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The oxygen-evolving complex (OEC) of Photosystem II (PSII) is

an oxomanganese complex that catalyzes water-splitting into

O2, protons and electrons. Recent breakthroughs in X-ray

crystallography have resolved the cuboidal OEC structure at

1.9 Å resolution, stimulating significant interest in studies of

structure/function relations. This article summarizes recent

advances on studies of the OEC along with studies of synthetic

oxomanganese complexes for artificial photosynthesis.

Quantum mechanics/molecular mechanics hybrid methods

have enabled modeling the S1 state of the OEC, including the

ligation proposed by the most recent X-ray data where D170 is

bridging Ca and the Mn center outside the CaMn3 core.

Molecular dynamics and Monte Carlo simulations have

explored the structural/functional roles of chloride, suggesting

that it regulates the electrostatic interactions between D61 and

K317 that might be critical for proton abstraction. Furthermore,

structural studies of synthetic oxomanganese complexes,

including the [H2O(terpy)MnIII(m-O)2MnIV(terpy)OH2]3+

(1, terpy = 2,20:60,200-terpyridine) complex, provided valuable

insights on the mechanistic influence of carboxylate moieties in

close contact with the Mn catalyst during oxygen evolution.

Covalent attachment of 1 to TiO2 has been achieved via direct

deposition and by using organic chromophoric linkers. The (III,IV)

oxidation state of 1 attached to TiO2 can be advanced to (IV,IV) by

visible-light photoexcitation, leading to photoinduced interfacial

electron transfer. These studies are particularly relevant to the

development of artificial photosynthetic devices based on

inexpensive materials.
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Introduction
Significant advances in X-ray crystallography of Photosys-

tem II (PSII) were made over the past decade, starting with

the first X-ray crystal model of the PSII protein complex
www.sciencedirect.com 
obtained at 3.8 Å resolution [1,2]. Subsequent work

resolved the structure of PSII at 3.5 Å resolution and

proposed a detailed atomistic model of the oxygen-evol-

ving complex (OEC), responsible for catalytic water oxi-

dation [3]. The model included a cuboidal core CaMn3

with a ‘dangling’ Mn, as suggested by EPR studies [4],

where the metal centers are linked by m-oxo bridges (i.e.

deprotonated water molecules). However, the positions of

the metal centers could not be resolved at 3.5 Å resolution.

Nevertheless, the proposed model stimulated significant

interest for theoretical studies that built chemically sen-

sible models with a complete coordination of high-valent

Mn centers [5–20]. Studies based on density functional

theory (DFT), including quantum mechanics/molecular

mechanics (QM/MM) structural models with an explicit

treatment of the biomolecular environment surrounding

the OEC, addressed the nature of the OEC intermediate

states along the catalytic cycle as proposed by Joliot and

Kok [21,22]. The models were consistent with available

mechanistic data, extended X-ray absorption fine structure

(EXAFS) measurements, and Fourier-transform infrared

(FTIR) spectroscopy [6–11], although several possible

ligation schemes for the nearby amino-acid side chains

were found to be possible. These computational models

revealed important features of the OEC that have been

subsequently confirmed by the most recent X-ray diffrac-

tion (XRD) data, including coordination of terminal water

molecules bound to the Ca atom and to the dangling Mn,

and an additional m-oxo bridge linking the dangling Mn to

the cuboidal CaMn3 cluster (Figure 1) [6–11]. A sub-

sequent X-ray structure, obtained at 3.0 Å resolution, pro-

posed a proteinaceous ligation scheme with bidentate

carboxylate groups bridging the metal centers of the

OEC [23], although the precise positions of the metal

centers, m-oxo bridges, bound water molecules, side chain

ligands, and chloride cofactor still remained unresolved

due to radiation damage during the process of X-ray data

collection and structural disorder [24–26].

Recent advances in X-ray crystallography have reduced

the problem of radiation damage by growing larger crys-

tals and displacing the sample during data collection, and

have reported an XRD model of PSII at 1.9 Å resolution

[27��]. The model confirmed many structural features

common to previous models, including the cuboidal

structure of the OEC, the additional m-oxo bridge linking

the dangling Mn to the cuboidal CaMn3 cluster, the

presence of terminal water molecules bound to Ca and

the dangling Mn, the coordination of nearby amino-acid

residues (with carboxylate groups bridging the metal
Current Opinion in Chemical Biology 2012, 16:11–18

mailto:victor.batista@yale.edu
http://dx.doi.org/10.1016/j.cbpa.2012.03.003
http://www.sciencedirect.com/science/journal/13675931


12 Bioinorganic Chemistry

Figure 1
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The oxygen-evolving complex (OEC) of Photosystem II (PSII). Top panel:

Ligation scheme of the Mn4O5Ca cluster and chloride binding sites (BS1

and BS2) as proposed by the X-ray model at 1.9 Å resolution.

Carboxylate groups of amino-acid residues in close contact with the

OEC, including D1-Asp61, D1-Asp170 and D1-Glu189 that might be

essential for proton-transfer events along the catalytic cycle of water

oxidation are highlighted. Bottom panel: Superposition of the OEC in the

X-ray models of PSII at 1.9 Å (blue) and 3.5 Å (red) resolution.

Bottom part reproduced from Ref. [28��].
centers), and the presence of chloride in close proximity

to the OEC (Figure 1). At the same time, the model

introduced features that were not included in any

previous empirical or computational models, including

the coordination of the side chain of D170 bridging Ca

and the dangling Mn. These breakthroughs have stimu-

lated a new series of studies aimed to establish the

structure of the OEC and the reaction mechanism, in-

cluding a DFT QM/MM structural model of the OEC in

the dark-adapted (S1) state consistent with the ligation

scheme suggested by the most recent X-ray structure as

well as with EXAFS data [28��]. Molecular dynamics

(MD) and Monte Carlo (MC) simulations based on the

newest XRD data have been applied to explore the

functional role of chloride as an allosteric regulator of
Current Opinion in Chemical Biology 2012, 16:11–18 
PSII [29��]. In addition, recent DFT QM/MM calculations

[30] have been performed to characterize the H-bonding

interactions between the carboxylate group of D1-Glu189

bound to Mn(1) and Ca, and the interactions between the

redox-active tyrosine YZ and the amino-acid residue D1-

His190 in close proximity to the OEC.

Mechanistic investigations of the water-splitting reaction

also benefited from studies of biomimetic oxomanganese

complexes [31�,32,33,34�,35,36]. Homogeneous Mn-

based systems are catalysts that can be deposited onto

semiconductor materials to drive water oxidation in arti-

ficial photosynthetic devices [37�,38�]. Many of the

mechanistic aspects responsible for water-splitting cata-

lyzed by these oxomanganese synthetic complexes are

thought to be common to the OEC of PSII, where a

terminal water molecule directly bound to Mn forms an

oxyl radical by deprotonation and partial oxidation. The

resulting oxyl radical is susceptible to nucleophilic attack

by substrate water in close contact with a proton acceptor.

Therefore, we address not only recent progress on DFT-

QM/MM models of the OEC, including the structural/

functional role of cofactors that influence the underlying

proton-coupled electron-transfer (PCET) mechanism,

but also the characterization of oxomanganese catalysts

deposited on nanoparticulate TiO2 electrode surfaces.

The dark-stable S1 state of the OEC
In photosynthetic water splitting, the solar energy is used

to oxidize the chlorophyll a P680, forming the radical

P680�+, the most oxidizing species known in biology.

P680�+ is able to oxidize tyrosine YZ, which in turn

oxidizes the OEC, storing an oxidizing equivalent in

the OEC cluster. The process is repeated, while evolving

the OEC through a cycle of S (storage) states [21,22],

accumulating 4 oxidizing equivalents before oxygen evol-

ution. The catalytic cycle thus involves five storage states,

with S0 and S4 being the most reduced and oxidized

intermediates, respectively. Structural changes in the

OEC along the S0–S3 transitions have been characterized

by X-ray absorption spectroscopy [25,39,40]. Direct com-

parisons between experimental EXAFS data and simu-

lated spectra based on the most recent XRD structure

[25,40] indicate that the XRD model does not correspond

to any of the S-state intermediates observed in the

catalytic cycle [28��]. Moreover, the comparison to

weighted averages of the experimental S0–S3 spectra

indicate that there is no mixture of S0–S3-state intermedi-

ates that could give quantitative agreement with the

spectrum of the XRD model. Therefore, these theoretical

studies concluded that the XRD model corresponds to a

mixture of states, more reduced than the S0 state [28��].

Having ruled out the XRD model as the structure of the

S1 resting state, theoretical work was then focused on

obtaining a model of the resting state that is consistent

with both the ligation scheme suggested by the new XRD
www.sciencedirect.com
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Figure 2
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Superposition of the new XRD model and the DFT-QM/MM S1 state model of the OEC (a). Comparison between experimental (red) and calculated

(black) isotropic (b) and polarized (c) EXAFS spectra for the OEC of PSII in the S1 state calculated with the DFT-QM/MM and refined R-QM/MM model.

Reproduced from Ref. [28��].
model and with high-resolution EXAFS data. This has

been successfully accomplished by the DFT QM/MM

model of the OEC in the S1 Mn4(IV,III,IV,III) state

[28��], shown in Figure 2. In contrast to the X-ray crystal

structure, the DFT-QM/MM model is fully consistent

with EXAFS data, including polarized EXAFS spectra

[41]. Figure 2 shows the structural differences between

the XRD and the DFT-QM/MM models and the good

agreement between the isotropic and polarized EXAFS

spectra of the S1 state and the corresponding simulated

spectra obtained with the DFT-QM/MM model. Quan-

titative agreement has been obtained [28��] through

refinement of the S1 DFT-QM/MM model (R-QM/

MM model in Figure 2) using a conjugate gradient

optimization method [10]. These results indicated that

disagreement between the EXAFS spectra calculated

from the XRD model and the experimental EXAFS

spectrum of the S1 state is primarily due to the absence

of Mn–Mn distances shorter than 2.8 Å in the X-ray

structure (in chain A).

Chloride cofactor
It has been known for quite some time that chloride

depletion from PSII suppresses O2 evolution by hinder-

ing the oxidation of the OEC beyond the S2 state [42].

However, until very recently, the chloride binding sites

and the specific functional/structural roles of chloride
www.sciencedirect.com 
have remained elusive [27��,29��,43,44]. Crystallographic

studies of bromide-substituted and iodide-substituted

PSII samples revealed two binding sites for halide anions

in the proximity of the OEC [43], with the most recent

XRD data at 1.9 Å resolution confirming the bromide sites

(BS1 and BS2) for chloride binding (Figure 1) [27��].
Binding at the BS1 site is stabilized by backbone inter-

actions while binding at the BS2 site involves interactions

with the positively charged amino-acid residue D2-

Lys317 as well as interactions with water molecules

between D2-Lys317 and D1-Asp61. Those interactions

are particularly interesting since amino-acid residues D2-

Lys317 and D1-Asp61 belong to a network of polar

amino-acid residues suggested to form one of the proton

exit channels from the OEC to the lumen [3].

MD and MC simulations based on the DFT-QM/MM

model have been applied to explore the effect of chloride

binding on specific hydrogen-bonding interactions and

protonation states of amino-acid residues at the BS2

binding site [29��]. As shown in Figure 3, the D1-

Asp61 side chain occupies a critical position at the BS2

site, between the Mn cluster and the (D2-Lys317)-NH3
+/

Cl� ion-pair, and is displaced upon Cl� depletion. These

simulations predict that Cl� depletion alters the hydro-

gen-bonding interactions of D1-Asp61, inducing the for-

mation of a salt bridge between the charged side chains of
Current Opinion in Chemical Biology 2012, 16:11–18
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Figure 3
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Top: Waters modeled in the 1.9 Å X-ray structure (gray spheres) next to the Cl�, OEC, and residues D1-Asp61 (D61) and D2-Lys317 (K317). Bottom:

Superposition of instantaneous configurations along MD simulations (waters shown as gray spheres and D61, K317 side chains colored from red to

blue for 0–24 ns) of the OEC with (right) or without (left) Cl� at the BS2 site. A salt bridge between K317 and D61 forms upon Cl� depletion, and is

interrupted by water in the presence of Cl�. The X-ray configuration is shown in magenta.

Reproduced from Ref. [29��].
D1-Asp61 and D2-Lys317 (Figure 3). Formation of a

stable (and catalytically inactive) salt bridge effectively

reduces the D1-Asp61 functionality as a proton acceptor.

Therefore, the primary role of Cl� suggested by MD and

MC simulations is to function as an allosteric regulator of

PSII, stabilizing a configuration of charged side chains

close to the OEC that favors flexible conformations of the

basic center (D1-Asp61), assisting the proton-abstraction

at the different S states along the Kok cycle.

Lewis base redox cofactors
DFT QM studies have addressed the redox leveling

mechanism based on proton-coupled electron-transfer

(PCET) during activation of synthetic oxomanganese

catalysts of water oxidation [35,36], including the

homogeneous catalyst [H2O(terpy)MnIII(m-O)2MnIV

(terpy)OH2]3+ (1, terpy = 2,20:60,200-terpyridine) [31�,33,

34�,45]. These studies also suggested that the reduction

potential of 1 is lowered by as much as 100–200 mV upon

binding of carboxylate groups (e.g. acetate) that
Current Opinion in Chemical Biology 2012, 16:11–18 
exchange with terminal water ligands. In particular,

the analysis of ligand binding free energies and redox

potentials indicated that the III,IV ! IV,IV oxidation of

1 is facilitated in the presence of acetate (AcO�) ligands

[34�]. Analogous to the activation of the OEC, where the

oxidized form of YZ acts as a primary oxidant and

advances the oxidation state of the inorganic core, com-

plex 1 is activated by primary oxidants (e.g. oxone) that

generate the high-valent Mn(IV)–O� oxyl intermediate

species [45]. This oxyl radical is subject to nucleophilic

attack by a substrate water [46], evolving molecular ox-

ygen through formation of an O–O bond, in analogy to

photosynthetic O2 evolution in PSII. Recent DFT stu-

dies provided insights on the role of carboxylate moieties

in the mechanism of O–O bond formation [Rivalta et al.,
unpublished data] suggesting that buffer acetate moi-

eties participate as proton acceptors activating the

nucleophile water molecules during O–O bond for-

mation and, therefore, reducing the effective potential

free energy barrier.
www.sciencedirect.com
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Figure 4
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(a) DFT/QM-QMM model of the complex 1 anchored to a TiO2–NP, with a water ligand exchanged by the NP. Color scheme: C (light blue), H (white),

Mn (purple), N (blue), O (red), and Ti (gray). (b) EPR spectra of (a) 1–P25, (b) 1–D450, (c) 1–D70, and (d) complex 1 in a HOAc/NaOAc buffer solution (pH

4.5). A trapped electron signal and an organic radical signal are present in spectra (a) and (b), respectively. (c) Powder XRD patterns of (a) P25, (b)

D450, and (c) D70 indicating different crystallinity of these TiO2 nanoparticles. (d) O2 evolution using Ce4+ as a single-electron oxidant. 1 was loaded on

TiO2 (50 mg) samples: (a) P25, (b) D450, and (c) D70; and control test using (d) bare P25 NP’s as the catalyst.

Reproduced from Ref. [37�].
These results are particularly relevant to catalytic water

oxidation in PSII, where the OEC cluster is ligated and

surrounded by carboxylate groups of polar amino-acid

side chains, including Asp170, Glu189, Glu333, Glu354,

Ala344, Asp342 and Asp61 (Figure 1). In particular, D1-

Asp61 is directly interacting with the OEC through

various H-bond interactions and could function as a

proton acceptor in the presence of chloride. D1-

Glu189 is the only amino-acid residue with a carbox-

ylate group that binds the OEC as a monodentate

ligand. The carboxylate oxygen not bound to the Mn

center is H-bonded to a water molecule W1* bound to

Ca, suggesting that it could also be responsible for

proton abstraction from W1*, during a nucleophilic

attack of W1* onto the oxyl radical Mn(IV)–O� formed

upon deprotonation and partial oxidation of the water

ligand W2*. Another interesting feature is that D1-

Asp170 is bridging between the Ca and the dangling

Mn, the two metal centers with terminal water ligands.

Therefore, there is the non-trivial question as to

whether D1-Asp170 might remain in that binding mode

or otherwise assume other configurations that would

allow this carboxylate group to participate in the depro-

tonation of substrate water molecules.
www.sciencedirect.com 
Biomimetic Mn catalysts for artificial
photosynthesis
Solar cells that efficiently convert water into H2 and O2

require coupling of water-oxidation catalysts to electrode

surfaces. Inexpensive homogeneous catalysts are ideal

candidates for heterogeneous assemblies based on surface

covalent attachment. In particular, assemblies of Mn

biomimetic complexes to semiconductor electrodes, such

as TiO2 thin-films, are particularly attractive for large-

scale applications of photocatalytic solar cells [47�].

Recent work has focused on studies of TiO2 nanoparticles

(NPs) functionalized with complex 1 via direct adsorption

[37�], or by attachment through light-harvesting organic

linkers that are robust under aqueous and oxidative con-

ditions [38�]. Figure 4 shows a molecular model of a

functionalized TiO2 NP using complex 1, where the

mixed-valence (III,IV) state of 1 attaches to near-amor-

phous TiO2 NPs by substituting one of its water ligands by

the TiO2 NP, as suggested by low-temperature (7 K) EPR

data and DFT QM/MM modeling. Characterization of 1–
TiO2 hybrid assemblies using three TiO2 materials with

different degrees of crystallinity (P25, with 85% anatase,

D450, with NP sintered at 450 8C and mainly constituted
Current Opinion in Chemical Biology 2012, 16:11–18
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by anatase, and D70, with low crystallinity) indicates that

the (III,IV) Mn dimer is not the predominant form of the

surface adsorbate complex for well-crystallized TiO2 nano-

particles, probably due to formation of Mn(IV) tetramers.

Using Ce4+ as a primary oxidant, oxygen evolution was

observed for 1–P25, as shown in Figure 4. When covalently

attached via chromophoric organic linkers, the Mn(III,IV)

state could be advanced to the Mn(IV,IV) state by visible-

light photoexcitation leading to photoinduced interfacial

electron transfer [38�]. These results are particularly

relevant to the development of photocatalytic devices

for oxidation chemistry based on inexpensive materials

(e.g. TiO2 and Mn complexes).

Conclusions
Recent advances in studies of natural and artificial photo-

synthesis have provided valuable insights on the nature of

the catalytic centers responsible for water-oxidation in PSII

and biomimetic catalysts based on inexpensive, earth-

abundant materials. Computational studies have addressed

fundamental questions, stimulated by recent break-

throughs in X-ray crystallography, including the structure

of the OEC of PSII and the potential functional roles of

acid/base and redox cofactors that are essential for photo-

synthetic water oxidation. Work in progress involves the

characterization of the intermediate S states, taking into

account the potential functional roles of essential cofactors

such as chloride ions and Lewis base carboxylate groups

that might be essential for the activation mechanism based

on PCET. The resulting insight is particularly valuable for

the development of synthetic catalytic systems with com-

mon mechanistic functionalities, where photoabsorption,

PCET and IET are essential for activation of the catalyst.

These studies are, thus, expected to make many more

important contributions to the development of photocata-

lytic solar cells through the integrated effort of compu-

tational modeling and high-resolution spectroscopic

techniques, in conjunction with ligand design, synthesis

and assembly to electrode surfaces.
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