
 

 

 

Supporting Information 
 

 

ChemSpaceAL: An Efficient Active Learning Methodology Applied 

to Protein-Specific Molecular Generation 

 
 

Gregory W. Kyro, Anton Morgunov, Rafael I. Brent, Victor S. Batista 

 
 

Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499 

 

  



List of Sections 

 
• Section 1: ADMET and Functional Group Filters. 

 
• Section 2: Similarity between FDA-Approved Inhibitors of c-Abl Kinase. 

 
• Section 3: Comparing the Generations to c-Abl Kinase Inhibitors for Different Methods. 

 
• Section 4: Radar Plots Showing Evolution of ADMET Metrics. 

 
• Section 5: Scores of Molecules across Five Iterations of Active Learning for HNH. 

 
• Section 6: Implementation Details of t-Distributed Stochastic Neighbor Embedding (t-SNE). 

 
• Section 7: Choosing the Number of Clusters to Use for k-means. 

 
• Section 8: Details and Parameters Used for Running DiffDock. 

 
• Section 9: t-SNE Visualization of the Evolution of the Generated Molecular Ensembles. 

 
• Section 10: Vocabulary Composition of the Combined Dataset. 

 
• Section 11: Frequencies of Block Sizes, Molecular Weights and Tokens in Pretraining Sets. 

 
• Section 12: Details of the GPT Architecture. 

 
• Section 13: Training the GPT Model. 

 
• Section 14: Pretrained GPT Model Performance on the MOSES Benchmark. 

 
• Section 15: RDKit Descriptors Used to Construct the Chemical Space Proxy. 

 
• Section 16: Wall Times of Each Step in the Complete Pipeline. 

 
• Section 17: Evaluating the Methodology with Lower-Dimensional MQN Filters. 

 
• Section 18: Logits for the End-of-Sequence Token as the Molecular Descriptor Vector. 

 
• Section 19: Frequency as a Function of Cluster Size for Alignment to c-Abl Kinase. 

 
• Section 20: Evaluation of Scoring Function Compared to PDBbind v2020 Refined Set. 

 
• Section 21: Alternative Methods for Converting Mean Cluster Scores to Sampling Fractions. 

 
• Section 22: Distributions of Mean and Median Cluster Scores. 

 
• Section 23: Additional Evaluation of Generations across Active Learning Iterations.  

 
• References 

  



S-1 

 

Section 1: ADMET and Functional Group Filters. 

 

Table S1.1. Upper and lower bounds applied to each ADMET metric used for generation filter. 

We use upper bound for logP of 6.5 because one of the FDA-approved inhibitors of c-Abl kinase, 

nilotinib, has a value of 6.356 as calculated by RDKit. All other bounds are taken from ADMETlab 

2.0.1 

 

ADMET Property 

 

Lower Bound 

 

Upper Bound 

 

Molecular Weight 100 600 

Number of Hydrogen Bond Acceptors 0 12 

Number of Hydrogen Bond Donors 0 7 

Number of Rotatable Bonds 0 11 

Number of Rings 0 6 

Number of Heteroatoms 1 15 

Formal Charge -4 4 

Topological Polar Surface Area 0 140 

LogP -0.4 6.5 

 

 

Table S1.2. List of functional groups excluded by generation filter. 

 

- ‘fr_azide’ 

- ‘fr_isocyan’ 

- ‘fr_isothiocyan’ 

- ‘fr_nitro’ 

- ‘fr_nitro_arom’ 

- ‘fr_nitro_arom_nonortho’ 

- ‘fr_nitroso’ 

- ‘fr_phos_acid’ 

- ‘fr_phos_ester’ 

- ‘fr_sulfonamd’ 

- ‘fr_sulfone’ 

- ‘fr_term_acetylene’ 

- ‘fr_thiocyan’ 

- ‘fr_prisulfonamd’ 

- ‘fr_C_S’ 

- ‘fr_azo’ 

- ‘fr_diazo’ 

- ‘fr_epoxide’ 

- ‘fr_ester’ 

- ‘fr_COO2’ 

- ‘fr_Imine’ 

- ‘fr_N_O’ 

- ‘fr_SH’ 

- ‘fr_aldehyde’ 

- ‘fr_dihydropyridine’ 

- ‘fr_hdrzine’ 

- ‘fr_hdrzone’ 

- ‘fr_ketone’ 

- ‘fr_thiophene’ 

- ‘fr_phenol’
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Section 2: Similarity between FDA-Approved Inhibitors of C-Abl Kinase. 

 

 
 

Figure S2.1. Tanimoto Similarity between RDKit fingerprints of the FDA-approved inhibitors 

of c-Abl kinase: imatinib, nilotinib, dasatinib, bosutinib, ponatinib, bafetinib, and asciminib. 
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Section 3: Comparing the Generations to c-Abl Kinase Inhibitors for Different Methods. 

 
Figure S3.1. Visualizing the evolution of the generated molecular ensemble from the model 

pretrained on the MOSES dataset with the generation filtered based on ADMET metrics and 

functional group restrictions, and comparing it to the FDA-approved small-molecule inhibitors of 

c-Abl kinase. The average Tanimoto similarities between the RDKit fingerprints of all generated 

molecules at each iteration of the pipeline and each inhibitor are shown. Iteration 0 refers to the 

pretraining phase, while later iterations refer to the active learning phases 
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Figure S3.2. Visualizing the evolution of the generated molecular ensemble from the model 

utilizing random selection (i.e., 1,000 molecules are randomly selected from the generated 

ensemble and scored, and those that satisfy the score threshold and replicated N times where N is 

the smallest integer to achieve a total of 5,000 datapoints to be in the active learning set), pretrained 

on the combined dataset with the generation filtered based on ADMET metrics and functional 

group restrictions, and comparing it to the FDA-approved small-molecule inhibitors of c-Abl 

kinase. The average Tanimoto similarities between the RDKit fingerprints of all generated 

molecules at each iteration of the pipeline and each inhibitor are shown. Iteration 0 refers to the 

pretraining phase, while later iterations refer to the active learning phases 
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Figure S3.3. Visualizing the evolution of the generated molecular ensemble from the model 

utilizing random selection with random sampling (i.e., random selection with the addition of 

randomly sampling 5,000 molecules from the generated ensemble that have not been scored to be 

in the active learning training set), pretrained on the combined dataset with the generation filtered 

based on ADMET metrics and functional group restrictions, and comparing it to the FDA-

approved small-molecule inhibitors of c-Abl kinase. The average Tanimoto similarities between 

the RDKit fingerprints of all generated molecules at each iteration of the pipeline and each 

inhibitor are shown. Iteration 0 refers to the pretraining phase, while later iterations refer to the 

active learning phases. 
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Figure S3.4. Visualizing the evolution of the generated molecular ensemble from the model 

utilizing uniform sampling (i.e., cluster-based sampling where each cluster is assigned a sampling 

fraction 𝑓 = 0.01 to generate the active learning set), pretrained on the combined dataset with the 

generation filtered based on ADMET metrics and functional group restrictions, and comparing it 

to the FDA-approved small-molecule inhibitors of c-Abl kinase. The average Tanimoto 

similarities between the RDKit fingerprints of all generated molecules at each iteration of the 

pipeline and each inhibitor are shown. Iteration 0 refers to the pretraining phase, while later 

iterations refer to the active learning phases 
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Section 4: Radar Plots Showing Evolution of ADMET Metrics. 

 

 
 

Figure S4.1. Radar charts for c-Abl kinase depicting the mean and 95th percentile values for each 

ADMET metric with respect to the lower and upper bounds enforced for the generated molecular 

ensembles from the model pretrained on the combined dataset with the generations filtered based 

on ADMET metrics are shown in (A), the charts for the ensembles from the model pretrained on 

the combined dataset with the generations filtered based on ADMET metrics and functional group 

restrictions are shown in (B), and the ensemble for the model pretrained on the MOSES dataset 

with the generations filtered based on ADMET metrics and functional group restrictions are shown 

in (C). Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning 

phases. 
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Figure S4.2. Radar charts for the HNH domain of Cas9 depicting the mean and 95th percentile 

values for each ADMET metric with respect to the lower and upper bounds enforced for the 

distribution for the model pretrained on the combined dataset with generation conditioned on 

ADMET filters are shown in (A), the distribution for the model pretrained on the combined dataset 

with generation conditioned on ADMET and functional group filters are shown in (B), and the 

distribution for the model pretrained on the MOSES dataset with generation conditioned on 

ADMET and functional group filters are shown in (C). Iteration 0 refers to the pretraining phase, 

while later iterations refer to the active learning phases. 
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Section 5: Scores of Molecules across Five Iterations of Active Learning for HNH. 

 

 
Figure S5.1. Attractive interaction scores of scored molecules across five iterations of active 

learning for the HNH domain of Cas9. The distribution for the model pretrained on the combined 

dataset with the generations filtered based on ADMET metrics are shown in (A). The distributions 

for the model pretrained on the combined dataset with the generations filtered based on ADMET 

metrics and functional group restrictions are shown in (B). The distributions for the model 

pretrained on the MOSES dataset with the generations filtered based on ADMET metrics and 

functional group restrictions are shown in (C). Iteration 0 refers to the pretraining phase, while 

later iterations refer to the active learning phases. 
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Section 6: Implementation Details of t-Distributed Stochastic Neighbor Embedding (t-SNE). 

 

To create a standard t-SNE space which involves a constant coordinate system, we proceed as 

follows. Firstly, we collect scored molecules from all iterations (6,000 molecules). Secondly, we 

add the molecules from all active learning training sets that employed either softmax or uniform 

selection methods. Thirdly, we add a random sample of 10,000 molecules from the set of 

generations at each iteration. We perform this sampling to have the same number of molecules 

from the active learning training sets and generated sets, which enables us to fairly compute the 

difference in distributions. Note that our training sets usually contain slightly more than 10,000 

molecules, so we sample exactly 10,000 for consistency. After combining all molecules and 

dropping all duplicates, we perform a t-SNE reduction. 
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Section 7: Choosing the Number of Clusters to Use for k-means. 

 

For each implementation of k-means, we utilize the scikit-learn Python package,21 which employs 

the k-means++ initialization algorithm, where the first centroid is selected randomly and 

subsequent centroids are iteratively chosen with a probability proportional to their squared distance 

from the nearest existing centroid 

 

 

 
Figure S7.1. Attractive interaction scores for molecules generated by the pretrained model 

(iteration 0) and by the model after each of the five iterations of active learning where, prior to 

sampling for docking, molecules in the chemical space are grouped into 10 clusters. Cluster scores 

are converted into sampling fractions using the softsub approach. 

 

 

 

 

 

           
 

    

    

    

    

   

           

           

           

           

           

           

                                                      

                            

 
 
  
  
  

  
  
 
 
 
 
 
 



S-12 

 

 
Figure S7.2. Attractive interaction scores for molecules generated by the pretrained model 

(iteration 0) and by the model after each of the five iterations of active learning where, prior to 

sampling for docking, molecules in the chemical space are grouped into 100 clusters. Cluster 

scores are converted into sampling fractions using the softsub approach. This figure occurs in the 

main text (Figure 4C), but is also shown here for comparison. 

 

 

Table S7.3. Statistics of the distribution of attractive interaction scores, when molecules are 

clustered into 10 groups and cluster scores are converted into sampling fractions using the softsub 

method. 

 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 14.29 8.26 8.91 8.75 10.28 11.25 2.25 

1 42.86 8.96 10.27 10.67 11.49 16.09 2.62 

2 57.14 10.32 11.51 13.31 15.34 21.00 3.91 

3 37.50 6.80 10.45 8.88 12.51 14.94 5.44 

4 37.50 7.33 9.10 9.03 11.74 14.12 3.83 

5 25.00 7.50 8.75 8.67 10.99 12.90 2.96 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Table S7.4. Statistics of the distribution of attractive interaction scores, when molecules are 

clustered into 100 groups and cluster scores are converted into sampling fractions using the softsub 

method. 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 28.10 5.50 8.00 8.46 11.50 31.50 4.89 

1 37.00 6.00 9.00 9.76 12.50 39.50 5.63 

2 49.70 7.50 10.50 12.22 16.00 51.00 7.93 

3 62.60 8.00 13.50 15.14 20.63 54.00 9.70 

4 72.90 10.00 16.50 18.25 25.00 55.50 10.90 

5 76.00 11.00 19.00 20.08 27.63 59.00 11.90 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Section 8: Details and Parameters Used for Running DiffDock. 

 

DiffDock handles all of the ligand preparation; we simply provide it with a protein structure and 

ligand SMILES string. It should be noted that since DiffDock is a diffusion generative model, it is 

inherently stochastic in nature During the docking inference stage, we utilize 20 inference steps, 

10 samples for each complex, and a batch size of 6. Utilizing RDKit, DiffDock uses the 

MolFromSmiles module to process ligands, adds hydrogen atoms, and retrieves the 3D atomic 

coordinates with the AllChem.EmbedMolecule module employing the ETKDGv2 

methodology. 

 

 

 

 
 

Figure S8.1. Generated molecule docked to the c-Abl kinase (A) with the corresponding protein-

ligand fingerprint (B). 

 

 

 

 

 

Figure S8.2. Generated molecule docked to the HNH domain of Cas9 (A) with the corresponding 

protein-ligand fingerprint (B). 

 



S-15 

 

Section 9: t-SNE Visualization of the Evolution of the Generated Molecular Ensembles. 

 

 
Figure S9.1. Generated molecules and active learning training sets across each iteration of our 

pipeline, visualized in two dimensions after performing t-distributed stochastic neighbor 

embedding (t-SNE). The generated molecules and active learning training sets are shown in 

(A) and (B), respectively. Changes in the generated molecules and active learning training sets 

relative to the molecules generated at iteration 0 are shown in (C) and (D), respectively. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning 

phases. 
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Section 10: Vocabulary Composition of the Combined Dataset. 

 

Table S10.1. List of unique tokens that occur in the unfiltered combined dataset less than 1,000 

times. 

 

- '%10' 

- '%11' 

- '%12' 

- '%13' 

- '%14' 

- '%15' 

- '%16' 

- '%17' 

- '%18' 

- '%19' 

- '%20' 

- '%21' 

- '%22' 

- '%23' 

- '%24' 

- '%25' 

- '%26' 

- '%27' 

- '%28' 

- '%29' 

- '%30' 

- '%31' 

- '%32' 

- '*' 

- ':' 

- '[*]' 

- '[10B]' 

- '[11C-]' 

- '[11C@@H]' 

- '[11CH2]' 

- '[11CH3]' 

- '[11CH]' 

- '[11C]' 

- '[11c]' 

- '[123I-]' 

- '[123IH]' 

- '[123I]' 

- '[123Te]' 

- '[124I-]' 

- '[124I]' 

- '[125I-]' 

- '[125IH]' 

- '[125I]' 

- '[127I]' 

- '[127Xe]' 

- '[129Xe]' 

- '[131Cs]' 

- '[131I-]' 

- '[131I]' 

- '[133Xe]' 

- '[135I]' 

- '[13CH2]' 

- '[13CH3]' 

- '[13CH]' 

- '[13C]' 

- '[13NH3]' 

- '[13cH]' 

- '[13c]' 

- '[14C@@H]' 

- '[14C@@]' 

- '[14C@H]' 

- '[14CH2]' 

- '[14CH3]' 

- '[14CH]' 

- '[14C]' 

- '[14cH]' 

- '[14c]' 

- '[15NH]' 

- '[15OH2]' 

- '[15nH]' 

- '[15n]' 

- '[17F]' 

- '[18F-]' 

- '[18FH]' 

- '[18F]' 

- '[18OH]' 

- '[18O]' 

- '[19F]' 

- '[211At]' 

- '[223Ra]' 

- '[22Na+]' 

- '[32PH]' 

- '[32P]' 

- '[35S]' 

- '[3H]' 

- '[42K+]' 

- '[45Ca+2]' 

- '[47Ca+2]' 

- '[4H]' 

- '[73Se]' 

- '[75Se]' 

- '[76BrH]' 

- '[76Br]' 

- '[81Kr]' 

- '[82Rb+]' 

- '[82Rb]' 

- '[85Sr+2]' 

- '[85SrH2]' 

- '[89Sr+2]' 

- '[Ag+]' 

- '[Ag-4]' 

- '[Ag-]' 

- '[Ag]' 

- '[Al+3]' 

- '[Al-3]' 

- '[Al]' 

- '[Ar]' 

- '[As+]' 

- '[As-]' 

- '[AsH3]' 

- '[AsH]' 

- '[As]' 

- '[At]' 

- '[Au-]' 

- '[Au]' 

- '[B@-]' 

- '[B@@-]' 

- '[BH-]' 

- '[BH2-]' 

- '[BH3-]' 

- '[B]' 

- '[Ba+2]' 

- '[Ba]' 

- '[Be+2]' 

- '[Bi+3]' 

- '[BiH3]' 

- '[Bi]' 

- '[Br+2]' 

- '[Br]' 

- '[C+]' 

- '[CH+]' 

- '[CH-]' 

- '[CH2+]' 

- '[CH2-]' 

- '[CH2]' 

- '[CH]' 

- '[C]' 

- '[Ca++]' 

- '[Ca+2]' 

- '[CaH2]' 

- '[Ca]' 

- '[Cl+2]' 

- '[Cl+3]' 

- '[Cl+]' 

- '[Cl]' 

- '[Co]' 

- '[Cs+]' 

- '[Cs]' 

- '[Cu-]' 

- '[Cu]' 

- '[F+]' 

- '[F-]' 

- '[Fe++]' 

- '[Fe--]' 

- '[Fe-3]' 

- '[Fe]' 

- '[Gd-4]' 

- '[Gd-5]' 

- '[H+]' 

- '[H-]' 

- '[HH]' 

- '[He]' 

- '[Hg]' 

- '[I+2]' 
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- '[I+3]' 

- '[I+]' 

- '[IH2]' 

- '[IH]' 

- '[I]' 

- '[KH]' 

- '[K]' 

- '[Kr]' 

- '[Li+]' 

- '[LiH]' 

- '[Li]' 

- '[Mg+2]' 

- '[Mg+]' 

- '[MgH2]' 

- '[Mg]' 

- '[Mn]' 

- '[Mo]' 

- '[N@+]' 

- '[N@@+]' 

- '[N@@H+]' 

- '[N@@]' 

- '[N@H+]' 

- '[N@]' 

- '[NH-]' 

- '[NH2+]' 

- '[NH4+]' 

- '[NH]' 

- '[N]' 

- '[NaH]' 

- '[Na]' 

- '[Nb--]' 

- '[Ni++]' 

- '[Ni]' 

- '[O+]' 

- '[O-2]' 

- '[OH+]' 

- '[OH-]' 

- '[OH]' 

- '[O]' 

- '[Os]' 

- '[P-]' 

- '[P@+]' 

- '[P@@+]' 

- '[P@@]' 

- '[P@]' 

- '[PH+]' 

- '[PH2+]' 

- '[PH2]' 

- '[PH]' 

- '[P]' 

- '[Pd--]' 

- '[Pd]' 

- '[Pt--]' 

- '[Pt]' 

- '[Ra]' 

- '[Rb+]' 

- '[Rb]' 

- '[Re-]' 

- '[Re]' 

- '[Ru-]' 

- '[Ru]' 

- '[S-2]' 

- '[S-]' 

- '[S@+]' 

- '[S@@+]' 

- '[S@]' 

- '[SH+]' 

- '[SH-]' 

- '[SH2]' 

- '[SH]' 

- '[S]' 

- '[Sb]' 

- '[Se+]' 

- '[Se-2]' 

- '[Se-]' 

- '[SeH2]' 

- '[SeH]' 

- '[Si-]' 

- '[Si@]' 

- '[SiH-]' 

- '[SiH2]' 

- '[SiH3-]' 

- '[SiH3]' 

- '[SiH4]' 

- '[SiH]' 

- '[Sn]' 

- '[Sr++]' 

- '[Sr+2]' 

- '[SrH2]' 

- '[Tc]' 

- '[Te+]' 

- '[Te-]' 

- '[TeH2]' 

- '[TeH]' 

- '[Te]' 

- '[V]' 

- '[W]' 

- '[Xe]' 

- '[Zn++]' 

- '[Zn+2]' 

- '[Zn+]' 

- '[Zn-2]' 

- '[Zn]' 

- '[b-]' 

- '[c+]' 

- '[c-]' 

- '[cH+]' 

- '[cH-]' 

- '[c]' 

- '[n-]' 

- '[nH+]' 

- '[n]' 

- '[o+]' 

- '[o]' 

- '[s+]' 

- '[s]' 

- '[se+]' 

- '[te+]' 

- '[te]' 

- 'b' 

- 'p' 
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Table S10.2. List of unique tokens that occur in the filtered combined dataset. 

 

- '!' 

- '#' 

- '(' 

- ') ' 

- '-' 

- '.' 

- '/' 

- '1' 

- '2' 

- '3' 

- '4' 

- '5' 

- '6' 

- '7' 

- '8' 

- '9' 

- '<' 

- '=' 

- 'B' 

- 'Br' 

- 'C' 

- 'Cl' 

- 'F' 

- 'I' 

- 'N' 

- 'O' 

- 'P' 

- 'S' 

- '[2H]' 

- '[B-]' 

- '[Br-]' 

- '[C-]' 

- '[C@@H]' 

- '[C@@]' 

- '[C@H]' 

- '[C@]' 

- '[Cl-]' 

- '[H]' 

- '[I-]' 

- '[K+]' 

- '[N+]' 

- '[N-]' 

- '[NH+]' 

- '[NH3+]' 

- '[Na+]' 

- '[O-]' 

- '[P+]' 

- '[S+]' 

- '[S@@]' 

- '[Se]' 

- '[Si]' 

- '[n+]' 

- '[nH]' 

- '[se]' 

- '\' 

- 'c' 

- 'n' 

- 'o' 

- 's' 

- '~' 
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Section 11: Frequencies of Block Sizes, Molecular Weights and Tokens in Pretraining Sets. 

 

 

 
Figure S11.1. Frequency as a function of block size (A) and token (B). Vertical dotted lines are 

positioned at 133 in (A) and serves as our block size cutoff. In (B), our cutoff, illustrated with the 

vertical dotted lines, is positioned at the first token where the frequency is less than 1,000 times. 

 

 

 

 
Figure S11.2. Frequency as a function of molecular weight of molecule in the (A) MOSES and 

(B) combined datasets. 
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Section 12: Details of the GPT Architecture. 

 

The GPT model that we employ is based on the transformer architecture introduced in the 

revolutionary paper, “Attention is All You Need”. Within the framework of the transformer 

architecture, the encoder processes input data into a sequence of context-rich vectors, while the 

decoder utilizes this contextual information to generate output data. Both of these components 

utilize a self-attention mechanism, which enables the model to selectively focus on distinct parts 

of the input sequence at each computational step. The technical difference between the encoder 

and decoder parts of the transformer model is that the decoder ensures that the prediction for a 

particular token only depends on the preceding tokens, while each token in the encoder can attend 

to all other tokens in the sequence. Our GPT model is constructed as a series of transformer decoder 

blocks. This approach is appropriate for tasks that require generating novel sequential data such as 

SMILES strings. 

 

The forward pass of our GPT model begins by dividing each SMILES string into distinct units 

known as tokens, processing each token with embedding layers, and combining these embeddings 

to form a vector representation of each token. These embedded vectors are then sequentially passed 

through a series of transformer decoder blocks, each comprised of a self-attention layer and a feed-

forward network, with additional structural elements to enhance learning. The final result is a 

sequence of vectors, each corresponding to a position in the output SMILES string, where the 

elements of each vector represent probabilities for each token in the vocabulary. This high-level 

overview sets the stage for a more detailed discussion of the individual components. 

 

Embeddings: Initially, a vocabulary comprising all of the unique tokens in the training data is 

constructed. For any given SMILES string in the input data, the input tokens undergo three distinct 

processing methods: token, positional, and type embeddings. The token embedding maps each 

token in the input sequence to a learnable vector representation, allowing the model to learn an 

optimal high-dimensional characterization for each token. Similarly, the positional embedding 

maps each input token to a learnable vector based on its position in the sequence. The type 

embedding layer uniformly assigns a constant bias to all embeddings of each input sequence. The 

sum of these three embeddings is passed through a dropout layer, setting 10% of its scalar 

components to 0. This embedding process transforms the input tokens into a form more suitable 

for the downstream modeling process. 

 

Transformer Decoder Stack: For each token in the input sequence, the resulting embedding is 

passed to the first transformer decoder block, which begins with layer normalization, a process 

that adjusts and scales each embedding to have a mean of 0 and a standard deviation of 1. A self-

attention mechanism is then applied to the normalized embedding, using learned matrices to 

linearly transform the embedding into three different vectors known as the query, key, and value 

vectors: 

                                                       𝐪𝑖  =  𝐖𝑞  ×  𝐞𝑖                                                                 (1) 

𝐤𝑖  =  𝐖𝑘  ×  𝐞𝑖                                                                 (2) 

𝐯𝑖  =  𝐖𝑣  ×  𝐞𝑖                                                                 (3) 

where Wq, Wk, and Wv are learned weight matrices that transform each input embedding, 

represented by 𝐞𝑖, into the corresponding query, key, and value vectors. The dot products of the 

query and each key vector are then scaled according to the dimensionality of the key vectors and 
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passed through a softmax function, transforming them into a probability distribution to serve as 

attention weights. Finally, the attention scores are used to generate a weighted sum of the value 

vectors, as shown in the following equation:  

𝐞′𝑖  =  𝐕 × softmax

(

 
 
 
 

𝐪𝑖 ⋅ 𝐤1

√d𝑘  
…
 

𝐪𝑖 ⋅ 𝐤𝐿

√d𝑘 )

 
 
 
 

 

(4) 

Here, 𝐞′𝑖  represents the output of the attention mechanism at position i in the sequence, 𝐕 is the 

value matrix whose jth column is the value vector corresponding to the embedding at position j in 

the sequence, dk denotes the dimensionality of the key vectors, and L represents the length of the 

entire sequence. This operation amplifies the information from value vectors corresponding to 

higher attention weights (i.e., tokens that are more relevant to the current query), while suppressing 

the information from less relevant value vectors.  

 

In practice, the self-attention mechanism is executed multiple times in parallel through what is 

known as multi-head attention. Each head (i.e., execution) uses its own set of learned linear 

transformations to generate query, key, and value vectors for all tokens in the sequence for each 

item in the batch, allowing the model to simultaneously focus on different aspects of the input 

across the various heads. The outputs from all attention heads are then concatenated and passed 

through a learned linear transformation to generate the final output of the multi-head attention 

mechanism. 

 

A residual connection is a shortcut that skips one or more layers and allows the original input to 

be added directly to the output of those layers. This technique aids in training deeper networks by 

mitigating the vanishing gradient problem, where the gradients become too small for the network 

to learn effectively. In the context of GPT models, a residual connection is made by adding the 

input of the attention mechanism to the output. This sum is then processed using layer 

normalization, and the transformed embeddings are passed through a feed-forward network using 

the equation: 

𝐇 = Dropout(𝐖𝟐 × GELU(𝐖𝟏 × 𝐄′ + 𝐛𝟏) + 𝐛𝟐)                                 (5) 

where 𝐇 is the output of the feed-forward network, 𝐄′ represents the matrix whose columns are 

the transformed embeddings, and W1 (shape: 1024256), b1 (shape: 1024), W2 (shape: 2561024), 
and b2 (shape: 256) represent the weight matrices and bias vectors of the two linear layers. GELU, 

or Gaussian Error Linear Unit, is an activation function used to introduce non-linearity into the 

model. A residual connection is established by summing the input to this feed-forward network 

with the output. 

 

This entire process is repeated for additional decoder blocks, and the output of the final decoder 

block is processed with layer normalization. The normalized output is then passed through a 

learned linear transformation with bias to map the embeddings to the output vocabulary size, and 

the resulting vectors are processed with softmax to generate the output probabilities at each 

position in the sequence. 
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Section 13: Training the GPT Model. 

 

 

 
Figure S13.1. Training loss (A), validation loss (B), and learning rate (C) during the 30 epochs of 

pretraining of our model on the combined dataset. 

 

 

 

 

 
Figure S13.2. Training step losses (evaluated after each batch) during 5 rounds of active learning 

for the HNH domain of Cas9 (10 epochs each) with different conversion methods. 
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Section 14: Pretrained GPT Model Performance on the MOSES Benchmark. 

 

Table S14.1. Primary results of our pretrained model on the MOSES benchmark compared to top-

performing models in the field. 

a Validity (ratio of generated molecules deemed valid by RDKit’s molecular structure parser), 

Unique@1K and @10K (fraction of valid generated molecules with no duplicates), Novelty 

(fraction of valid and unique generated molecules that are not in the training set), IntDivi (internal 

diversity within the generated set for power mean i), and Filters (fraction of generated molecules 

that pass filters that check for specific fragments) are shown. See MOSES benchmark for more 

details on how these metrics are calculated.20 

b The top value for each metric is shown in bold. 

c Values not reported are shown as N/A. 

  

Model Validity Unique@1K Unique@10K Novelty IntDiv1 IntDiv2 Filters 

Our Model 0.996 1.000 0.999 0.730 0.856 0.850 0.998 

MolGPT2 0.994 N/A 1.000 0.797 0.857 0.851 N/A 

LatentGAN3 0.897 1.000 0.997 0.949 0.857 0.850 0.973 

JT-VAE4 1.000 1.000 1.000 0.914 0.855 0.849 0.976 

CharRNN5 0.975 1.000 0.999 0.842 0.856 0.850 0.994 

MolecularRNN6 1.000 N/A 0.994 1.000 0.881 0.876 N/A 

iPPIgAN7 0.989 1.000 0.999 0.990 N/A N/A N/A 

DNMG8 0.999 1.000 0.998 0.936 0.856 0.850 0.996 

CogMol9 0.955 1.000 1.000 N/A 0.857 0.851 0.989 

TransVAE10 0.567 NA N/A 0.996 N/A N/A N/A 

ShapeProb11 0.969 1.000 0.995 N/A 0.865 N/A 0.865 

GENTRL12 0.850 N/A N/A N/A N/A N/A N/A 

TransAntivirus13 1.000 0.999 0.999 0.999 0.895 N/A N/A 

CRTmaccs14 1.000 1.000 1.000 1.000 N/A N/A N/A 

MolGCT15 0.985 1.000 0.998 0.814 0.853 N/A 0.996 

cMolGPT16 0.988 1.000 0.999 N/A N/A N/A N/A 

GraphINVENT17 0.964 1.000 0.998 N/A 0.857 0.851 0.950 

cTransformer18 0.988 1.000 0.999 N/A N/A N/A N/A 

GMTransformer19 0.829 1.000 1.000 0.883 0.856 N/A 0.980 
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Table S14.2. Additional results of our pretrained model on the MOSES benchmark compared to 

top-performing models in the field. 

Model FCD/Test FCD/TestSF Frag/Test Frag/TestSF SNN/Test SNN/TestSF Scaff/Test Scaff/TestSF 

Our Model 0.038 0.450 1.000 0.999 0.633 0.585 0.970 0.071 

MolGPT2 0.067 0.507 N/A N/A N/A N/A N/A N/A 

LatentGAN3 0.296 0.824 0.999 0.998 0.538 0.514 0.886 0.100 

JT-VAE4 0.395 0.938 0.997 0.995 0.548 0.519 0.896 0.101 

CharRNN5 0.073 0.520 1.000 0.998 0.601 0.565 0.924 0.110 

MolecularRNN6 N/A N/A N/A N/A N/A N/A N/A N/A 

iPPIgAN7 5.879 6.171 N/A N/A N/A N/A N/A N/A 

DNMG8 0.373 0.631 0.999 0.998 0.472 0.579 0.784 0.998 

CogMol9 0.166 0.603 0.999 0.997 0.560 0. 533 0.905 0.128 

TransVAE10 N/A N/A N/A N/A N/A N/A N/A N/A 

ShapeProb11 1.332 1.850 0.984 0.980 0.446 0.432 0.459 0.066 

GENTRL12 N/A N/A N/A N/A N/A N/A N/A N/A 

TransAntivirus13 10.947 N/A N/A N/A N/A N/A N/A N/A 

CRTmaccs14 13.565 13.999 N/A N/A 0.334 0.330 N/A N/A 

MolGCT15 0.402 0.803 0.997 0.995 0.618 0.577 0.891 0.092 

cMolGPT16 N/A N/A 1.000 0.998 0.619 0.578 N/A N/A 

GraphINVENT17 0.682 1.223 0.986 0.986 0.569 0.539 0.885 0.127 

cTransformer18 N/A N/A 1.000 0.998 0.619 0.578 N/A N/A 

GMTransformer19 0.199 0.760 0.998 0.996 0.578 0.546 0.913 0.109 
a FCD (Fréchet ChemNet Distance that is calculated using activation of the penultimate layer of 

ChemNet), Frag (compares molecular fragments between generated and training sets), SNN 

(average Tanimoto similarity between molecules in the generated set and the corresponding 

nearest molecule in the training set), and Scaff (compares molecular scaffolds between generated 

and training sets) are shown. Test (similarity from the training set to the test set) and TestSF 

(similarity from the training set to the scaffold test set) are shown for each metric. See MOSES 

benchmark for more details on how these metrics are calculated.20 

b The top value for each metric is shown in bold. 
c Values not reported are shown as N/A. 
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Section 15: RDKit Descriptors Used to Construct the Chemical Space Proxy. 

 

Table S15.1. List of RDKit descriptors discarded. 

 

- BCUT2D_CHGHI 

- BCUT2D_CHGLO 

- BCUT2D_LOGPHI 

- BCUT2D_LOGPLOW 

- BCUT2D_MRHI 

- BCUT2D_MRLOW 

- BCUT2D_MWHI 

- BCUT2D_MWLOW 

- Ipc 

- MaxAbsPartialCharge 

- MaxPartialCharge 

- MinAbsPartialCharge 

- MinPartialCharge 

 

 

Table S15.2. List of RDKit descriptors included and used to construct the chemical space proxy. 

- AvgIpc 

- BalabanJ 

- BertzCT 

- Chi0 

- Chi0n 

- Chi0v 

- Chi1 

- Chi1n 

- Chi1v 

- Chi2n 

- Chi2v 

- Chi3n 

- Chi3v 

- Chi4n 

- Chi4v 

- EState_VSA1 

- EState_VSA10 

- EState_VSA11 

- EState_VSA2 

- EState_VSA3 

- EState_VSA4 

- EState_VSA5 

- EState_VSA6 

- EState_VSA7 

- EState_VSA8 

- EState_VSA9 

- ExactMolWt 

- FpDensityMorgan1 

- FpDensityMorgan2 

- FpDensityMorgan3 

- FractionCSP3 

- HallKierAlpha 

- HeavyAtomCount 

- HeavyAtomMolWt 

- Kappa1 

- Kappa2 

- Kappa3 

- LabuteASA 

- MaxAbsEState 

Index 

- MaxEStateIndex 

- MinAbsEState 

Index 

- MinEStateIndex 

- MolLogP 

- MolMR 

- MolWt 

- NHOHCount 

- NOCount 

- NumAliphatic 

Carbocycles 

- NumAliphatic 

Heterocycles 

- NumAliphatic 

Rings 

- NumAromatic 

Carbocycles 

- NumAromatic 

Heterocycles 

- NumAromatic 

Rings 

- NumHAcceptors 

- NumHDonors 

- NumHeteroatoms 

- NumRadical 

Electrons 

- NumRotatable 

Bonds 

- NumSaturated 

Carbocycles 

- NumSaturated 

Heterocycles 

- NumSaturated 

Rings 

- NumValence 

Electrons 

- PEOE_VSA1 

- PEOE_VSA10 

- PEOE_VSA11 

- PEOE_VSA12 

- PEOE_VSA13 

- PEOE_VSA14 

- PEOE_VSA2 

- PEOE_VSA3 

- PEOE_VSA4 

- PEOE_VSA5 

- PEOE_VSA6 

- PEOE_VSA7 

- PEOE_VSA8 

- PEOE_VSA9 

- RingCount 

- SMR_VSA1 

- SMR_VSA10 
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- SMR_VSA2 

- SMR_VSA3 

- SMR_VSA4 

- SMR_VSA5 

- SMR_VSA6 

- SMR_VSA7 

- SMR_VSA8 

- SMR_VSA9 

- SlogP_VSA1 

- SlogP_VSA10 

- SlogP_VSA11 

- SlogP_VSA12 

- SlogP_VSA2 

- SlogP_VSA3 

- SlogP_VSA4 

- SlogP_VSA5 

- SlogP_VSA6 

- SlogP_VSA7 

- SlogP_VSA8 

- SlogP_VSA9 

- TPSA 

- VSA_EState1 

- VSA_EState10 

- VSA_EState2 

- VSA_EState3 

- VSA_EState4 

- VSA_EState5 

- VSA_EState6 

- VSA_EState7 

- VSA_EState8 

- VSA_EState9 

- fr_Al_COO 

- fr_Al_OH 

- fr_Al_OH_noTert 

- fr_ArN 

- fr_Ar_COO 

- fr_Ar_N 

- fr_Ar_NH 

- fr_Ar_OH 

- fr_COO 

- fr_COO2 

- fr_C_O 

- fr_C_O_noCOO 

- fr_C_S 

- fr_HOCCN 

- fr_Imine 

- fr_NH0 

- fr_NH1 

- fr_NH2 

- fr_N_O 

- fr_Ndealkylation1 

- fr_Ndealkylation2 

- fr_Nhpyrrole 

- fr_SH 

- fr_aldehyde 

- fr_alkyl_carbamate 

- fr_alkyl_halide 

- fr_allylic_oxid 

- fr_amide 

- fr_amidine 

- fr_aniline 

- fr_aryl_methyl 

- fr_azide 

- fr_azo 

- fr_barbitur 

- fr_benzene 

- fr_benzodiazepine 

- fr_bicyclic 

- fr_diazo 

- fr_dihydropyridine 

- fr_epoxide 

- fr_ester 

- fr_ether 

- fr_furan 

- fr_guanido 

- fr_halogen 

- fr_hdrzine 

- fr_hdrzone 

- fr_imidazole 

- fr_imide 

- fr_isocyan 

- fr_isothiocyan 

- fr_ketone 

- fr_ketone_Topliss 

- fr_lactam 

- fr_lactone 

- fr_methoxy 

- fr_morpholine 

- fr_nitrile 

- fr_nitro 

- fr_nitro_arom 

- fr_nitro_arom_ 

nonortho 

- fr_nitroso 

- fr_oxazole 

- fr_oxime 

- fr_para_ 

hydroxylation 

- fr_phenol 

- fr_phenol_ 

noOrthoHbond 

- fr_phos_acid 

- fr_phos_ester 

- fr_piperdine 

- fr_piperzine 

- fr_priamide 

- fr_prisulfonamd 

- fr_pyridine 

- fr_quatN 

- fr_sulfide 

- fr_sulfonamd 

- fr_sulfone 

- fr_term_acetylene 

- fr_tetrazole 

- fr_thiazole 

- fr_thiocyan 

- fr_thiophene 

- fr_unbrch_alkane 

- fr_urea 

- qed 
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Figure S15.3. Cumulative fraction of variance explained by the first N principal components. Our 

chemical space proxy (i.e., the first 120 principal components) explains 99.3% of the variance in 

the hyperspace of 196 RDKit descriptors. 
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Section 16: Wall Times of Each Step in the Complete Pipeline. 

 

 
Figure S16.1. Wall times of each step in the complete pipeline. Steps include pretraining, 

generation, calculating descriptors, clustering and sampling, docking, scoring, and active learning 

fine-tuning. Pretraining is performed only once, while each other step is performed once per 

iteration. 
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Section 17: Evaluating the Methodology with Lower-Dimensional MQN Filters. 

 

 
 

 

Figure S17.1. Attractive interaction scores of scored molecules across five iterations of active 

learning. Results for the methodology applied to the HNH domain of Cas9 using 196 RDKit 

descriptors, and using 42 MQN descriptors are shown. Iteration 0 refers to the pretraining phase, 

while later iterations refer to the active learning phases. 
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Section 18: Logits for the End-of-Sequence Token as the Molecular Descriptor Vector. 

 

 
Figure S18.1. Attractive interaction scores of scored molecules across five iterations of active 

learning for the HNH domain of Cas9, utilizing the logits for the end-of-sequence token as the 

molecular descriptor vector for each generated molecule in the complete pipeline. The distribution 

for the model pretrained on the combined dataset is shown. Iteration 0 refers to the pretraining 

phase, while later iterations refer to the active learning phases.  

 

 

 

 
Figure S18.2. Attractive interaction scores of scored molecules across five iterations of active 

learning for the HNH domain of Cas9, utilizing the logits for the end-of-sequence token combined 

with the 196 RDKit descriptors as the molecular descriptor vector for each generated molecule in 

the complete pipeline. The distribution for the model pretrained on the combined dataset is shown. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Figure S18.3. Mean cluster attractive interaction scores across five iterations of active learning 

for the HNH domain of Cas9, utilizing the logits for the end-of-sequence token as the molecular 

descriptor vector for each generated molecule in the complete pipeline. The distribution for the 

model pretrained on the combined dataset is shown. Iteration 0 refers to the pretraining phase, 

while later iterations refer to the active learning phases. 

 

 

 

 

 

 
Figure S18.4. Median cluster attractive interaction scores across five iterations of active learning 

for the HNH domain of Cas9, utilizing the logits for the end-of-sequence token as the molecular 

descriptor vector for each generated molecule in the complete pipeline. The distribution for the 

model pretrained on the combined dataset is shown. Iteration 0 refers to the pretraining phase, 

while later iterations refer to the active learning phases. 
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Section 19: Frequency as a Function of Cluster Size for Alignment to c-Abl Kinase. 

 

 
Figure S19.1. Frequency as a function of cluster size for each iteration of the methodology. 

Results are shown for the model pretrained on the combined dataset with the generations filtered 

based on ADMET metrics, aligned to c-Abl kinase. 

 

 

 

 

 

 
Figure S19.2. Frequency as a function of cluster size for each iteration of the methodology. 

Results are shown for the model pretrained on the combined dataset with the generations filtered 

based on ADMET metrics and functional group restrictions, aligned to c-Abl kinase. 
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Figure S19.3. Frequency as a function of cluster size for each iteration of the methodology. 

Results are shown for the model pretrained on the MOSES dataset with the generations filtered 

based on ADMET metrics and functional group restrictions, aligned to c-Abl kinase. 

 

 

 

 

 

 

 

 
 

Figure S19.4. Frequency as a function of cluster size for each iteration of the methodology 

shown for the clustering that we select as well as the clustering with the lowest loss. Results are 

shown for the model pretrained on the combined dataset with the generations filtered based on 

ADMET metrics and functional group restrictions, aligned to c-Abl kinase. 
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Section 20: Evaluation of Scoring Function Compared to PDBbind v2020 Refined Set. 

 

 

 

 
Figure S20.1. Evaluation of our scoring function with the protein-ligand complexes in the 

PDBbind v.2020 refined set. (A) Binding affinity (pKd) plotted as a function of score. There is a 

corresponding Pearson correlation of 0.32. (B) The relative frequency of different scores is shown. 

99.6% of the complexes exceed our score threshold of 11. 
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Section 21: Alternative Methods for Converting Mean Cluster Scores to Sampling Fractions. 

 

Prior to constructing the active learning training set, we need to convert the attractive interaction 

scores 𝑠𝑖 obtained by using the prolif software on docked molecules into sampling fractions 𝑓𝑖, 
which will be used to calculate the number of molecules that we need to sample from each cluster. 

A simple way to do that is to normalize the sum of all scores to unity: 

𝑓𝑖
linear(𝑠𝑖) =

𝑠𝑖
∑ 𝑠𝑖𝑖

 

We call this approach linear conversion. Because one could interpret sampling fractions as 

effective probabilities of sampling from a given cluster, it is natural to consider the use of a softmax 

function: 

𝑓𝑖
softmax(𝑠𝑖) =

𝑒𝑠𝑖

∑ 𝑒𝑠𝑖𝑖
 

which, for computational stability purposes, is often implemented with the maximum value among 

a set of arguments subtracted from each individual argument. To contrast with a modification of a 

softmax function introduced later, we refer to this as softsub conversion. In the main text of our 

paper, we implement the softsub approach and refer to it as softmax because this is the common 

implementation of the softmax function. 

𝑓𝑖
softsub(𝑠𝑖) =

𝑒𝑠𝑖−𝑠𝑚𝑎𝑥

∑ 𝑒𝑠𝑖−𝑠𝑚𝑎𝑥𝑖
 

For a pretrained model, cluster scores range from 0 to 16. Because exponential functions increase 

rapidly, the softsub approach will effectively favor the 1-5 clusters with largest scores. We 

conjecture that a smoother function may lead to better model behavior during active learning, and 

implement a softdiv conversion approach, in which, instead of subtracting the maximum cluster 

score, we divide by it: 

𝑓𝑖
softdiv(𝑠𝑖) =

𝑒𝑠𝑖/𝑠𝑚𝑎𝑥

∑ 𝑒𝑠𝑖/𝑠𝑚𝑎𝑥𝑖
 

Empirically, this approach leads even to a narrower distribution of sampling fractions than that 

obtained with the linear conversion approach. We introduce a hyperparameter 𝑑𝑖𝑣𝑓 ∈ (0,1] by 

which we multiply the 𝑠𝑚𝑎𝑥 value prior to dividing by it: 

𝑓𝑖
softdivf(𝑠𝑖) =

𝑒
𝑠𝑖

𝑑𝑖𝑣𝑓×𝑠𝑚𝑎𝑥

∑ 𝑒
𝑠𝑖

𝑑𝑖𝑣𝑓×𝑠𝑚𝑎𝑥𝑖

 

By visualizing the distribution of softdiv values with different values of the hyperparameter (Figure 

S4.1), we pick 𝑑𝑖𝑣𝑓 = 0.25, as it maximizes the spread in sampling fractions. In what follows, the 

softdiv conversion will refer to softdiv with 𝑑𝑖𝑣𝑓 = 0.25. 
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Figure S21.1. Distribution of sampling fractions obtained with different conversion approaches 

applied to cluster scores obtained from generations of the pretrained model. A bar corresponding 

to sampling the same number of molecules from each cluster (i.e., uniform sampling) is shown in 

black.  

 

 

 

 
 

Figure S21.2. Attractive interaction scores for molecules generated by the pretrained model 

(iteration 0) and by the model after each of the five iterations of active learning where, prior to 

sampling for docking, molecules in the chemical space are grouped into 100 clusters, and cluster 

scores are converted into sampling fractions using the linear approach. 
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Figure S21.3. Attractive interaction scores for molecules generated by the pretrained model 

(iteration 0) and by the model after each of the five iterations of active learning where, prior to 

sampling for docking, molecules in the chemical space are grouped into 100 clusters, and cluster 

scores are converted into sampling fractions using the softdiv approach. 

 

 

 

 

 

 

Table S21.4. Statistics of the distribution of attractive interaction scores, when molecules are 

selected randomly (naïve active learning), with no clustering.  

 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 26.20 5.50 8.00 8.41 11.00 33.00 4.58 

1 32.40 5.50 9.00 9.27 11.50 35.00 4.79 

2 35.00 6.50 9.00 9.67 12.50 33.00 4.89 

3 40.00 6.88 9.50 10.45 13.50 37.00 5.31 

4 44.80 7.00 10.00 11.03 13.63 42.00 6.16 

5 44.20 7.00 10.00 11.13 13.50 38.50 6.05 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
c This table corresponds to the distribution in Figure 4A of main text. 

 

 

 

           
 

    

    

    

    

   

           

           

           

           

           

           

                                                       

                            

 
 
  
  
  

  
  
 
 
 
 
 
 



S-38 

 

Table S21.5. Statistics of the distribution of attractive interaction scores, when molecules are 

clustered into 100 groups and cluster scores are sampled uniformly. 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 12.00 6.68 8.58 8.43 9.85 15.80 2.31 

1 24.00 7.75 9.10 9.17 10.88 20.80 3.40 

2 30.00 8.17 9.40 9.96 11.50 21.50 3.41 

3 35.00 7.86 10.07 10.23 11.63 24.00 3.97 

4 50.00 8.88 10.89 11.28 13.46 25.45 4.11 

5 50.00 8.80 10.94 11.84 14.48 25.80 4.63 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
c This table corresponds to the distribution in Figure 4B of main text. 

 

 

 

 

 

 

 

 

Table S21.6. Statistics of the distribution of attractive interaction scores, when molecules are 

clustered into 100 groups and cluster scores are converted into sampling fractions using the linear 

method. 

 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 12.00 6.68 8.58 8.43 9.85 15.80 2.31 

1 23.23 7.88 9.20 9.54 10.71 19.95 2.73 

2 37.00 7.78 9.98 10.24 12.10 26.25 4.40 

3 47.00 8.29 10.55 11.60 14.51 23.90 5.09 

4 62.00 10.19 13.27 13.19 15.84 31.41 5.09 

5 71.00 10.50 13.43 14.00 16.93 29.50 5.50 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
c This table corresponds to the distribution in Figure S4.1. 
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Table S21.7. Statistics of the distribution of attractive interaction scores, when molecules are 

clustered into 100 groups and cluster scores are converted into sampling fractions using the softdiv 

method. 

Iteration Percent ≥ 11 Q1 Q2 Mean Q3 Max Std 

0 28.10 5.50 8.00 8.46 11.50 31.50 4.89 

1 34.70 5.50 8.50 9.29 12.50 42.00 5.89 

2 42.20 6.50 9.50 10.54 13.50 37.00 6.64 

3 54.20 7.50 11.50 13.07 18.00 55.00 8.64 

4 65.90 8.50 14.25 15.82 22.00 56.50 9.99 

5 71.20 9.50 16.00 17.32 24.50 51.00 10.90 
a The percentage of generated molecules with  attractive interaction scores equal to or above our 

score threshold is shown (Percent ≥ 11), as well as the score at the first quartile (Q1), second 

quartile (Q2), Mean, third quartile (Q3), maximum (Max), and standard deviation (Std) of the 

distribution. 
b Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
c This table corresponds to the distribution in Figure S4.2. 

 

 

 

 

 
Figure S21.8. Counts of interactions of each type for 1000 scored molecules generated by the 

pretrained model (iteration 0) and by the model after each of the five rounds of naïve active 

learning with random sampling. A count of interactions from 1000 protein-ligand complexes 

randomly sampled from the refined set of PDBbind v2020 is included for comparison. These 

counts correspond to the score distribution in Figure 4A of main text. 
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Figure S21.9. Counts of interactions of each type for 1000 molecules generated by the pretrained 

model (iteration 0) and by the model after each of the five rounds of active learning with clustering 

into 100 groups and uniform selection from each cluster. A count of interactions from 1000 protein-

ligand complexes randomly sampled from the refined set of PDBbind v2020 is included for 

comparison. These counts correspond to the score distribution in Figure 4B of main text. 

 

 

 

 

 
 

Figure S21.10. Counts of interactions of each type for 1000 scored molecules generated by the 

pretrained model (iteration 0) and by the model after each of the five rounds of active learning 

with clustering into 100 groups and conversion of cluster scores into sampling fractions using the 

linear method. A count of interactions from 1000 protein-ligand complexes randomly sampled 

from the refined set of PDBbind v2020 is included for comparison. These counts correspond to 

the score distribution in Figure S4.1. 
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Figure S21.11. Counts of interactions of each type for 1000 scored molecules generated by the 

pretrained model (iteration 0) and by the model after each of the five rounds of active learning 

with clustering into 100 groups and conversion of cluster scores into sampling fractions using the 

softdiv method. A count of interactions from 1000 protein-ligand complexes randomly sampled 

from the refined set of PDBbind v2020 is included for comparison. These counts correspond to 

the score distribution in Figure S4.2. 

 

 

 

 

 

 

 

 

 

 
 

Figure S21.12. Counts of interactions of each type for 1000 molecules generated by the pretrained 

model (iteration 0) and by the model after each of the five rounds of active learning with clustering 

into 100 groups and conversion of cluster scores into sampling fractions using the softsub method. 

A count of interactions from 1000 protein-ligand complexes randomly sampled from the refined 

set of PDBbind v2020 is included for comparison. These counts correspond to the score 

distribution in Figure 4C of the main text. 

 

 

 

 



S-42 

 

 
 

Figure S21.13. Cluster scores (obtained as an average of attractive interaction scores for molecules 

in the cluster) for molecules generated by the pretrained model (iteration 0) and by the model after 

each of the five iterations of active learning where, prior to sampling for docking, molecules in the 

chemical space are grouped into 100 clusters, and molecules are sampled from each cluster 

uniformly. These cluster scores correspond to score distribution in Figure 4B of the main text. 

 

 
 

Figure S21.14. Cluster scores (obtained as an average of attractive interaction scores for molecules 

in the cluster) for molecules generated by the pretrained model (iteration 0) and by the model after 

each of the five iterations of active learning where, prior to sampling for docking, molecules in the 

chemical space are grouped into 100 clusters, and molecules are sampled from each cluster using 

the linear method. These cluster scores correspond to score distribution in Figure SI4.1. 
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Figure S21.15. Cluster scores (obtained as an average of attractive interaction scores for molecules 

in the cluster) for molecules generated by the pretrained model (iteration 0) and by the model after 

each of the five iterations of active learning where, prior to sampling for docking, molecules in the 

chemical space are grouped into 100 clusters, and molecules are sampled from each cluster using 

the softdiv method. These cluster scores correspond to score distribution in Figure SI4.2. 

 
 

Figure S21.16. Cluster scores (obtained as an average of attractive interaction scores for molecules 

in the cluster) for molecules generated by the pretrained model (iteration 0) and by the model after 

each of the five iterations of active learning where, prior to sampling for docking, molecules in the 

chemical space are grouped into 100 clusters, and molecules are sampled from each cluster using 

the softsub method. These cluster scores correspond to score distribution in Figure 4C of the main 

text. 
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Figure S21.17. Cluster scores (obtained as an average of attractive interaction scores for molecules 

in the cluster) for molecules generated by the pretrained model (iteration 0) and by the model after 

each of the five iterations of active learning where, prior to sampling for docking, molecules in the 

chemical space are grouped into 10 clusters, and molecules are sampled from each cluster using 

the softsub method. These cluster scores correspond to score distribution in Figure S10.1 of the 

main text. 
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Section 22: Distributions of Mean and Median Cluster Scores. 

 

 

 
 

Figure S22.1. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for c-Abl kinase. The distribution for the model pretrained on the combined 

dataset with generation conditioned on ADMET filters are shown. Iteration 0 refers to the 

pretraining phase, while later iterations refer to the active learning phases. 

 

 

 
 

Figure S22.2. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for c-Abl kinase. The distribution for the model pretrained on the 

combined dataset with generation conditioned on ADMET filters are shown. Iteration 0 refers to 

the pretraining phase, while later iterations refer to the active learning phases. 
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Figure S22.3. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for c-Abl kinase. The distribution for the model pretrained on the combined 

dataset with generation conditioned on ADMET and functional group filters are shown. Iteration 

0 refers to the pretraining phase, while later iterations refer to the active learning phases. 

 

 

 

 

 
 

Figure S22.4. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for c-Abl kinase. The distribution for the model pretrained on the 

combined dataset with generation conditioned on ADMET and functional group filters are shown. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Figure S22.5. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for c-Abl kinase. The distribution for the model pretrained on the MOSES dataset 

with generation conditioned on ADMET and functional group filters are shown. Iteration 0 refers 

to the pretraining phase, while later iterations refer to the active learning phases. 

 

 

 

 

 
 

Figure S22.6. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for c-Abl kinase. The distribution for the model pretrained on the 

MOSES dataset with generation conditioned on ADMET and functional group filters are shown. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Figure S22.7. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for the HNH domain of Cas9. The distribution for the model pretrained on the 

combined dataset with generation conditioned on ADMET filters are shown. Iteration 0 refers to 

the pretraining phase, while later iterations refer to the active learning phases. 

 

 

 

 
 

Figure S22.8. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for the HNH domain of Cas9. The distribution for the model pretrained 

on the combined dataset with generation conditioned on ADMET filters are shown. Iteration 0 

refers to the pretraining phase, while later iterations refer to the active learning phases. 
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Figure S22.9. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for the HNH domain of Cas9. The distribution for the model pretrained on the 

combined dataset with generation conditioned on ADMET and functional group filters are shown. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 

 

 

 

 
 

Figure S22.10. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for the HNH domain of Cas9. The distribution for the model pretrained 

on the combined dataset with generation conditioned on ADMET and functional group filters are 

shown. Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning 

phases. 
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Figure S22.11. Mean cluster attractive interaction scores of scored molecules across five iterations 

of active learning for the HNH domain of Cas9. The distribution for the model pretrained on the 

MOSES dataset with generation conditioned on ADMET and functional group filters are shown. 

Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning phases. 

 

 

 

 
 

Figure S22.12. Median cluster attractive interaction scores of scored molecules across five 

iterations of active learning for the HNH domain of Cas9. The distribution for the model pretrained 

on the MOSES dataset with generation conditioned on ADMET and functional group filters are 

shown. Iteration 0 refers to the pretraining phase, while later iterations refer to the active learning 

phases. 
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Section 23: Additional Evaluation of Generations across Active Learning Iterations. 

 

Results in this section are regarding the model pretrained on the combined dataset with no filters 

applied to the generations, for alignment to HNH. It should be noted in the comparisons that poor 

values for the generations from the model aligned with sets curated with random sampling are 

likely due to memorization, since we only utilize replicas of scored molecules in this scenario. 

 

 
Figure S23.1. Percentage of molecules generated by our model that are valid, unique, or novel 

after pretraining (iteration 0) and five rounds of active learning. Data are shown for different 

sampling/conversion schemes. 
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Figure S23.2. Memorization of training set by our model over five rounds of naïve active learning 

with random selection. (A) The percentage of molecules in a set of 100,000 generated at iteration 

i that occur in the training set at iteration i-1. (B) The percentage of molecules in a set of 100,000 

generated at iteration i that occur in the set of scored molecules at iteration i-1. (C) The number of 

molecules from the active training set at iteration i-1 that occurs in generations at iteration i divided 

by the size of the active learning training set at iteration i-1 multiplied by 100. (D) the number of 

scored molecules at iteration i-1 that occur in generations at iteration i divided by number of scored 

molecules at iteration i-1 (i.e., 1000) multiplied by 100.  
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Figure S23.3. Memorization of training set by our model over five rounds of active learning with 

100 clusters and uniform selection. (A) The percentage of molecules in a set of 100,000 generated 

at iteration I that occur in the training set at iteration i-1. (B) The percentage of molecules in a set 

of 100,000 generated at iteration i that occur in the set of scored molecules at iteration i-1. (C) The 

number of molecules from the active training set at iteration i-1 that occurs in generations at 

iteration i divided by the size of the active learning training set at iteration i-1 multiplied by 100. 

(D) the number of scored molecules at iteration i-1 that occur in generations at iteration i divided 

by number of scored molecules at iteration i-1 (i.e., 1000) multiplied by 100. 
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Figure S23.4. Memorization of training set by our model over five rounds of active learning with 

100 clusters and linear selection. (A) The percentage of molecules in a set of 100,000 generated at 

iteration i that occur in the training set at iteration i-1. (B) The percentage of molecules in a set of 

100,000 generated at iteration i that occur in the set of scored molecules at iteration i-1. (C) The 

number of molecules from the active training set at iteration i-1 that occurs in generations at 

iteration i divided by the size of the active learning training set at iteration i-1 multiplied by 100. 

(D) the number of scored molecules at iteration i-1 that occur in generations at iteration i divided 

by number of scored molecules at iteration i-1 (i.e., 1000) multiplied by 100. 
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Figure S23.5. Memorization of training set by our model over five rounds of active learning with 

100 clusters and softdiv selection. (A) The percentage of molecules in a set of 100,000 generated 

at iteration i that occur in the training set at iteration i-1. (B) The percentage of molecules in a set 

of 100,000 generated at iteration i that occur in the set of scored molecules at iteration i-1. (C) The 

number of molecules from the active training set at iteration i-1 that occurs in generations at 

iteration i divided by the size of the active learning training set at iteration i-1 multiplied by 100. 

(D) the number of scored molecules at iteration i-1 that occur in generations at iteration i divided 

by number of scored molecules at iteration i-1 (i.e., 1000) multiplied by 100. 
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Figure S23.6. Memorization of training set by our model over five rounds of active learning with 

100 clusters and softsub selection. (A) The percentage of molecules in a set of 100,000 generated 

at iteration i that occur in the training set at iteration i-1. (B) The percentage of molecules in a set 

of 100,000 generated at iteration i that occur in the set of scored molecules at iteration i-1. (C) The 

number of molecules from the active training set at iteration i-1 that occurs in generations at 

iteration i divided by the size of the active learning training set at iteration i-1 multiplied by 100. 

(D) the number of scored molecules at iteration i-1 that occur in generations at iteration i divided 

by number of scored molecules at iteration i-1 (i.e., 1000) multiplied by 100. 
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