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Kerr parametric oscillators are potential building blocks for fault-tolerant quantum computers.
They can stabilize Kerr-cat qubits, which offer advantages towards the encoding and manipula-
tion of error-protected quantum information. Kerr-cat qubits have been recently realized with the
SNAIL transmon superconducting circuit by combining nonlinearities and a squeezing drive. These
superconducting qubits can lead to fast gate times due to their access to large anharmonicities.
However, we show that when the nonlinearities are large and the drive strong, chaos sets in and
melts the qubit away. We provide an equation for the border between regularity and chaos and
determine the regime of validity of the Kerr-cat qubit, beyond which it disintegrates. This is done
through the quantum analysis of the quasienergies and Floquet states of the driven system, and
is complemented with classical tools that include Poincaré sections and Lyapunov exponents. By
identifying the danger zone for parametric quantum computation, we uncover another application
for driven superconducting circuits, that of devices to investigate quantum chaos.

I. INTRODUCTION

Decoherence is a familiar threat to quantum technolo-
gies. A resourceful way to protect quantum information
against decoherence processes that act locally is to en-
code it nonlocally in the phase space of an oscillator in
the form of superpositions of coherent states [1]. These
Schrödinger cat states [2–4] can be generated with Kerr
parametric oscillators [5–9], as those experimentally real-
ized in superconducting circuits [10]. To stabilize the cat
states, the experiment combines Kerr nonlinearity and
a squeezing (two-photon) drive. The nonlinear oscilla-
tor is achieved with an arrangement of a few Josephson
junctions, known as superconducting nonlinear asymmet-
ric inductive element (SNAIL) transmon [11], which is
then sinusoidally driven at nearly twice the natural fre-
quency of the oscillator. The twofold degenerate ground
states of this system give rise to the Schrödinger cat
states, which are the logical states of the so-called Kerr-
cat qubit. A significant increase of the relaxation time
has been achieved with this setup.

A quantum nonlinear oscillator under a sinusoidal
drive exhibits a variety of interesting features. When
driven at twice the natural frequency of the oscillator,
the system develops a double-well, which, in addition to
being the source of the Schrödinger cat states [5–7, 10],
has been employed in theoretical studies of quantum ac-
tivation [12, 13], quantum tunneling [14–17] and photon-
blockade phenomena [18]. The derivation of static effec-
tive Hamiltonians has helped with the understanding of
these driven systems. The effective models have applica-
tions in Hamiltonian engineering [19–21] and in the anal-

ysis of the coalescence of pairs of energy levels [22] that
result in excited state quantum phase transitions [23].
These transitions (aka “spectral kissing”) and quantum
tunneling have been experimentally investigated with the
driven SNAIL transmon in [24] and [25], respectively.
Despite the advances brought by Kerr parametric oscil-

lators to quantum computation and quantum error cor-
rection [26], we call attention to the potential danger
of chaos. The problems that the onset of chaos due to
qubit-qubit interactions could cause to quantum comput-
ers was first raised in [27–30] and they reverberate in
more recent studies about the scrambling of quantum in-
formation [31–34] and in the analysis of chaos in coupled
Kerr parametric oscillators [35]. Our focus here is instead
on the most basic element of the quantum computer, the
qubit itself. In [36], it was pointed out that part of the
transmon spectrum can be chaotic for parameters that
are experimentally used. Here, we show that the onset of
chaos due to the interplay of nonlinearity and drive can
cause the complete destruction of the Kerr-cat qubit.
The experiments that realized driven nonlinear oscilla-

tors with the SNAIL transmon were properly described
by low-order static effective Hamiltonians [24, 25]. As the
nonlinear effects increase, agreement between the static
and driven pictures may still hold [37] if one consid-
ers higher orders terms in the expansion performed to
obtain the effective Hamiltonian [20, 38], but this pro-
cess eventually breaks down. When the drive and non-
linearities become sufficiently strong, chaos sets in and
the oscillator can no longer be described by any time-
independent Hamiltonian, which is necessarily integrable
for one-degree-of-freedom systems. The analysis that we

ar
X

iv
:2

31
0.

17
69

8v
1 

 [
qu

an
t-

ph
] 

 2
6 

O
ct

 2
02

3



2

develop in this work to determine the range of param-
eters that lead to the onset of chaos in parametrically
driven nonlinear oscillators is particularly important for
superconducting quantum circuits, where large nonlin-
earities can be reached [11, 39] and are required for fast
gates [5, 40, 41].

If on the one hand, chaos puts limits on the Kerr-cat
qubit, on the other hand it opens up a new direction of
research for superconducting circuits. Quantum chaos
has recently received significant attention in fields that
range from quantum gravity and black holes to condensed
matter and atomic physics due to its relationship with
quantum dynamics, dynamical stability, absence of lo-
calization, and thermalization. Identifying a controllable
system in which quantum chaos can be generated and
experimentally analyzed is timely. Examples of quantum
chaotic systems that have been experimentally realized
include the kicked rotor [42], the baker’s map [43], the
kicked top [44], the kicked harmonic oscillator [45], and
the driven pendulum [46, 47], which was realized with
cold atoms and used for chaos-assisted tunneling. Super-
conducting circuits offer unmatched advantages for inves-
tigating the onset of chaos and its consequences, because
both spectrum and dynamics can be measured simultane-
ously. The spectrum can be measured as a function of the
control parameters, potentially allowing for the analysis
of level statistics, and dynamics can be studied in phase
space, which enables the evolution of out-of-time ordered
correlators [23] and Wigner functions. Furthermore, the
classical limit is experimentally realizable.

In this work, we determine the parameters for which
the Kerr-cat qubit melts away, drawing the border be-
tween regularity and chaos. We also propose a way to
experimentally capture when the system leaves the reg-
ular regime. The analysis is based on the quasienergies
and Floquet states of the quantum driven nonlinear os-
cillator implemented with the SNAIL transmon, and is
complemented with classical tools, such as Lyapunov ex-
ponents and Poincaré sections.

II. QUANTUM AND CLASSICAL
HAMILTONIAN

The quantum Hamiltonian that describes the driven
SNAIL transmon in [24, 25] is given by

Ĥ(t)

ℏ
=

Ĥ0

ℏ
− iΩd(â− â†) cosωdt, (1)

where the undriven part is truncated as [40, 48, 49] (see
appendix A)

Ĥ0

ℏ
= ω0â

†â+
g3
3
(â+ â†)3 +

g4
4
(â+ â†)4, (2)

ω0 is the bare frequency of the oscillator, â† and â are the
bosonic creation and annihilation operators, g3, g4 ≪ ω0

are the coefficients of the third and fourth-rank nonlin-
earities [24, 25], Ωd is the amplitude of the sinusoidal
drive, and ωd is the driving frequency. We set ℏ = 1.
The effective nonlinearity of the system, K, is deter-

mined by the half difference between the frequencies of
the lowest energies of the undriven Hamiltonian, that is,

K = (ω1,0 − ω2,1)/2, (3)

where ωi,j = (E
(0)
i − E

(0)
j ) and E

(0)
i are the eigenvalues

of Ĥ0. In the analysis below, we refer to K as the Kerr
nonlinearity and choose the control parameters g3 and
g4 within ranges that are experimentally accessible. We
stress that what we call K here is an exact quantity, not
the perturbative parameter used in effective Hamiltoni-
ans.
We use Floquet techniques [50] to analyze the period-

ically driven system in Eq. (1). The Floquet operator
over one period of the drive, Td = 2π/ωd, is denoted by

U(Td)|Fj⟩ = exp(−iϵjTd)|Fj⟩, (4)

where ϵj are the quasienergies with ϵjTd ∈ [−π, π] and
|Fj⟩ are the Floquet states for j ∈ [0, N − 1], with N
being the truncated Hilbert space dimension.

The derivation of the classical limit of the quantum
Hamiltonian in Eq. (1) is shown in appendix A. Using the
canonical coordinates (q, p), the Hamiltonian is written
as

hcl(t) = h0 +
√
2Ωdp cos (ωdt) , (5)

where

h0 =
ω0

2

(
q2 + p2

)
+

√
23

3
g3q

3 + g4q
4. (6)

Notice that for g3 = 0, Hamiltonian hcl(t) describes the
forced undamped Duffing oscillator, which is a known
model for chaos.

III. DOUBLE-WELL SYSTEM: REGULARITY
TO CHAOS

We start our analysis by setting the frequency of the
drive at nearly twice the natural frequency of the oscilla-
tor, ωd ≈ 2ω0. For this choice and the parameters used in
the experiments [24, 25], the system can be described by
a double-well metapotential (see details in appendix B),
as illustrated in Fig. 1(a). The parameters are given in
the first row of Table I, which defines the point A.
The black dots in Fig. 1(a) designate the Poincaré

sections. These points are obtained by evolving many
different classical initial conditions according to Eq. (5)
and collecting the values of q and p at each time Td.
The curves that are formed with these points coincide
with the energy contours of the classical limit of the
static effective Hamiltonian investigated in [23–25, 37]
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FIG. 1. Regularity and chaos in phase space and in the quasienergy spectrum for ωd/ω0 = 1.999866. (a)-(f): Phase space
analysis of the parameters indicated in Table I. The black dots give the classical Poincaré sections for many different initial
conditions, the red line in (a) marks the separatrix that defines the Bernoulli lemniscate, colors from blue to orange indicate
the values of the participation ratio of coherent states projected in the Floquet states. (g): Measure of quantum chaos given
by the average ratio r of consecutive quasienergies spacings as a function of K/ω0 and Γ. The six points A-F marked in (g)
are the same ones chosen for the phase spaces in (a)-(f). They were selected to illustrate the behavior in the regular, mixing,
and chaotic regimes. The solid black curve in (g) corresponds to Eq. (12) and indicates the parametric case, where the classical
Lyapunov exponent becomes positive in the vicinity of the center of the lemniscate, while the black dashed line is given in
corresponds to Eq. (13) and indicates the parameters for which chaos sets in both inside and outside the original lemniscate,
which by then has disappeared.

Point 10−4K/ω0 Γ nmin

A 0.53 8.5 8.079
B 5.02 8.5 7.249
C 0.53 80 77.007
D 2.91 80 66.134
E 8.33 80 197.924
F 25 80 336.598

TABLE I. This table gives the parameters for the points A-F
marked in Fig. 1(g), whose phase diagrams are depicted in
Figs. 1(a)-(f), and the corresponding values of nmin obtained
with Eq. (9).

(see Eq. (C2) in appendix C). The red curve in Fig. 1(a)
is the Bernoulli lemniscate, which delineates the bound-
ary of the double well and is characterized by the fol-
lowing two parameters: Π = Ωdωd/

(
ω2
d − ω2

0

)
, where√

2Π is the distance from the center of the phase space
to the center of the double well, and

√
2Γ, which is

the half distance between the two minima of the wells,
with Γ = g3Π/K. The symmetric ellipses within the
lemniscate in Fig. 1(a) are centered at the minima of

the metapotential at (±qmin = ±
√
2Γ, pmin = 0), and

the area within the lemniscate is equal to 4Γ (see ap-
pendix B). Using Bohr quantization rule and dimension-
less coordinates q and p, we thus have

∮
pdq = 2πnin,

and the integer number of levels inside the lemniscate is

given by [24]

nin = 2Γ/π, (7)

which can be measured experimentally.
We color Fig. 1(a) according to the value of the par-

ticipation ratio,

P(α)
R =

1∑
j |⟨α|Fj⟩|4

=
1∑

j

(
πQα

Fj

)2 , (8)

for coherent states |α⟩ projected in the Floquet states,

where â|α⟩ = α|α⟩, with α = (q + ip)/
√
2, and Qα

Fj
=

|⟨α|Fj⟩|2 /π is the Husimi function of each Floquet state.
The participation ratio in Eq. (8) measures the level of
delocalization of a coherent state in the basis defined
by |Fj⟩. The most localized coherent states are those
centered at the minima of the double-well metapoten-
tial, | ± αmin⟩, and at the center of the phase space at

(p, q) = (0, 0) [23]. They have the smallest values of P(α)
R ,

which correspond to the darkest tones of blue in Fig. 1(a).
There are two quasidegenerate Floquet states, |Fmin⟩,

that are highly localized at the minima of the double wells
and correspond to superpositions of the two opposite-
phase coherent states, |Fmin⟩ ∝ | + αmin⟩ ± | − αmin⟩
[1, 51]. These states define the Schrödinger cat states
of the Kerr-cat qubit [10]. The expectation value of the
number operator for these states is

nmin = ⟨Fmin|n̂|Fmin⟩ ≈ |αmin|2 = Γ, (9)
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which can be measured experimentally. This value is
directly related with the number of states inside the lem-
niscate, nin, given in Eq. (7).

A. Kerr-cat qubit disintegration

The portion of the space phase presented in Fig. 1(a)
is characterized by periodic orbits, being therefore regu-
lar. However, a chaotic sea exists far away from the lem-
niscate, as shown in appendix B. The analysis of global
chaos would classify the system with the parameters of
Fig. 1(a) as being in a mixed regime, but this is not our
focus. We are concerned with local chaos, which can
emerge around the phase space center and destroy the
Kerr-cat qubit. By increasing the strength of the non-
linearities and drive, the chaotic sea, which was once far
away, expands and reaches the phase space region of in-
terest to parametric quantum computation, that is, the
region surrounding the lemniscate.

To analyze the transition to chaos in the region sur-
rounding the center of the phase space, we vary Γ and
K/ω0. This is done so that the Kerr amplitude remains
within values that are experimentally accessible in the
present or near future, K/ω0 ∈ 33 × [10−6, 10−4] (see
appendix C). The parameter Γ is varied by changing Π,
while keeping ωd ≈ 2ω0.

To determine the onset of quantum chaos, we use the
average ratio of consecutive quasienergy spacings [52, 53],

r̃ =
1

N

N∑
j

min

(
rj ,

1

rj

)
, where rj =

sj
sj−1

, (10)

and sj = ϵj+1 − ϵj . The spectra of chaotic systems
are rigid and the levels are correlated, which result in
Wigner-Dyson distributions for the spacings of neighbor-
ing levels. When the symmetries of the chaotic system
comply with the circular orthogonal ensemble, r̃COE ≈
0.53. For regular systems, the levels are uncorrelated
and follow Poisson statistics, so r̃P ≈ 0.39. We compute
the renormalized quantity,

r̄ =
r̃ − r̃P

r̃COE − r̃P
, (11)

so that chaos becomes associated with r̄ = 1 and regu-
larity with r̄ = 0.

In Fig. 1(g), we construct a map of regularity and chaos
for the quantum system in Eq. (1). The region in red
indicates that r̄ ≈ 1, so the system is chaotic. This region
emerges for large values of the Kerr amplitude, K/ω0,
and Γ. The region in blue indicates regularity.

The six points A-F marked in Fig. 1(g) are chosen for
a more detailed analysis in Figs. 1(a)-(f) of their corre-
sponding phase space structures (classical analysis) and
of the level of delocalization of coherent states written in
the basis of Floquet states (quantum analysis). Just as in

Fig. 1(a), described above, the black dots in Figs. 1(b)-
(f) are associated with the Poincaré sections and the col-
ors give the values of the participation ratio of coherent
states projected in the Floquet states. It is also infor-
mative to compare Figs. 1(a)-(f) with Figs. 5(a)-(f) of
appendix D, where we color the phase spaces with the
Lyapunov exponent, λ, of the classical system in Eq. (5).
The regular regime is defined by a zero Lyapunov ex-
ponent and chaos corresponds to positive values. There
is a clear quantum-classical correspondence, where large

values of P(α)
R appear when λ is positive.

Points A, B and C are in the regular regime. The lem-
niscate in Fig. 1(a) persists in Figs. 1(b)-(c), although
it becomes more asymmetric. Notice that to provide
more details for the lemniscate of point A, the scales in
Fig. 1(a) are not the same as in Figs. 1(b)-(c).
Point B corresponds to a large value of the Kerr ampli-

tude and we see that away from the lemniscate, the pe-
riodic orbits disappear, giving space to black dots at the
edges of Fig. 1(b) and to positive Lyapunov exponents
at the edges of Fig. 5(b). In spite of that, the structure
of the Kerr-cat qubit survives and the value of nmin re-
mains close to Γ, as seen in Table I. The resilience of the
Kerr-cat qubit to a range of values of the the Kerr non-
linearity should be reassuring to the parametric quantum
computation community (see also appendix C).
Point C shows what happens to point B as one ap-

proaches the classical limit, which is done by broadening
the wells. By increasing Γ while keeping ΓK/ω0 con-
stant, we enlarge the wells without changing their shape
and increase the number of levels within (cf. the values
of nmin for B and C in Table I), thus approaching the
classical picture.
Point D is in a mixed regime. The center of the dou-

ble well, which is a hyperbolic point in Figs. 1(a)-(c),
no longer corresponds to a single point in Fig. 1(d) and
the Lyapunov exponent in this area becomes positive, as
shown in Fig. 5(d). Chaos and islands of stability are seen
around the structure of the asymmetric double well and
chaos now exists also in the center of the structure, indi-
cating that the lemniscate has started to disintegrate. At
this stage, any activation between wells [12, 24] will hap-
pen through the chaotic region, melting away the Kerr-
cat qubit.
The values of Γ andK/ω0 beyond which the intermedi-

ate regime between regularity and (local) chaos emerges
follows the black solid line in Fig. 1(g). They correspond
to the parameters, where the Lyapunov exponent first
gets positive in the vicinity of the phase-space center (see
appendix D). This solid line marks the beginning of the
lemniscate disintegration and is given by

ΓK/ω0 =
g3Ωdωd

ω0(ω2
d − ω2

0)
≃ 0.0187. (12)

This equation shows that despite the transition to
chaos, there is still ample space for the stabilization of
Schrödinger cat states and for reaching large values of K,
which are needed for fast gates.
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FIG. 2. (a) Expectation value of the number operator, nmin, and (b) Shannon entropy, Smin, for the Floquet state |Fmin⟩. The
two quantities are shown as a function of the Kerr amplitude K/ω0 for Γ = 30 (triangles) and Γ = 80 (squares). In (a): The
blue background indicates the regular region and the orange background indicates the chaotic region; they are separated by
the same black dashed line shown in Fig. 1(g). Panels (I), (II), (III), and (IV) depict the Husimi functions for the Floquet
state |Fmin⟩ indicated in (a) and (b) as points (I), (II), (III), and (IV) with K/ω0 = {0.33, 3.66, 8.66, 12} × 10−4, respectively.

As we move from point D [Fig. 1(d)] to points E and F
[Figs. 1(e)-(f)], chaos takes over the entire phase space,
the double-well structure is destroyed, and the Lyapunov
exponent shown in Figs. 5(e)-(f) is positive throughout.
In Fig. 1(e), we can still notice two small islands of reg-
ularity that are reminiscent of the double well and be-
tween them, the states are less delocalized than the states

around the islands, while the values of P(α)
R in Fig. 1(f)

indicate near ergodicity.
In Fig. 1(g), we draw a dashed black line to indicate

the parameters for which chaos close to the phase-space
center and around the double well merge together leading
to ergodicity. Similarly to Eq. (12), the analysis is based
on the values of the Lyapunov exponents (appendix D)
and the equation for the dashed line is given by

ΓK/ω0 =
g3Ωdωd

ω0(ω2
d − ω2

0)
≃ 0.03347. (13)

The analysis in Fig. 1 was performed using a relation
between g3 and g4 that ensures that the parameters in
Fig. 1(a) reproduce the physics in [24], where the second-
order static effective Hamiltonian describes very well the
experiment. There are numerous other possibilities for
varying the parameters, many within experimental capa-
bilities. Nevertheless, as we discuss in appendix C, they
lead to results that are comparable to those in Fig. 1. The
transition to chaos is unavoidable, although one may be
able to slightly shift the values for the regularity-chaos
threshold, thus changing the constants in Eqs (12)-(13).

IV. CHAOS DETECTION

The experiment with the superconducting circuit per-
formed in [24] measured the energy levels of the driven
nonlinear oscillator as a function of the control param-
eter. However, the number of levels currently accessi-
ble to the experiment is not sufficient for the analysis
of level statistics, as done in Fig. 1(g). To circumvent
this issue, we propose a way to detect the transition to
chaos that avoids the analysis of the quasienergy spec-
trum and focuses instead on the properties of the Floquet
state |Fmin⟩. When the system is in the regular regime,
this state coincides with the Schrödinger cat state and is
highly localized at the minima of the wells. As the nonlin-
earities increase and |Fmin⟩ spreads in phase space, chaos
is guaranteed to have set throughout the phase space.
In Fig. 2(a), we show nmin = ⟨Fmin|n̂|Fmin⟩ as a func-

tion of K/ω0 for two parameters: Γ = 30 (triangles) and
Γ = 80 (squares). The background is colored according
to the results in Fig. 1(g) using that in the presence of
the double well, nmin ∼ Γ, so the region in blue is reg-
ular and orange indicates chaos. The dashed black line
separating the two regions is the same as in Fig. 1(g). To
complement the analysis, Fig. 2(b) makes a parallel with
Fig. 2(a). It shows the behavior of the Shannon entropy
for the Floquet state |Fmin⟩ projected in the coherent
states,

Smin = − 1

π

∫
Qα

Fmin
ln
(
Qα

Fmin

)
d2α, (14)

as function of K/ω0 for Γ = 30 (triangles) and Γ = 80
(squares).
We start by describing the results for Γ = 80 (squares)
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in Fig. 2(a). In the regular regime, nmin decays linearly
with the Kerr amplitude. To better explain this behavior,
we select two points in Fig. 2(a), indicated as (I) and (II),
and analyze their respective Husimi functions on the left
panels (I) and (II). As expected, the Husimi functions for
these two |Fmin⟩ are localized at the minima of the double

well, at q = ±
√
2Γ ≈ ±13. Comparing panel (I) and

panel (II), we see that as K/ω0 increases, the structure
of the Husimi function becomes more asymmetric and
the area of the lemniscate decreases, which reduces the
value of nmin [see also Figs. 1(a)-(c)]. At the same time,
since the Husimi functions remain localized in panels (I)
and (II), the values of the Shannon entropy for these two
cases in Fig. 2(b) remain comparable.

For Γ = 80 (squares), as we enter the chaotic region,
nmin in Fig. 2(a) and Smin in Fig. 2(b) grow with K/ω0.
This can be understood by analyzing the Husimi func-
tions for the points (III) and (IV) shown on the panels
to the right of Figs. 2(a)-(b). The parameters for point
(III) are equivalent to those in Fig. 1(e), where there are
two islands of instability close to the original minima of
the double well. This explains why |Fmin⟩ in panel (III)
shows some level of confinement around the islands, al-
though the state is visibly more delocalized than those
in panels (I) and (II). The parameters for point (IV) are
equivalent to those in Fig. 1(f), where the system ap-
proaches ergodicity, so the Husimi function in panel (IV)
is spread out. As the level of delocalization of |Fmin⟩
increase from point (II) to (III) and from point (III) to
(IV), nmin and Smin naturally grow in Figs.2(a)-(b).
For values of K/ω0 at and beyond point (IV), the dou-

ble well is completely destroyed, so it no longer makes
sense to talk about the number of states inside the lem-
niscate. In this case, all Floquet states are delocalized,
including |Fmin⟩, which is now hard to distinguish from
the others, so nmin and Smin fluctuate with K/ω0.
The behavior of nmin and Smin as a function of the

Kerr amplitude for Γ = 30 [triangles in Figs. 2(a)-(b)] is
equivalent to that for Γ = 80. The difference is that for
Γ = 30, the onset of chaos and the consequent growth of
nmin and Smin withK/ω0 require larger values of the Kerr
amplitude than for Γ = 80, as indeed seen in Figs. 2(a)-
(b).

In summary, the disintegration of the double well and
its substitution by chaos can be detected from the anal-
ysis of the spread of the Schrödinger cat states in phase
space and its eventual disintegration. This can be done
by directly investigating the Husimi or Wigner functions
of these states in phase space for different values of the
system parameters or by quantifying their spread with
the occupation number nmin or an entropy, such as Smin.
The growth of nmin and Smin signals the departure from
the regular to the chaotic regime.

V. DISCUSSION

Our work brings to light the danger of the onset of
chaos for Kerr parametric oscillators, which puts a limit
on the ranges of parameters that can be employed for
qubit implementation. Combining quantum and classi-
cal analysis, we determined the threshold for the rupture
of the Kerr-cat qubit, which happens when chaos first
sets in around the center of the qubit double-well struc-
ture. Important extensions to this work include the role
of dissipation and the analysis of the limitations that
chaos may impose to parametric gates in transmon and
fluxonium arrays.
By increasing the nonlinearities and driving amplitude,

we showed that the Schrödinger cat states of the Kerr-
cat qubit, which are initially at the bottom of the wells,
spread and eventually disintegrate. Once these states are
lost, chaos is certain to have spread throughout the phase
space. The process of disintegration could be experimen-
tally observed with available technology by measuring
the Wigner functions of the cat states.
The results in this work indicate that on the same plat-

form of superconducting circuits, one can either engineer
bosonic qubits for quantum technologies or develop chaos
to address fundamental questions. This opens up a new
avenue of research for superconducting circuits. They
could be used, for example, to investigate how chaos af-
fects the spread of quantum information in phase space
and whether chaos can enhance the tunneling rate be-
tween islands of stability.
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Appendix A: Quantum and Classical Hamiltonian

The driven SNAIL transmon is analogous to an asym-
metric driven pendulum. By Taylor expanding the po-
tential, the Hamiltonian is given by [24]

Ĥ(t)

ℏ
= ω0â

†â+

∞∑
m=3

gm
m

(
â† + â

)m
− iΩd

(
â− â†

)
cos(ωdt),

(A1)

where ω0 is the bare frequency of the oscillator, gm’s
are the circuit nonlinearities, gm ≪ ω0, and the drive is
characterized by its amplitude Ωd and frequency ωd. The
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nonlinearity originates from an arrangement of Josephson
junctions in the SNAIL transmon and can be tuned with
a magnetic flux. Only the third and fourth-rank non-
linearities were relevant in the experiments in [24, 25]),
which gives our Eq. (1) in the main text for the quantum
Hamiltonian,

Ĥ(t)

ℏ
= ω0â

†â+
g3
3
(â+ â†)3 +

g4
4
(â+ â†)4

− iΩd(â− â†) cos(ωdt).

(A2)

To derive the classical Hamiltonian, we write

â =

√
Neff

2
(q̂ + ip̂) , (A3)

and

[q̂, p̂] =
i

Neff
,

so that the classical limit can be reached by takingNeff →
∞, since q̂ → q and p̂ → p. This way, the quantum
Hamiltonian,

Ĥ(t)

ℏ
=

ω0Neff

2
(q̂ − ip̂) (q̂ + ip̂) +

4∑
m=3

gm
m

(
√

2Neffq̂)
m

+ Ωd

√
2Neff p̂ cosωdt, (A4)

leads to the classical Hamiltonian (with ℏ = 1),

hcl(t) =
ωcl
0

2

(
q2 + p2

)
+

2
√
2

3
gcl3 q

3 + gcl4 q
4

+
√
2Ωcl

d p cos (ωdt) , (A5)

where

ω0 = ωcl
0 /Neff, g3 = gcl3 /

√
N3

eff,

g4 = gcl4 /N
2
eff, and Ωd = Ωcl

d /
√
Neff.

In the main text, we fix

Neff = 1.

Appendix B: Emergence of the Bernoulli lemniscate

To better understand the origin of the lemniscate in
Fig. 1(a) and where it emerges in the phase space, let
us start by analyzing the classical static Hamiltonian in
Eq. (6),

h0 =
ω0

2

(
q2 + p2

)
+

√
23

3
g3q

3 + g4q
4. (B1)

It describes a quartic asymmetric oscillator, that presents
three stationary (critical) points with p = 0. They are
the minima

(q0, p0) = (0, 0),

(q1, p1) = (d−, 0),

and the hyperbolic point

(q2, p2) = (d+, 0),

where d± =
√
2
(
−g3 ±

√
g23 − 2g4ω0

)
/(4g4). The con-

dition g23 − 2g4ω0 > 0 ensures that d± is real.
The linearized Hamilton equations around a critical

point {qc, pc} of h0 satisfies the following linear differen-
tial equations,(

q̇
ṗ

)
=

(
0 ω0

−ω0−4
√
2g3qc−12g4q

2
c 0

)(
q−qc
p−qc

)
. (B2)

The stability or instability around {qc, pc} is determined
by the eigenvalues λm of the matrix constructed in
Eq. B2. If the eigenvalues are complex numbers, λm =
i ω̃m, the orbits in the neighborhood of the critical point
are periodic and have frequencies ω̃m. If the eigenvalues
of the matrix are real, then the critical point is unstable
and its Lyapunov exponent is equal to max(λm).

−10 −5 0 5 10
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p
p

p

q

q q
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−300
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FIG. 3. Asymmetric and symmetric double wells. (a) Phase
space metapotential of the classical Hamiltonian hcl(t) in
Eq. (5) representing a large asymmetric double well. Black
points are used for regular orbits. The red points indi-
cate orbits with positive Lyapunov exponents (chaos). The
three green symbols indicate the critical points: square for
(q1, p1) = (d−, 0), cross for (q2, p2) = (d+, 0), and circle for
(q0, p0) = (0, 0). The blue line is the separatrix of the asym-
metric double well. (b) Enlarged image of panel (a) close to
the point (0, 0), providing a view of the additional symmetric
double well that emerges at the phase space center. The red
line is the Bernoulli lemniscate. The distance between the
two minima is 2

√
2Γ. (c) Enlarged image of panel (b) close to

the point (0, 0). The distance between the phase space center
(0, 0) and the hyperbolic point of the Bernoulli lemniscate is√
2Π.

In Fig. 3(a), we show the Poincaré sections (black lines)
for the driven system described by hcl(t) in Eq. (5) with
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a frequency ωd that is nearly twice ω0 and with the pa-
rameters used in the experiment in [24] and in Fig. 1(a).
The stationary points of h0 are marked with green sym-
bols: square for (q1, p1), cross for (q2, p2), and circle for
(q0, p0). The blue line crossing at the hyperbolic point
(q2, p2) is the separatrix of the big asymmetric double
well. The red points indicate a chaotic sea that appears in
the vicinity of the separatrix. Around the minima, there
are periodic orbits with frequencies ω̃ that are related to
the minimum that they surround. Close to (q0, p0), the
orbits have frequencies ω̃0 = ω0 and close to (q1, p1), the

orbits have frequencies ω̃1 =
√

ω0b(g3 + b)/
√
g4, while

at the hyperbolic point (q2, p2), the Lyapunov exponent

is positive and given by λ =
√
ω0b(g3 − b)/

√
g4, where

b =
√

g23 − 2g4ω0.

1. Double well at the phase space center

Close to the stationary point (q0, p0) = (0, 0) at the
center of the phase space, there is a bifurcation caused
by the chosen driving frequency, ωd ≃ 2ω0, that gives
rise to another double-well structure. This is better seen
in Fig. 3(b), where we enlarge the area around (q0, p0).
The entire analysis developed in the main text concerns
this region of the phase space.

The double-well structure in Fig. 3(b) also exhibits
three critical points: two minima and a hyperbolic point.
Notice that the hyperbolic point of this double well is
very close to phase space center (0, 0). The separatrix
is indicated with the red line, which corresponds to the
Bernoulli lemniscate given by

(q2 + p2)2 = 4Γ(q2 − p2),

and in polar coordinates by

r2(θ) = 4Γ cos(2θ),

where the focal distance is
√
2Γ. The surface area corre-

sponds to

4

∫ π/4

0

∫ r(θ)

0

r dr dθ = 4Γ, (B3)

which is a result used to obtain Eq. (7) in the main text.

In Fig. 3(c),
√
2Π is the distance between the phase

space center (0, 0) and the center (hyperbolic point) of
the Bernoulli lemniscate. The separation between the
two points can be understood as follows. The dynamics
around the critical point (0, 0) is given by

q(t) = q0(t) + qr(t),

where q0(t) is the homogeneous solution obtained with
the undriven classical Hamiltonian h0 and qr(t) is ob-
tained from the linear terms of the Hamilton equations
for the driven case, so that

q̈r + ω2
0qr = −

√
2ωdΩd sinωdt,

and

qr(t) =
√
2Π sin(ωdt),

where

Π = Ωdωd/
(
ω2
d − ω2

0

)
.

The linear response associated with qr(t) causes a trans-
lation of the center of the lemniscate by the amplitude√
2Π. Therefore, as one can see from Figs. 3(a)-(c), the

condition for the existence of a well-defined inner double-
well structure centered close to (0, 0) is

|
√
2Π|+ |

√
2Γ| < |d+|. (B4)

In Table II, we complement Table I of the main text
by providing the values of

√
2Γ/|d+| and

√
2Π/|d+|.

All points, except for point F, satisfy the inequality in
Eq. (B4). For point F, the lemniscate is already destroyed
by chaos.

Point 10−4K/ω0 Γ nmin

√
2Γ/|d+|

√
2Π/|d+|

A 0.53 8.5 8.079 0.04122 0.00148492
B 5.02 8.5 7.249 0.141397 0.0157244
C 0.53 80 77.007 0.12647 0.0140573
D 2.91 80 66.134 0.29577 0.0769191
E 8.33 80 197.924 0.49995 0.219769
F 25 80 336.598 0.86594 0.659321

TABLE II. This table is the same as Table I of the main text,
where the parameters for the points A-F marked in Fig. 1(g)

are provided, but now the values of
√
2Γ/|d+| and

√
2Π/|d+|

are also given.

Appendix C: Control parameters

In the main text, the values of K/ω0 are varied para-
metrically by varying g3/ω0 and g4/ω0 according to the
equation

g4 =
20g23
69ω0

. (C1)

This choice is made to guarantee that we reproduce the
scenario in [24], where the second-order effective Hamil-
tonian describes very well the experiment. The second-
order effective Hamiltonian is given by [24],

Ĥ
(2)
eff

ℏ
= −K(2)â†2â2 + ϵ

(2)
2 (â†2 + â2), (C2)

where

K(2) = −3g4
2

+
10g23
3ω0

, (C3)

and ϵ
(2)
2 = 2g3Ωd/(3ω0). Equation (C1) is the same as

Eq. (C3) when K(2) = 10g4. In this section, we show
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FIG. 4. (a) Kerr amplitude K(2) of the second-order effective Hamiltonian (in color) as a function of g3/ω0 and g4/ω0. Red

is used for K(2) > 0 and blue for K(2) < 0; the solid black lines mark constant values of K(2); the green line marked as (c)

is for K(2) = g4, the cyan line (d) is for K(2) = 10g4, the purple line (e) is for K(2) = 100g4, and the orange line (f) is for

K(2) = −0.6976g4. (b) Absolute difference between K(2) and K as a function of |K/ω0| for different choices of K(2) = Cg4, as
indicated. (c)-(f): Measure of quantum chaos given by the average ratio r of consecutive quasienergies spacings as a function

of K/ω0 and Γ, for ωd/ω0 = 1.999866 and (c) K(2)/g4 = 1, (d) K(2)/g4 = 10, (e) K(2)/g4 = 100, and K(2)/g4 = −0.6976. The
solid black curve indicates the parametric case, where the classical Lyapunov exponent becomes positive in the vicinity of the
center of the lemniscate, and the dashed black curve indicates the parameters for which chaos sets in both inside and outside
the original lemniscate.

what happens to the analysis in Fig. 1(g) for other choices
of C in K(2) = C g4.
In Fig. 4(a), we show in color the values of K(2) as a

function of g3/ω0 and g4/ω0. Blue gradient is used when
K(2) < 0 and red gradient for K(2) > 0. The green, cyan,
purple, and orange lines indicate the examples where C =
{1, 10, 100,−0.6976}, respectively. In Fig. 4(b), we use
the difference δK = |K −K(2)| to compare K(2) and K.
The behavior of δK with C is non-monotonic. The best
match between K and K(2) happens for K(2) = 10g4
(cyan line), which justifies the use of this choice for the
analysis in the main text.

We notice that for the experimental parameterK/ω0 =
0.32/6000 used in [24], our choice of K(2) = 10g4 im-
plies that g3/ω0 = 25.7371/6000, which is very close to
the experimental value g3/ω0 = 30/6000 used in that
same work. The example C = −0.6976 is selected by
also using the parameters g3/ω0 = 25.7371/6000 and
K(2)/ω0 = −0.32/6000, with the difference that K(2) is
now negative. We investigate C = −0.6976, because neg-
ative Kerr amplitudes are also experimentally available.

Figure 4(d) is exactly the same as Fig. 1(g) of the main
text. It shows the average value of the quantum chaos
indicator r̄ as a function of Γ and K/ω0. To complement

the analysis of the regular to chaos transition performed
in the main text, we show in Fig. 4(c), Fig. 4(e), and
Fig. 4(f) the results for r̄ as a function of Γ and K/ω0

for K(2) = g4, K(2) = 100g4, and K(2) = −0.6976g4,
respectively. The results are comparable, although for
K(2) = g4 in Fig. 4(c), we see that the transition to
chaos gets shifted to larger values of Γ and K/ω0.
There are numerous ways in which the parameters of

the Hamiltonian may be varied. There are various paths
that can be taken to change g3 and g4 that are not nec-
essarily linear, as those in Fig. 4, but the relationship
in Eq. (12) is general. An important conclusion derived
from of our studies is that the onset of chaos is unavoid-
able for large nonlinearities and drive, but in spite of
that, there is still ample space to remain in the regular
regime, where Schrödinger cat states are stable and gates
can be realized.

Appendix D: Lyapunov exponent

The Lyapunov exponents are asymptotic measures
that characterize the average rate of growth (or shrink-
ing) of small perturbations along the solutions of a dy-
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FIG. 5. (a)-(f): Lyapunov exponents for the same phase
spaces shown in Fig. 1(a)-(f), corresponding to the points in
Table I. Zero Lyapunov exponent (dark blue) indicates regu-
larity.

namical system. In regular systems, the distance x(t) be-
tween a given trajectory and another trajectory infinites-
imally close to it, obtained with a small perturbation in
the initial conditions, remains close to zero or increases
at most algebraically as time evolves. In chaotic systems,
this distance diverges exponentially in time,

|δx(t)| ∼ eλt|δx(0)|. (D1)

The divergence in the equation above is characterized
by the Lyapunov exponent [54],

λ = lim
t→∞

lim
|δx|→0

1

t
ln

|δx(t)|
|δx0|

, (D2)

where | · | is a norm in the phase space. In the case of
regular (stable) trajectories, λ = 0, while chaos implies
λ > 0.

In Figs. 5(a)-(f), we color the same phase spaces stud-
ied in Figs. 1(a)-(f) with the values of the Lyapunov ex-
ponent λ. The exponents are obtained for the classical
system in Eq. (5) using various initial conditions. Points
A and C in Fig. 1(a) and Fig. 1(c) have only regular
trajectories, while chaotic orbits appear at the edges of
Fig. 1(b). Point D represents a mixed region, where in
addition to chaos at the edges of the figure, we also find
positive Lyapunov exponents in the vicinity of the hy-
perbolic point of the double well metapotential. As dis-
cussed in the main text, point D illustrates the beginning
of the disintegration of the double well. In Fig. 1(e), there
are two islands of instability associated with the minima
of what used to be the double-well structure, while in
Fig. 1(f) chaos becomes ubiquitous.
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