

Li∑
n=0

Lj∑
m=0

Ci,jn,m P(i)
n ⊗ P(j)

m

(14)



5

where P(i)
n ≡ |n⟩ ⟨n| is defined in the Hilbert space of

the qubit mode (i = Q) of dimension 2 or the bosonic
modes (i = B1 or B2) of dimension L1 or L2. {Cin} and
{Ci,jn,m} can be deduced by rewriting the single- or two-
qubit Pauli Z operators in the qubit Hamiltonian Eq. (4)
following the qubit-to-qumode mapping. For example,
given the mapping Eq. (11), we have Z2Z3 = |0⟩ ⟨0| −
|1⟩ ⟨1|− |2⟩ ⟨2|+ |3⟩ ⟨3|. We note that for a large problem
with many qubits and qumodes, the number of terms in
the Hamiltonian will only grow quadratically with the
number of modes.

C. Variational quantum eigensolver

We take a variational quantum eigensolver (VQE) ap-
proach to find the approximate ground state of the di-
agonal Hamiltonian HD defined in Eq. (6) by optimizing
the following cost function

min
ψ
E = ⟨ψ|HD |ψ⟩ =

NH∑
µ=1

gµ ⟨ψ| D(µ)
N |ψ⟩ , (15)

where D(µ)
N can be computed using a qubit-qumode de-

vice following the steps below.

• Prepare a normalized trial one-qubit two-qumode
state |ψ⟩ using a parameterized quantum circuit.

• Generate the histogram of |q⟩Q ⊗ |n⟩B ⊗ |m⟩B us-
ing Pauli-Z measurements on the qubit and photon
number measurements on the two qumodes.46

• Compute the expectation value by combining
Eq. (8) and Eq. (10).

The trial state |ψ⟩ can be generated by a parameterized
one-qubit two-qumode circuit acting on the vacuum state

|ψ(v)⟩ = U(v)
(
|0⟩Q ⊗ |0⟩C ⊗ |0⟩C

)
, (16)

where the vector v represents all the circuit parameters.
The parameters can be updated by optimizing Eq. (15)
on a classical computer. The histograms on the qubit-
qumode device compute the following probabilities

Sq,n,m = | ⟨q, n,m|ψ⟩ |2, (17)

where q = {0, 1}, n = {0, 1, · · · , L1 − 1}, and m =
{0, 1, · · · , L2 − 1} are the possible basis states. After re-
peating the measurement experiments for a finite number
of times, a distribution for {Sq,n,m} can be generated for
computing the expectation values.

The overlaps {Sq,n,m} also measure how close the ap-
proximate ground state |ψ⟩ — a state in a superposi-
tion of multiple solution strings — is to the optimal so-
lution string. Thus, for the QUBO problems, we only
care about the resolution of the distribution generated
by the measurements {Sq,n,m} instead of how close the

FIG. 3. Hybrid one-qubit two-qumode circuit followed by
measurements for computation of expectation values of a di-
agonal Hamiltonian as defined in Eq. (6). The circuit consists
of echoed conditional displacement (ECD) qubit-qumode gate
with one-qubit rotations, as discussed in Section IIC.

trial energy E is to the true ground state energy of the
Hamiltonian HD. The quantum superposition of |ψ⟩ also
highlights the potential advantage of quantum optimiza-
tion algorithms. The parametrized trial state one-qubit
two-qumode can be generically represented as

|ψ(v)⟩ =
∑

q∈{0,1}

L1−1∑
n=0

L2−1∑
m=0

λq,n,m(v) |q, n,m⟩ , (18)

and the optimization steps depend on the gradient for
the cost function defined in Eq. (15)

∂E

∂v
= ⟨∂ψ

∂v
|HD |ψ⟩+ ⟨ψ|HD |

∂ψ

∂v
⟩ , (19)

which in turn updates |ψ(v)⟩ for the next iteration based
on Eq. (16). This means at each optimization step all the
combinatorial number of basis state coefficients affect the
variational parameters which in turn updates all the basis
state coefficients at the same time in the next iteration.
This can be hard to mimic using a classical distribution
that only samples from a subspace of the full Hilbert
space54–56. Nevertheless, the true potential of quantum
superposition is achieved when the parameterized circuit
for |ψ(v)⟩ is sufficiently expressive, which we discuss be-
low in the context of qubit-controlled bosonic qumode
gates.
The parameterized circuit for the trial state defined

in Eq. (16) must be a universal ansatz for the one qubit
and multiple qumodes, which can be achieved in multiple
ways16–18,42,43. We explore a universal ansatz based on
the following circuit here17

U(v) = UER(βNd
,θNd

,ϕNd
) · · ·UER(β1,θ1,ϕ1). (20)

The building block unitaries UER are built from one-
qubit arbitrary rotations

R(θ, ϕ) = e−i(θ/2)
[
cos(ϕ)X+sin(ϕ)Y

]
, (21)
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and two one-qubit one-qumode echoed conditional dis-
placement (ECD) operations16

UER(βj ,θj ,ϕj) = ECD0,2(βj,2)R0(θj,2, ϕj,2)

× ECD0,1(βj,1)R0(θj,1, ϕj,1), (22a)

ECD0,1(β1) = σ−
0 D1(β1/2) + σ+

0 D1(−β1/2), (22b)

ECD0,2(β2) = σ−
0 D2(β2/2) + σ+

0 D2(−β2/2), (22c)

where D(β) = eβâ
†−β∗â is the qumode displacement op-

erator, X,Y are Pauli matrices, and σ+ = |0⟩ ⟨1| , σ− =
|1⟩ ⟨0| are the qubit transition operators. The oper-
ator subscripts in Eq. (22) represent the indexing for
qubit and the two qumodes and tensor product is as-
sumed. Other choices for universal ansatz include se-
lective number-dependent arbitrary phase (SNAP) with
displacement and beamsplitters30,42, and conditional-not
displacement gates43. The variables {β,θ,ϕ} in Eq. (20)
are matrices of dimensions Nd × 2, where the complex-
valued β matrix can also be split into two real-valued
matrices of same dimensions. We call the number of
blocks Nd in Eq. (20) as the depth of the universal ECD-
rotation circuit. Thus, the packed vector v representing
all the real-valued parameters has 8Nd dimensions. The
full circuit is illustrated in Figure 3.

III. APPLICATIONS

We now have all the tools needed to implement the
ECD-VQE method for finding the ground state of a di-
agonal HB . We show the applications of our ECD-VQE
approach with two specific examples here.

A. Binary knapsack problem

Let us discuss a simple binary knapsack problem. Let
us assume we have N0 = 4 items with their values and
weight constraints given by

max
x

2 x0 + 5 x1 + 7 x2 + 3 x3, (23a)

subject to 2.5 x0 + 3 x1 + 4 x2 + 3.5 x3 ≤ 7. (23b)

Following the discussions in Section IIA, the above opti-
mization can be recast as the following QUBO problem

min
x
E = −(2 x0 + 5 x1 + 7 x2 + 3 x3)

+ λ
[
7− (2.5 x0 + 3 x1 + 4 x2 + 3.5 x3)

− (x4 + 2 x5 + 4 x6)
]2

(24)

consisting of 4 + 3 = 7 binary variables. For the penalty
weight λ = 2, the corresponding seven-qubit Hamiltonian

25 50 75 100 125 150 175 200
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FIG. 4. Trial energy values defined in Eq. (15) at different
ECD-VQE iterations while finding the ground state of HQ

defined in Eq. (25). The horizontal black line represents the
exact ground state energy. The circuit depth for the trial
state is Nd = 5.

is given by

HQ = 41.75− 14.0 Z0 − 15.5 Z1 − 20.5 Z2 − 19.5 Z3

− 6.0 Z4 − 12.0 Z5 − 24.0 Z6 + 7.5 Z0Z1 + 10.0 Z0Z2

+ 8.75 Z0Z3 + 2.5 Z0Z4 + 5.0 Z0Z5 + 10.0 Z0Z6

+ 12.0 Z1Z2 + 10.5 Z1Z3 + 3.0 Z1Z4 + 6.0 Z1Z5

+ 12.0 Z1Z6 + 14.0 Z2Z3 + 4.0 Z2Z4 + 8.0 Z2Z5

+ 16.0 Z2Z6 + 3.5 Z3Z4 + 7.0 Z3Z5 + 14.0 Z3Z6

+ 2.0 Z4Z5 + 4.0 Z4Z6 + 8.0 Z5Z6. (25)

The ground state of HQ obtained by exact diagonaliza-
tion is |0, 1, 1, 0⟩Q⊗|0, 0, 0⟩Q with eigenvalue -12. Indeed,

the optimal solution is x∗ = (0, 1, 1, 0) with the corre-
sponding weight = 7 and value = 12. We will now par-
tition the seven-qubit Hamiltonian into three parts such
that it will be mapped to a one-qubit two-qumode system
with the Fock cutoff for each qumode being L = 8. In
other words, we map the first four qubits corresponding
to the primary variables to the qubit along with the first
qumode, and the rest to the second qumode. The ground
state of HQ is now mapped as

|0, 1, 1, 0⟩Q ⊗ |0, 0, 0⟩Q ↔ |0⟩Q ⊗ |6⟩C ⊗ |0⟩C , (26)

or in shorthand, |0, 6, 0⟩. This is the state that we are
after for this model benchmark system.

We show the trial energies for the ECD-VQE method
applied to HQ of Eq. (25) in Figure 4. The circuit
depth chosen for the trial state is Nd = 5. We emu-
lated the expectation values classically using the QuTiP
Python library57 and optimized the energy function of
Eq. (15) using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm as implemented in the SciPy Python
library58. It is clear from Figure 4 that the ECD-VQE
method discussed here practically converges to the ex-
act ground state energy in approximately 100 iterations.
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FIG. 5. Probabilities Sq,n,m = | ⟨q, n,m|ψ⟩ |2 at different numbers of iterations of the ECD-VQE method for the one-qubit
two-qumode Hamiltonian HQ defined in Eq. (25). The histograms are split into two parts for better readability of the basis
states. The circuit depth for the trial state is Nd = 5. The corresponding trial energy values are shown in Figure 4.

The goal in traditional VQE approaches is usually to find
highly accurate ground state energies whereas our goal
here is to resolve the ground state |0, 6, 0⟩ which repre-
sents the optimal solution. We plot the corresponding
{Sq,n,m} probability values as defined in Eq. (17) dur-
ing different iterations of ECD-VQE in Figure 5. The
ground state is practically resolved after 80 iterations
and emerges as the highest peak even in 10 iterations,
as shown in Figure 5. Thus, resolving the ground state
may be achieved using a relatively smaller number of clas-
sical optimization steps than for finding the energy. We
highlight that the {Sq,n,m} probability values are directly
available from photon number and Pauli-Z measurement
histograms without the need for explicitly iterating over
all possible integer strings such as in a classical simulator.

We also compare our results for this BKP problem
with the quantum approximate optimization algorithm
(QAOA)13,14, which is a qubit-only VQA algorithm
widely used as a benchmark quantum algorithm for com-
binatorial binary optimization problems. QAOA can be
thought of as a special case of VQE, where the PQC
ansatz consists of the alternating application of p-layers
of parametrized “mixing” and “problem” unitaries, ap-
plied to a quantum register initialized in a uniform su-
perposition

|ψ(β, γ)⟩ = e−iβpHM e−iγpHP · · · e−iβ2HM e−iγ2HP

e−iβ1HM e−iγ1HP |+⟩⊗N . (27)

The problem Hamiltonian HP in this cased is same as in

1 5 10 20
p Layers

0.00

0.02

0.04

0.06

0.08

0.10

0.12

|
Q

AO
A
|

G
S

|2

Best Run

FIG. 6. Optimal probabilities for different numbers of QAOA
layers chosen out of 50 independent trials for the ground state
of the seven-qubit Hamiltonian defined in Eq. (25). Each trial
converged with ∼ 150 iterations with the classical optimizer.

Eq. (25), whereas the mixing Hamiltonian is defined as

HM =
∑N−1
j=0 σxj . The QAOA calculations were imple-

mented numerically with QuTiP using the BFGS clas-
sical optimizer. The optimal QAOA result out of 50
independent trials for increasing layers is shown in Fig-
ure 6. These results show that the probability of mea-
suring the bitstring corresponding to the solution gen-
erally increases by increasing the number of layers. We
note that the QAOA approach with p = 20 layers has
the same number of variational parameters as the ECD-
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FIG. 7. Measurement probabilities for bitstring basis states for the optimal QAOA state with p = 20-layers for the seven-qubit
Hamiltonian defined in Eq. (25).

VQE approach withNd = 5 blocks, highlighting the more
favorable optimization landscape for the ECD-based ap-
proach. We also note that the number of CNOT gates
per layer scales as O(N2) for QUBO problems where N is
the number of qubits59. Indeed, the number of two-qubit
CNOT gates needed for the BKP problem discussed here
for even one layer is 42, which is more than the gate
counts for the ECD-VQE approach, where Nd = 5 blocks
correspond to only 10 one-qubit one-qumode ECD gates.
Since the highest probability of measuring the solution
was obtained with p = 20 layers, we chose to sample the
measurement outcomes with this optimal QAOA circuit.
The results of the measurement sampling are shown in
Figure 7. Although the solution bitstring has the highest
measurement probability, we see that there is still a sub-
stantial likelihood of sampling sub-optimal states. The
comparison between Figure 5 and Figure 7 indicates the
potential advantages of an expressive VQE ansatz over
the QAOA approach whose ansatz is limited by its cost
and mixing Hamiltonians. In our case, the VQE ansatz
is provided by a set of native qubit-qumode gates that re-
veal the optimal solutions with the help of a few blocks of
gates. Mimicking the ECD-VQE ansatz on a qubit-only
device will lead to a deep circuit30,46, which motivates
our VQE approach with hybrid qubit-qumode hardware.

B. Multiple constraints

Our approach can be applied to any constrained op-
timization problem beyond the BKP problem discussed
above. Indeed, let us discuss another simple constrained
optimization problem given below

min
x

x0 + 2x1 + x2, (28a)

subject to x0 + x1 = 1, (28b)

2x0 + 2x1 + x2 ≤ 3, (28c)

x0 + x1 + x2 ≥ 1. (28d)

25 50 75 100 125 150 175 200
Iteration

2

4

6

8

10

12

14

Tr
ia

l e
ne

rg
y 

(a
.u

.)

FIG. 8. Trial energy values defined in Eq. (15) at different
ECD-VQE iterations while finding the ground state of HQ

defined in Eq. (30). The horizontal black line represents the
exact ground state energy. The circuit depth for the trial
state is Nd = 10.

which can be represented as the following QUBO problem

min
x
F = x0 + x1 + x2 + λ1 (1− x0 − x1)2

+ λ2
[
3− (2x0 + 2x1 + x2)− (x3 + 2x4)

]2
+ λ3

[
(x0 + x1 + x2)− x5 − 1

]2
, (29)

consisting of 3 + 3 = 6 binary variables. For the penalty
weight λ = 5, the corresponding six-qubit Hamiltonian
is given by

HQ = 32.0− 10.5 Z0 − 11.0 Z1 − 5.5 Z2 − 5.0 Z3

− 10.0 Z4 + 15.0 Z0Z1 + 7.5 Z0Z2 + 5.0 Z0Z3

+ 10.0 Z0Z4 − 2.5 Z0Z5 + 7.5 Z1Z2 + 5.0 Z1Z3

+ 10.0 Z1Z4 − 2.5 Z1Z5 + 2.5 Z2Z3 + 5.0 Z2Z4

− 2.5 Z2Z5 + 5.0 Z3Z4. (30)

The ground state of HQ obtained by exact diagonaliza-
tion is |1, 0, 0⟩Q ⊗ |1, 0, 0⟩Q with eigenvalue 1. Indeed,



9

|0
,0

,0
|0

,0
,1

|0
,0

,2
|0

,0
,3

|0
,0

,4
|0

,0
,5

|0
,0

,6
|0

,0
,7

|0
,1

,0
|0

,1
,1

|0
,1

,2
|0

,1
,3

|0
,1

,4
|0

,1
,5

|0
,1

,6
|0

,1
,7

|0
,2

,0
|0

,2
,1

|0
,2

,2
|0

,2
,3

|0
,2

,4
|0

,2
,5

|0
,2

,6
|0

,2
,7

|0
,3

,0
|0

,3
,1

|0
,3

,2
|0

,3
,3

|0
,3

,4
|0

,3
,5

|0
,3

,6
|0

,3
,7

|1
,0

,0
|1

,0
,1

|1
,0

,2
|1

,0
,3

|1
,0

,4
|1

,0
,5

|1
,0

,6
|1

,0
,7

|1
,1

,0
|1

,1
,1

|1
,1

,2
|1

,1
,3

|1
,1

,4
|1

,1
,5

|1
,1

,6
|1

,1
,7

|1
,2

,0
|1

,2
,1

|1
,2

,2
|1

,2
,3

|1
,2

,4
|1

,2
,5

|1
,2

,6
|1

,2
,7

|1
,3

,0
|1

,3
,1

|1
,3

,2
|1

,3
,3

|1
,3

,4
|1

,3
,5

|1
,3

,6
|1

,3
,7

Basis states

0.0

0.2

0.4

0.6

0.8

1.0

|q
,n

,m
|

|2

Iterations = 20
Iterations = 40
Iterations = 200

FIG. 9. Probabilities Sq,n,m = | ⟨q, n,m|ψ⟩ |2 at different numbers of iterations of the ECD-VQE method for the one-qubit
two-qumode Hamiltonian HQ defined in Eq. (30). The circuit depth for the trial state is Nd = 10. The corresponding trial
energy values are shown in Figure 8.

the optimal solution is x∗ = (1, 0, 0). Let us now reorga-
nize the Hilbert space of the six-qubit Hamiltonian into
three parts such that it will be mapped to a one-qubit
two-qumode system with the Fock cutoffs for the two
qumodes being L1 = 4 and L2 = 8. In other words, we
map the first three qubits corresponding to the primary
variables to the qubit along with the first qumode, and
the rest to the second qumode. The ground state of HQ

is now mapped as

|1, 0, 0⟩Q ⊗ |1, 0, 0⟩Q ↔ |1⟩Q ⊗ |0⟩C ⊗ |4⟩C , (31)

or in shorthand, |1, 0, 4⟩ will be our target state for the
ECD-VQE approach as before.

We show the trial energies for the ECD-VQE method
applied toHB of Eq. (30) in Figure 8 and the correspond-
ing overlaps in Figure 9. The circuit depth chosen for the
trial state is Nd = 10. It is clear that the ground state
of the Hamiltonian is fairly resolved after 40 iterations
and emerges as the highest peak even in 20 iterations,
as shown in Figure 9, even though there is space for the
trial energy to converge to lower values even after 200 it-
erations. This again shows the efficiency of this method
in resolving the optimal solution state with just a few
optimization iterations.

IV. EFFECTS OF QUMODE NOISE

The implementations of the qumode circuits followed
by photon number measurements discussed in this work
are affected by noise in a realistic hardware setup. The
dominant noise source for microwave resonators in cQED
is amplitude damping via photon loss, represented by the
rate equation below30

d

dτ
⟨n̂⟩ = −κ ⟨n̂⟩ , (32)

where τ is time and κ is the photon loss rate. The trans-
formation of a qumode density matrix ρ due to the am-
plitude damping quantum channel can be represented by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

P 
(n

)

= 0
= 0.001
= 0.01
= 0.1
= 1

FIG. 10. Effect of amplitude damping as defined in Eq. (34)
on the probabilities P (n) of finding the qumode state |n⟩. The
initial state ρ is in an equal superposition state with a Fock
cutoff of L = 16, which then gets modified due to Eq. (33)
before simulating the photon number measurements.

the Kraus operator formalism as60

ρ̃ =

L−1∑
j=0

Kj ρ K
†
j , (33)

where L is the Fock cutoff for the qumode and the Kraus
operators can be shown as61

Kj =

√
(1− e−κτ )j

j!
e−

κτ
2 n̂ âj . (34)

Due to the truncated expression of Eq. (33), the K0 op-
erator must also be modified as below

K̃0 =
(
I−

L−1∑
j=1

K†
jKj

)1/2

, (35)

so that the transformation remains trace-preserving30.
The modified photon number probabilities for a qumode
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FIG. 11. Effect of qumode amplitude damping as defined in Eq. (36) on the photon number probabilities during the ECD-VQE
optimization for the BKP problem defined in Eq. (25). The results are for circuit depth Nd = 5 with number of iterations = 80.
The histograms are split into two parts for better readability of the basis states. The histograms for different noise parameters
κτ are plotted with different widths for better distinguishability. The corresponding noiseless results are shown in Figure 5.

can now be written as, P (n) = Tr(|n⟩ ⟨n| ρ̃). As an
example, we show how amplitude damping defined in
Eq. (33) affects photon number measurements for an ini-
tial qumode state where each Fock basis state has equal
amplitudes in Figure 10.

We discuss how photon loss in the qumodes will af-
fect the ECD-VQE optimizations by applying them to
the BKP example discussed in Section IIIA below. The
density matrix ρ transformation from the noise channel
can be represented as

ρ̃ =

L1−1∑
j=0

L2−1∑
k=0

(
I⊗Kj ⊗Kk

)
ρ
(
I⊗K†

j ⊗K
†
k

)
, (36)

where we have assumed the photon loss rate κ is the
same for each of the qumodes and ignored the noise on
the qubit. We assume that the noise channels affect the
quantum state after each block of ECD with qubit rota-
tion block UER defined in Eq. (22) is applied, i.e., the
time parameter τ in Eq. (34) will be the circuit execu-
tion time for each UER block. After each unitary block is
applied, we can represent the updated density matrix as,

ρ ← UER ρ U
†
ER, which then undergoes the noise chan-

nel transformation as defined in Eq. (36). We show the
effects of photon loss on the ECD-VQE optimization for
the BKP problem in Eq. (25) in Figure 11, where we
plotted the photon number probabilities after 80 itera-
tions. For the noiseless case, 80 iterations are enough to
get a resolved peak, as shown in Figure 5. This is also

the case up to κτ = 0.01, where the optimization can also
resolve the correct solution |0, 6, 0⟩ with certainty. How-
ever, the optimization performance starts to deteriorate
around κτ = 0.1. Thus, Figure 11 gives us an estimate
of how the photon loss rate must relate to the implemen-
tation time for qubit-qumode on a real quantum device,
which is represented by the κτ < 0.1 regime.

V. DISCUSSIONS

We have introduced a variational quantum algorithm
for optimization problems using a qubit-qumode device
that can be applied to constrained optimization prob-
lems using their QUBO form. Our approach replaces
the need for many qubits with only two qumodes cou-
pled to one qubit, which can be implemented using two
microwave cavities coupled to a transmon qubit. Gener-
alization of our approach to multiple qumodes is straight-
forward which can allow mapping an arbitrary number of
qubits to a few qumodes. We have applied our method to
a benchmark binary knapsack problem, where the seven
qubits representing the seven variables are mapped to
one qubit and two qumodes. We have also applied this
method to an optimization problem with multiple con-
straints corresponding to a six-qubit Hamiltonian.
The ECD-VQE approach that we discuss requires sim-

ply running the qubit-qumode circuit and measuring it
in their combined Hilbert space basis for computing the
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expectation values. Furthermore, the measurements are
sufficient to resolve the optimal solution, even if the cost
function value did not strictly converge to the exact
ground state energy. This potentially allows a smaller
number of iterations that are needed for resolving the
optimal solution relative to the traditional VQE ap-
proaches, thus allowing our approach to go beyond the
limitations of classical optimization heuristics62. Even
with two qumodes, our approach can be extended to
problems with more binary variables based on the Fock
cutoff realized by the hardware.

The Hilbert space mapping approach discussed in Sec-
tion II B can be applied to any multi-qubit Hamilto-
nian with diagonal terms, i.e., terms involving only
Pauli-Z and identity operators. Thus, our approach ap-
plies to any QUBO problem that is first mapped into
a qubit Hamiltonian before representing it in terms of
the Hilbert space of a composite one-qubit multi-qumode
system. Specifically, R number of qumodes coupled to
one qubit is equivalent to the number of qubits N =

1 + ⌈ log2(
∏R
j=1 Lj) ⌉, where {Lj} are the Fock cutoffs

for the qumodes. This is a significant resource reduc-
tion going from a qubit-centric architecture to the hybrid
qubit-qumode approach with the flexibility of increasing
the number of qumodes or Fock cutoffs based on the hard-
ware resource.

We have mostly focused on implementing the ECD-
VQE method with a noiseless simulator to highlight the
novelty of this approach. We have briefly discussed the
effect of photon loss in the resonator qumode, the dom-
inant noise source in a realistic cQED setup, on the op-
timization in Section IV. The photon loss rate and ECD
gate implementation times are currently in the same

timescale16. Quantum error correction (QEC) applied
to Fock states of qumodes beyond the first two levels
can resolve the noise error63–65, which is a challenge
for near-term hardware. Nevertheless, huge progress
has been recently made in demonstrating error-corrected
logical qubits using qumode resonators beyond break-
even44, and extended for Fock levels of qumodes as well45.
One promising approach with contemporary hardware to
tackle the photon loss noise is quantum error mitigation
(QEM) techniques, which manage errors on noisy quan-
tum devices. Multiple QEM strategies have been devel-
oped for qumode photon loss66–69, and we leave the com-
bination of these approaches with our ECD-VQE method
as future work.
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