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The feasibility of achieving coherent control of tunnelling dynamics, associated
with electronic excitations in functionalized semiconductor nanostructures,
is investigated. The coherent control scenario is based on the application of
frequent stochastic unitary pulses, affecting the interference phenomena between
electronic wave-packet components and consequently the overall electronic
tunnelling dynamics without collapsing the coherent quantum evolution of the
system. It is shown that tunnelling can be inhibited and eventually halted by
sufficiently frequent pulse fields that exchange energy with the system but do not
affect the potential energy tunnelling barriers. Further, the proposed stochastic
quantum-control scenario is demonstrated more generally as applied to an
archetype model, a particle tunnelling in a quartic double-well potential.

1. Introduction

The development of coherent control techniques for optical manipulation of

quantum tunnelling dynamics has become a subject of great research interest [1–9].

In particular, the study of dynamic localization and coherent destruction of quantum

tunnelling [10–16] has attracted much attention due to the potential application

of these effects in quantum computation [17–19]. Recent work [20] has explored

the capabilities of deterministic sequences of 2� laser pulses as applied to the

coherent manipulation of hole-tunnelling dynamics in functionalized semiconductor

nanostructures [21]. This paper further investigates these techniques and extends

them to coherent control based on randomized sequences of stochastic

unitary pulses.
Functionalized semiconductor surfaces result from the adsorption of organic

or inorganic molecules and the formation of surface complexes (see figure 1(a)).
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Figure 1. (a) TiO2-anatase nanostructure functionalized with three catechol molecules;
(b) energy diagram of the model system. The scheme shows the energy levels of the
three surface-complexes (including splitting) and the photoinduced electron injection
process depicted by the arrows. (c) Time-dependent electronic hole population transfer due
to quantum tunnelling of superposition states, spatially localized on the three catechol
adsorbates (PjðtÞ, j �L (left), C (centre), and R (right)), exhibiting spatial Rabi oscillations.
(The colour version of this figure is included in the online version of the journal.)

2520 L. G. C. Rego et al.



As a result, interband electronic states are introduced in the semiconductor band
gap, sensitizing the host material for photoabsorption at frequencies characteristic of
the molecular adsorbates (see energy level diagram in figure 1(b)). Photoexcitation of
surface complexes often leads to electron–hole pair separation, due to ultrafast
interfacial electron injection, when there is suitable energy match between the
photoexcited molecular state localized in the surface complex and the electronic
states in the conduction band of the semiconductor material [21–25], a process that
leaves electron–holes in the manifold of interband states, i.e. off-resonance relative to
the semiconductor valence and conduction bands. Along with the hole wavepacket’s
localization on the adsorbate, this off-resonance condition decouples the electron–
holes from certain dephasing mechanisms, extending their lifetime beyond that
normally observed for excitations in room-temperature semiconductors.

Recent theoretical work has addressed the time-scales and mechanisms
of interfacial electron transfer in TiO2-anatase functionalized with catechol
molecules [22], a simple prototype of aromatic anchoring ligand, upon which more
complex molecular structures can be attached for specific applications [26]. Further
studies have focused on the subsequent relaxation dynamics of hole states [21], after
electron–hole pair separation, as well as on the feasibility of coherent optical
manipulation of the dynamics of hole states by the application of deterministic
sequences of femtosecond 2� pulses [20]. Building upon these earlier studies [20–22],
this paper addresses the nontrivial question as to whether the underlying super-
exchange hole-tunnelling dynamics can also be coherently controlled by the applica-
tion of stochastic sequences of unitary pulses, without collapsing the coherent
quantum evolution of the system.

The reported computational results show that the frequent application of stoch-
astic unitary pulses affects the overall tunnelling dynamics by altering the inter-
ference phenomena between electronic wave-packet components, inducing coherent
energy exchange between the system and the perturbational field. The underlying
coherent control mechanism is therefore significantly different from other dynamical
localization schemes where the coherent destruction of quantum tunnelling is
achieved by the application of an external driving field that collapses the coherent
quantum evolution of the system [27], or modulates the potential energy tunnelling
barrier with periodic [11, 12], or stochastic [28] perturbations. For completeness,
the proposed stochastic quantum control scenario is demonstrated in a more general
model system exhibiting common quantum relaxation dynamics, tunnelling in
a double-well potential.

2. Structural models

We consider a model system composed of catechol molecules adsorbed on the
(101) surface of the TiO2-anatase semiconductor, as depicted in figure 1(a).
The dimensions of the nanostructure are 3� 1.5� 3 nm along the [�101], [010]
and [101] directions, respectively, with adjacent adsorbates 1 nm apart. The
surface dangling bonds are saturated with hydrogen capping atoms in order to
quench the formation of surface states [29], avoiding nonphysical low
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coordination numbers. Periodic boundary conditions are imposed with a vacuum
spacer between slabs, making negligible the interaction between distinct surfaces
in the infinitely periodic model system. Geometry relaxation as well as therma-
lization and equilibration under conditions of room temperature and constant
volume are performed using the Vienna ab initio Simulation Package (VASP/
VAMP) [30–32]. The resulting structural relaxation next to the adsorbate de-
scribes the underlying surface reconstruction due to functionalization [22, 33], a
process that is partially responsible for quenching the formation of surface states
deep within the semiconductor band gap [29].

3. Quantum dynamics simulations

The superexchange hole-tunnelling dynamics, after electron–hole pair separation,
is described according to an approximate mixed quantum–classical method in
which the electrons are treated quantum mechanically and the nuclei classically.
The nuclei evolve on an effective mean-field Potential Energy Surface (PES),
according to classical trajectories R� ¼ R�ðtÞ with initial conditions specified by
index �. Results are obtained by sampling an ensemble of initial conditions � for
nuclear motion, integrating the time-dependent Schrödinger equation (TDSE),
over the corresponding ab initio-DFT nuclear trajectories and averaging expecta-
tion values over the resulting time-evolved wavefunctions. Converged results for
finite temperature simulations are typically obtained by averaging over fewer
than 50 initial conditions, representing the system thermalized under conditions
of room temperature and constant volume. However, finite temperature results
are reported for averages over 100 initial conditions. The appreciation of
conditions under which quantum coherences may be described according to
mixed quantum–classical methodologies has been the subject of intense
research [34–37], including the analysis of decoherence in similar composite
models [38, 39]. The applicability of mixed quantum–classical dynamics is
found to be valid so long as the quantum subsystem (electronic dynamics)
decoheres slowly and the remainder (nuclear dynamics), often coupled to a
thermal bath, decoheres quickly [40].

Propagation of the time-dependent electronic wavefunction is performed for
each nuclear trajectory R�ðtÞ by numerically exact integration of the TDSE,
fi�h@=@t�HðtÞgj��ðtÞi ¼ 0. Here, HðtÞ is described according to a tight binding
model Hamiltonian gained from the extended Hückel (EH) approach [41, 42].
The EH Hamiltonian is computed in the basis of Slater-type orbitals � for the radial
part of the atomic orbital (AO) wavefunctions [22, 43], including the 4s, 4p and 3d
atomic orbitals of Ti4þ ions, the 2s and 2p atomic orbitals of O2� ions, the 2s and 2p
atomic orbitals of C atoms, and the 1s atomic orbitals of H atoms. The AOs fj��ðtÞig
form a mobile (nonorthogonal) basis set due to nuclear motion, with
S��ðtÞ ¼ h��ðtÞj��ðtÞi the corresponding time-dependent overlap matrix elements.
The overlap matrix is computed using periodic boundary conditions along the
[010] or [�101] directions, for the [�101] and [010] extended systems, respectively.
Advantages of this method, relative to plane-wave approaches, are that it
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requires a relatively small number of transferable parameters and is capable

of providing accurate results for the energy bands of elemental materials (including

transition metals) as well as compound bulk materials in various phases [42].

In addition, the EH method is applicable to large extended systems and provides

valuable insight on the role of chemical bonding [44].
The time-dependent hole wavefunction, j��ðtÞi ¼

P
q BqðtÞj�qðtÞi, is expanded

in the basis of instantaneous eigenstates j�qðtÞi ¼
P

� C�, qðtÞj��ðtÞi of the generalized

eigenvalue problem HðtÞCðtÞ ¼ SðtÞCðtÞEðtÞ, with eigenvalues Eq(t). It is assumed

that the initial state, after electron–hole pair separation, consists of a hole localized

in the highest occupied molecular orbital (HOMO) of the central (C) surface

complex. The propagation scheme is based on the recursive application of the

short-time approximation j��ðtþ �=2Þi �
P

q BqðtÞe
�ði=�hÞEqðtÞ�=2j�qðtÞi: The evolution

of the expansion coefficients Bqðtþ �Þ ¼
P

p BpðtÞe
�ði=�hÞ EpðtÞþEqðtþ�Þ½ ��=2h�qðtþ �Þj�pðtÞi

is approximated by Bqðtþ �Þ � BqðtÞe
�ði=�hÞ EqðtÞþEqðtþ�Þ½ ��=2, in the limit of sufficiently

thin time-slices �.
The relaxation dynamics is quantitatively described in terms of expectation

values of observables computed as hÂi ¼ Trf�̂ðtÞÂg, where �̂ðtÞ is the reduced density

operator associated with the electronic degrees of freedom, �̂ðtÞ ¼P
� p�j�

�ðtÞih��ðtÞj, with p� the probability of sampling initial conditions, specified

by index �, associated with the thermal ensemble of nuclear configurations.
The time-dependent hole populations are determined as follows: PjðtÞ ¼

Trf�̂ðtÞP̂jg, where P̂j is the projection operator onto the subset of atomic orbitals

of interest. Computations of the transient hole populations PjðtÞ of the molecular

adsorbates j ¼ ðL,C,RÞ are defined accordingly, P̂j ¼
P

�, �2j j��i S�1
� �

��
h��j, where

the sum over atomic orbitals includes atoms of adsorbate j only.
The resulting relaxation dynamics is essentially described by spatial

Rabi-like oscillations (see figure 1(c)), i.e. coherent electronic population transfer

between adjacent adsorbates, despite the partial intrinsic decoherence induced

by thermal ionic motion [20, 21]. The underlying superexchange hole-tunnelling

between adsorbate molecules results from scattering events where near-resonant

states localized on adsorbate molecules become indirectly coupled by mediating

states in the semiconductor host substrate. These events last approximately 100 fs

and occur once or twice every picosecond as thermal fluctuations modulate

the electronic couplings and resonance conditions. Therefore, the model predicts

observable Rabi oscillations if mediating states in the semiconductor have

lifetimes longer than the duration of a single scattering event (e.g. 1 ps) [20].

The coherent population transfer among adjacent adsorbates is mainly stabilized

by the finite size of the nanostructure, where the adsorbate states, while coupled by the

common host substrate, remain off-resonant relative to the valence and conduction

bands (manifolds) of electronic states. carrier–phonon, and likely carrier–carrier,

scattering mechanisms which would otherwise lead to the commonly observed

ultrafast decoherence in semiconductor spectroscopy are highly suppressed by the

off-resonance and symmetry conditions of the electronic states in surface complexes.

Further, under vacuum conditions, geminate recombination of injected electrons

(back-transfer) is much slower, occuring in the nanosecond regime [45].
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4. Coherent control

The coherent control scenario implemented in this paper constitutes a generalization
of the recently reported quantum control scheme based on deterministic 2� unitary
pulses [20]. These coherent control scenarios are inspired in other similar approaches
for modulating quantum relaxation dynamics, also based on sequences of unitary
pulses [46–49]. All such approaches preserve the coherent nature of unitary
evolution and therefore are particularly suited to quantum information processing
applications.

In the present generalization to stochastic coherent control, the time evolution
operator for an optical pulse coupling the initially populated state j1i with
and auxiliary state j2i is

Û� ¼ cos
� � �

2

� �
j1ih1j þ j2ih2jð Þ � i sin

� � �

2

� �
j1ih2j þ j2ih1jð Þ, ð1Þ

where � ¼ � � �=2 is a random phase, defined by the product of the optical Rabi
frequency � and a random effective pulse duration � (duration of the resonance
between � and the desired optical transition). In the particular case of � � � ¼ 2�,
the time evolution operator becomes the deterministic 2� pulse, Û2�

2�2 ¼

�j1ih1j � j2ih2j , inducing only a � phase-shift j�2�i ¼ Û2�j�i in the time-evolved
wave-packet component corresponding to state j1i so long as h2 j�i ¼ 0. In the
present application to coherent control of superexchange hole-tunnelling dynamics
in functional semiconductors, j1i denotes the HOMO of the central catechol, j�Ci,
and j2i is an auxiliary state of the same adsorbate (e.g., the catechol-(HOMO-1),
similarly off-resonant to the semiconductor valence and conduction bands).
Note, that if the pulsed light does not interact with any of the other N� 2 states
within an N-level system, the full time evolution operator is thus the sum
IðN�2Þ�ðN�2Þ þ Û2�

2�2 ¼ IN�N � I2�2 þ Û2�
2�2. Furthermore, since �0 � j�ðt ¼ 0Þi �

j�Ci, the 2� pulse time evolution operator can be numerically implemented
as the unitary operator, Û2� ¼ I� 2j�0ih�0j=h�0j�0i ¼ I� 2j�0ih�0j , as reported
in previous work [20], where I is the identity matrix and h�0j�0i ¼ 1.

4.1 Inhibiting tunnelling in functionalized semiconductors

Figure 2, panel (a), shows the time-dependent hole populations Pj of adsorbates
j ¼ ðC,R,LÞ, exhibiting Rabi oscillations due to superexchange hole tunnelling
dynamics in the absence of perturbational pulses. In contrast, panels (b) and (c)
compare the perturbational effects of sequences of 2� pulses (panel b) and
stochastic phase-kick pulse on the underlying hole relaxation dynamics. Both
sequences of pulses are applied in the 16–40 ps time window (indicated with arrows).
The 2� pulses are applied at intervals of 200 fs, while the random-phase kicks
are applied at stochastic intervals with average spacing of 200 fs. It is shown that the
main effect of sequences of (deterministic or stochastic) unitary pulses is to suspend
Rabi oscillations, keeping approximately constant the hole population of the
adsorbate R. These results demonstrate that coherent control scenarios based on
frequent unitary pulses are robust with respect to stochasticity, efficiently inhibiting
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Figure 2. Time-dependent hole populations Pj of adsorbates j ¼ ðC,R,LÞ for the cases
(a) no pulses; (b) instantaneous 2� pulses implemented at regular 200 fs intervals;
(c) random-phase pulses implemented at stochastic intervals with average 200 fs. (The colour
version of this figure is included in the online version of the journal.)
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superexchange tunnelling dynamics among adjacent catechol adsorbed on
functionalized TiO2-substrates under low temperature and vacuum conditions.

4.2 Steering tunnelling in functionalized semiconductors

This section considers the implementation of sequences of unitary pulses for steering,
rather than inhibiting, the underlying hole-tunnelling dynamics in the functionalized
semiconductors. It is shown that phase-kick pulses can affect the tunnelling period
and even directionality, when timed to coincide with certain points along the
relaxation dynamics. For example, a � phase kick sequence timed to begin and
applied at intervals corresponding with the maximum amplitude of population
transfer between two adsorbates can reset the dynamics and reverse the incipient
direction of tunnelling. This behaviour is illustrated in figure 3(a), where a well-timed
pulse sequence can double the oscillation period between the centre and right
adsorbates (compare to figure 2(a)). Timing phase kick intervals to correspond
with half-period intervals applied at inflection points in the coherent population
transfer dynamics, on the other hand, result in reversal of convexity in the dynamics
and an effective directionality reversal. This contrary behaviour is illustrated
in figure 3(b), where hole population is driven towards the left adsorbate,
again merely by implementing 2� pulses coupling the centre adsorbate to an
auxiliary state, resulting in a � phase kick of a component of the time-evolved
wavepacket.

Intuition guiding these tantalizing results may be arrived at with a simple
analysis: adopting a truncation approximation to the time-dependent wavefunction
of the hole, j�ðtÞi � j�i ¼ BCe

�i!Ctj�Ci þ BRe
�i!Rtj�Ri þ BLe

�i!Ltj�Li þ j"i , where
Bj ¼ Bjð0Þ and j"i is the error made in the truncation. A typical nuclear config-
uration yields the following spectral distribution for the wavepacket: jBCj

2 þ

jBRj
2 þ jBLj

2 ¼ 0:779þ 0:175þ 0:012 � 97%, thus h"j"i � 0:03 � 1. Notice that
the MOs j�Ci, j�Ri, j�Li, and the vector j"i are orthogonal to each other. Thus,
at t¼ 0

j�ð0Þi � j�0i � BCj�Ci þ BRj�Ri þ BLj�Li, ð2Þ

and after the incidence of a 2� pulse, the transformed wavefunction j�2�i ¼

Û2�j�i is

j�2�i � 1� 2�ðtÞei!Ct
� �

BCðtÞj�Ci þ 1� 2�ðtÞei!Rt
� �

BRðtÞj�Ri þ 1� 2�ðtÞei!Lt
� �

BLðtÞj�Li

� �CðtÞBCðtÞj�Ci þ�RðtÞBRðtÞj�Ri þ�LðtÞBLðtÞj�Li, ð3Þ

where �ðtÞ ¼ h�0j�i is the time-dependent autocorrelation function and !j ¼ Ej=�h.
If nuclear dynamics is included we have Ej ¼ EjðtÞ and !j(t).

The moduli of the coefficients jBjðtÞj
2 ¼ jBjð0Þj

2 are merely constant values that
determine the spectral distribution of the wave-packet. Therefore, equation (3)
indicates that 2� pulses can be used to control the localization of the wave-packet
among the adsorbates, due to the time dependence of the �j(t) ( j ¼ L,C,R).
The j�jðtÞj are presented in figure 3(c) for the fully relaxed atomic configuration
used in this work. The oscillatory behaviour is easily understood: one obtains
for the �C(t) term
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�CðtÞ ¼ 1� 2�ðtÞei!Ct
� �

ð4Þ

¼ 1� 2jBCj
2 � 2 jBRj

2ei!CRt þ jBLj
2ei!CLt

� �� �
, ð5Þ

with !CR ¼ !C � !R and !CL ¼ !C � !L.
For the scenario we are investigating, i.e. initial photo-excitation of the central

catechol, a general nuclear configuration produces jBCj
2 � jBRj

2 � jBLj
2. Thus the
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Figure 3. (a) Hole populations PjðtÞ in the adsorbate–semiconductor system produced by a
train of pulses at intervals � ¼ TCR. (b) Hole populations produced by a train of pulses at
intervals � ¼ TLC=2. (c) j�jðtÞj as a function of time for j¼C (black), R (green) and L (red), for
the fully relaxed nanostructure (low temperature nuclear configuration). (d) j�ðC,RÞðtÞj for
pulses implemented at intervals � ¼ TCR. (e) corresponding j�ðC,LÞðtÞj for pulses at intervals
� ¼ TLC=2. (The colour version of this figure is included in the online version of the journal.)
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major harmonic contribution to �C(t) comes from !CR. The maxima of �C(t),
therefore, must occur when !CR� ¼ 2�, more generally at � ¼ nTCR where TCR is the
tunnelling period between the centre and right adsorbate, yielding

�Cð�Þ ¼ 1� 2ðjBCj
2 þ jBRj

2Þ � 2jBLj
2ei!CL�

� �
ð6Þ

� ½1� 2� �!j�CðtÞj � 1:

The minima occur at � ¼ ðnþ 1=2ÞTCR,

�Cð�Þ ¼ 1� 2jBCj
2 þ 2jBRj

2 � 2jBLj
2ei!CL�

� �
ð7Þ

� 1� 2jBCj
2 þ 2jBRj

2
� �

: ð8Þ

In general jBCj
2 > 0:5, implying j�Cð�Þj < 0:5 at � ¼ ðnþ 1=2ÞTCR.

Accordingly for �R(t),

�RðtÞ ¼ 1� 2jBRj
2 � 2 jBCj

2ei!RCt þ jBLj
2ei!RLt

� �� �
: ð9Þ

Here, also, !RC is the more important spatial Rabi frequency. However, the minima
occur at � ¼ nTCR, whereas the maxima at � ¼ ðnþ 1=2ÞTCR (refer to figure 3(c)).
Finally, the coefficient �L(t) is

�LðtÞ ¼ 1� 2jBLj
2 � 2 jBCj

2ei!LCt þ jBRj
2ei!LRt

� �� �
ð10Þ

� 1� 2 jBCj
2ei!LCt þ jBRj

2ei!LRt
� �� �

: ð11Þ

In this case, the most important spatial Rabi frequency is !LC and TLC ¼ 2�=
!LC � 9:6 ps. Therefore, the maxima of j�LðtÞj occur at � ¼ ðnþ 1=2ÞTLC, yielding
j�Lj � 1þ 2jBCj

2 , if jBCj
2 � jBRj

2. The minima occur at � ¼ nTLC yielding
j�Lj � j1� 2jBCj

2j.
Thus, figure 3(c) shows that applying a second 2� pulse at � � 17 ps, once

the spectral distribution of the wave-packet has changed coherently from molecule
C toward molecule R as the weights corresponding to BC and BR are approximately
exchanged, should markedly affect the tunnelling dynamics. Therefore, subsequent
applications of 2� pulses at intervals TCR could drive the hole through an effective
spatial Rabi oscillation of period T ¼ 2TCR, as was shown in figure 3(a), with
the corresponding behaviour of j�ðC,RÞðtÞj for this sequence of pulses shown in
figure 3(d). Conversely, applying 2� pulses at intervals � ¼ TCL=2 causes the spectral
distribution of the wavepacket to move gradually towards molecule L, as was
demonstrated by figure 3(b). The maximum hole population at molecule L, then,
reaches 0.7, which is much higher than the values obtained under regular dynamics
for that adsorbate. Figure 3(e) exhibits the dynamics of j�ðC,LÞðtÞj for the necessary
sequence of pulses.

4.3 Coherent control of tunnelling in a quartic double-well

This section demonstrates the quantum control scenario, based on frequent
stochastic unitary pulses, as applied to an archetype model: a particle tunnelling
in the quartic double-well potential described by the Hamiltonian,
Ĥ ¼ ð p̂2=2mÞ � � x̂2 � �x̂4

� �
:
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Figure 4 shows the time-dependent probability of finding the particle on either
side of the tunnelling barrier during the first 80 ps of dynamics. A comparison of
the underlying tunnelling dynamics, in the absence of perturbational pulses (panel a),
or perturbed by deterministic (panel b) or stochastic (panel c) unitary pulses in the
time window 35–50 ps, is presented. Here, each pulse adds a phase shift to the
component of the time-dependent wavefunction corresponding the initial state.
For the case of � phase kicks, the phase manipulation could plausibly be effected
by a sequence of ultrashort 2� pulses coupling each of the two lowest energy levels
of the double well potential surface respectively to two distinct levels of an auxiliary
surface (one symmetric, one antisymmetric to obey parity selection rules resulting
from considering the dipole operator). The simulation results for this case, presented
in figure 4(b), clearly demonstrate that a regular sequence of � phase kicks applied
to a component of the time-evolved wave-packet can inhibit tunnelling dynamics
yet preserve coherence, since the coherent tunnelling dynamics continues after
termination of the pulse sequence. Figure 4(c) presents two generalizations of this
scheme, in which the intervals between kicks, and both the intervals and the phase
kicks themselves, are randomized.

The demonstrated inhibition of tunnelling accomplishes the same effect of the
phenomenon termed coherent destruction of tunnelling [16], first reported by
Grossman and co-workers. [11]. In those driven tunnelling models, a (usually
monochromatic) oscillatory term in the Hamiltonian modulates the potential barrier
and may inhibit tunnelling or localize the wave-packet. [50] The relationship
between the present scheme, in which only the phase of only a component of the
wavefunction is affected in an interaction instantaneous compared to the timescales
determined by the potential barrier, but with some comparable periodicity, i.e. the
pulses come at intervals relevant to the natural timescales of the dynamical system,
will be presented elsewhere [51].

5. Conclusions

The investigation of an atomistic model of functionalized TiO2-anatase suggests that
stochastic sequences of unitary pulses could be used to coherently control electronic
excitations in semiconductor surface complexes. The already widespread study of
such inexpensive, versatile, and tunable systems should make them valuable avenues
for the investigation of fundamental quantum dynamics, complementing other
well-studied mesoscopic systems such as doped semiconductor materials and
quantum dots.

We have shown that stochastic optical pulses and functionalized semiconductors
could be used to feasibly implement a bang–bang coherent control scheme in this
readily available and relatively pedestrian environment. The observed coherent
tunnelling dynamics can be dramatically affected by phase kicks altering the under-
lying relaxation dynamics without collapsing the unitary evolution of the system.
Furthermore, it is shown that sequences of unitary pulses can also be designed to
coherently steer quantum tunnelling dynamics of electronic populations in
functionalized semiconductor materials. It is therefore conjectured that the ability
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Figure 4. Probability of a particle being found in the right (black) or left (red) well
for quantum tunnelling dynamics in a quartic double oscillator. The figure depicts evolution
in the cases of (a) no kicks; (b) � phase kicks at fixed 330 fs intervals; (c) phase kicks
at stochastic intervals averaging 330 fs. The solid lines in (c) depict the case of randomized
phase kicks whereas the dotted lines indicate � phase kicks. For all simulations, the
parameters are m ¼ 0:00072569 �me, � ¼ 0:00072569 hartree � a0

�1, and � ¼ 0:092292 a0
�2.

(The colour version of this figure is included in the online version of the journal.)

2530 L. G. C. Rego et al.



to precisely assemble molecules on the solid surface, provided by scanning probe

techniques, together with the rich variety of properties characteristic of the molecular

systems can make of the sensitized semiconductors a promising alternative for the

construction of quantum information devices.
More generally, the effect of stochastic phase kicks in a double-well potential

illustrates these striking results in a simple and familiar example. In the low

temperature limit, the similarity of the tunnelling in the double-well system

foreshadows the similar localization possible with a regular series of phase kicks

to the hole wave-packet in the surface complex model. The robustness of the

implementation to using random-area pulses, however, becomes important in

a realistic system, since the time-dependent environment of the surface complex

at finite temperature would make precise tuning of the optical transitions difficult.
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