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In the Matters Arising (MA) by Robert and Boutin (henceforth
abbreviated RB) on our article entitled “Active Sites of
Copper-Complex Catalytic Materials for Electrochemical

Carbon Dioxide Reduction” published in Nature Communica-
tions more than four years ago in January 2018 (the article)1, RB
questioned our interpretation of a portion of our results and
offered an alternative explanation. Specifically, based on our
in situ X-ray absorption spectroscopy (XAS) results, we proposed
that at reductive electrode potential (−1.06 V vs RHE, all
potentials below are with respect to RHE unless otherwise stated),
reduction of copper phthalocyanine (CuPc) leads to the forma-
tion of small Cu nanoparticles (NPs) that are electrocatalytically
active for CO2 reduction to CH4; subsequently, after release of the
reductive potential, oxidation of the Cu NPs and re-coordination
with the empty Pc ligands occur to regenerate CuPc (Table 1). It
is this latter point that RB disagree with. They argue that upon
reoxidation, all the Cu NPs leach into the electrolyte as Cu2+ ions
and the XAS signal for CuPc arises solely from the unreacted part
of CuPc that is not reduced at the previous reductive potential
(Table 1). However, in their MA, RB do not provide any original
data; nor do they show any evidence that can directly support
their argument. Therefore, the original results and conclusions of
the article are not affected. Nevertheless, we would like to take
this opportunity to update readers with additional data we col-
lected in our earlier experiments as well as results from more
recently published independent studies from other research
groups that have directly confirmed our conclusions in the article.

Figure. 1 shows the original unnormalized XAS spectra of our
CuPc electrode at the initial open circuit voltage (OCV), at
−1.06 V and then back to OCV. The unnormalized edge jumps of
the Cu K absorption spectra can be used to quantitatively com-
pare the amount of Cu species on the electrode. At the initial
OCV, the unnormalized intensity is 1.5 with 100% of the Cu

element in the CuPc form, corresponding to the initial state. At
−1.06 V, the absorption intensity has decreased to 1.2, which is
not uncommon for this kind of multi-hour measurement2,3. One
likely reason for the loss is gas bubbling stripping active material
off the electrode. Analysis shows that the material at −1.06 V
contains 80% Cu NPs and 20% CuPc, which directly leads to the
conclusion that a large part of the CuPc on the electrode has been
reduced to Cu NPs. After measurements at negative potentials,
the electrode was left at OCV (labeled as OCV-2 to distinguish
from the initial OCV) for several hours before the final XAS
spectrum was taken. Note that the 0.64 V label in the original
article was inaccurate and the description “upon release of the
negative electrode potential” was ambiguous (0.64 V was the
value of the initial OCV which should differ from that of OCV-2;
we apologize to the readers for this negligence). At OCV-2, the
absorption intensity has further decreased to 0.8 with 100% CuPc.
Note that at −1.06 V the unreacted CuPc accounts for an
intensity of 0.24 (20% of total intensity 1.2). Therefore, at least a
significant part of the Cu NPs at −1.06 V has been converted
back to CuPc (conclusion of the article). It is impossible that the
CuPc signal at OCV-2 is entirely from unreacted CuPc (the RB
claim) whose theoretical maximum contribution to absorption
intensity is 0.24. These experimental results directly prove that
RB’s argument in their MA is incorrect.

Over the past several years since the publication of the article,
there have been a considerable number of independent studies
from other research groups that directly or indirectly confirm our
restructuring conclusions. In their work published in Chem-
SusChem in 2020, Mougel and Fontecave et al. studied a polymer
of CuPc coated on carbon nanotubes for electrochemical CO2

reduction4. With in-situ XAS, they also observed reduction to Cu
NPs under working conditions and restoration of the original
CuN4 coordination structure upon reoxidation (Fig. 2a, b). In
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another work by Min, Lin, Zhu and co-workers published in
Nature Communications in 2021, the authors performed in-situ
UV-vis spectroscopic measurements of CuPc under electro-
chemical CO2 reduction reaction conditions5. At reducing elec-
trode potentials <−1.04 V, the CuPc absorption features almost
disappear and the B-bands of free-base Pc dominate (Fig. 2c).
After release of the reduction potential, the UV-vis profile returns
to that of CuPc, which directly confirms our reversible

restructuring finding with a different technique. Similar reversible
restructuring between single Cu(II) sites and Cu(0) NPs have also
been observed for CO2 reduction electrocatalysts that can be
considered analogs of CuPc, such as single CuN4 sites embedded
in a carbon network6 and CuN2Cl2 in a covalent triazine
framework7. More studies as such are summarized in a recent
short review article published in Nature Communications8. All
these independent studies clearly support our conclusions in the

Table 1 Original conclusions of the article and key points raised by RB’s MA.

Our original conclusions RB’s MA

At reductive potential (−1.06 V), CuPc is reduced to Cu NPs which are
the active catalyst for CO2 reduction to CH4.

Agrees with us on what happens at the reductive potential.

After release of the reductive potential, (at least a large part of) Cu NPs are
converted back to CuPc.

After release of the reductive potential, All Cu NPs are oxidized to Cu2+ and
leach into the electrolyte, no regeneration of CuPc.

Cu K-edge absorption intensity is proportional to the 
amount of Cu species on electrode

i) OCV: intensity 1.5; 100% CuPc
ii) -1.06 V: intensity 1.2; 80% Cu(0), 20% CuPc 

Conclusion: (at least a large part of) CuPc 
has been reduced to Cu(0)

iii) Back to OCV: intensity 0.8; 100% CuPc 
Conclusion: (at least a large part of) Cu(0) 
has been converted back to CuPc
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Fig. 1 Unnormalized in-situ XAS spectra. CuPc under electrochemical CO2 reduction conditions with the near edge structure shown as inset (same
original data that generated Fig. 2 in the article).

Nature Commun. 2021, 12, 586ChemSusChem 2020, 13, 173 – 179
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(b)

(c)

Fig. 2 Two representative recent studies from other research groups that directly support our conclusions. a, b In-situ XAS results (a near edge
absorption; b Fourier transform of the extended range) of a CuPc polymer catalyst under electrochemical CO2 reduction conditions. Adapted with
permission from Ref. 4. Copyright 2020 Wiley. c In-situ UV-vis study of CuPc under electrochemical CO2 reduction conditions. Adapted with permission
from Ref. 5.
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article and testify directly against RB’s argument. Unfortunately,
the results and conclusions of these important studies were
overlooked, intentionally or otherwise, by RB.

In conclusion, the reversible restructuring postulation remains
as the best interpretation of the results, which is supported by our
experimental data and has been confirmed by other independent
studies.

Data availability
The data that support the findings of this study are available within the paper or are
available from the corresponding authors upon reasonable request.
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