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This paper investigates the feasibility of using sequences of unitary pulses for
achieving coherent-control of quantum dynamical phenomena, including
quantum control of electron tunnelling in archetype model systems and control
of decoherence in a quantum dot system coupled to a thermal bath. The proposed
dynamical decoupling scenario is based on the repetitive application of 2p pulses,
affecting the interference phenomena between wave-packet components.
The pulses affect the overall relaxation dynamics without collapsing the
coherent-quantum evolution of the system. It is shown that both bound-to-bound
state tunnelling and bound-to-continuum tunnelling processes can be inhibited
and eventually halted by sufficiently frequent pulse fields that exchange energy
with the system but do not affect the potential energy tunnelling barriers.
Furthermore, the proposed quantum-control scenario is demonstrated as
applied to manipulating the electronic quantum dynamics in a quantum dot
coupled to a free standing quasi two-dimensional phonon cavity. The reported
results are therefore particularly relevant to the understanding of coherent
optical manipulation of electronic excitations in semiconductor devices where
performance is limited by quantum tunnelling and decoherence.

1. Introduction

The possibility of engineering semiconductor devices at the nano and micro scales
has created the conditions for testing fundamental aspects of quantum theory
otherwise difficult to probe in natural atomic size systems. Particularly, quantum
dot (QD) structures are recognized as physical realizations of artificial atoms and
molecules whose properties (e.g. structural and transport) can be engineered for
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specific applications and modulated in the presence of external fields [1–3]. In fact,

coupled arrays of QDs have already been proposed to create charge or spin qubit

gates [4–6], and quantum memory units [7]. However, an outstanding challenge is the

development of efficient methods for controlling decoherence. Control of tunnelling

dynamics has also attracted much attention [8–16] due to the potential application of

these effects in quantum computation [17–19]. In particular, the study of dynamic

localization and coherent destruction of quantum tunnelling has become a subject of

great research interest [20–26]. However, efficient methods for coherent manipulation

of decoherence and quantum tunnelling dynamics have yet to be established.

This paper investigates a simple coherent-control method, based on sequences

of unitary pulses, as applied to simulating quantum control of electronic tunnelling

and electronic decoherence.
In recent work, we have investigated a coherent-control technique for

optical manipulation of electronic relaxation in functionalized semiconductor

nanostructures [27, 28]. The method involves using deterministic [27], or stochastic

[28], sequences of unitary pulses that affect the interference phenomena between

wave-packet components and consequently the overall relaxation dynamics, without

collapsing the coherent-quantum evolution of the systems. This paper further

investigates such a coherent-control technique as applied to optical manipulation

of tunnelling dynamics in general, including bound-to-bound state tunnelling and

bound-to-continuum tunnelling processes as well as coherent-control of electronic

decoherence in a model quantum dot coupled to a phonon cavity consisting of a

suspended semiconductor nanoelectromechanical structure.
In analogy to our previous studies, the reported computational results show that

the frequent application of unitary pulses affects the overall quantum dynamics by

altering the interference phenomena between quantum states, inducing coherent

energy exchange between the system and the perturbational field. The resulting

control of decoherence is related to the Zeno effect [29] in a broad sense, although

with significant differences. While in our method the interaction with an external

perturbation does not collapse the coherent unitary propagation, other perturbative

schemes could delay (Zeno effect) or accelerate (anti-Zeno effect) the decoherence

process [30]. Recently, unifying approaches, based on an adiabatic theorem [31]

or considering the quantum measurement theory in detail [32], have been proposed

to explain the various forms of Zeno effects, produced by non-unitary

pulses (measurements), unitary pulses (dynamical decoupling) or continuous strong

coupling. In addition, our coherent-control mechanism differs from other dynamical

localization schemes that use external driving fields to modulate the potential energy

landscape [21, 22, 33].
The paper is organized as follows. First, section 2 reviews the coherent control

scenario based on sequences of multiple unitary pulses. Section 3 investigates the

implementation of the coherent-control scenario, introduced in section 2, as

applied to manipulating bound-to-bound state tunnelling and bound-to-continuum

tunnelling processes. Section 4 then investigates coherent control of electronic

dynamics in a model quantum dot–nanoelectromechanical system. Finally, section 5

summarizes and concludes.

2618 L. G. C. Rego et al.
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2. Quantum control with sequences of unitary pulses

The coherent-control scenario implemented in this paper constitutes a generalization
of the recently reported quantum-control scheme based on deterministic 2p unitary
pulses [34]. This optical control method is a form of dynamical decoupling,
analogous to other approaches for modulating quantum relaxation dynamics
based on sequences of frequent unitary pulses [35–38]. These methods thus preserve
the coherent nature of the unitary evolution which is expected to be particularly
useful for applications in quantum information processing.

The essence of the method, proposed originally in [35], involves coupling a target
state j1i with an auxiliary state j2i by using the optical pulse

ÛF ¼ cos
G�
2

� �
j1ih1j þ j2ih2jð Þ � i sin

G�
2

� �
j1ih2j þ j2ih1jð Þ, ð1Þ

where F ¼ G�=2 is the phase-shift, defined by the product of the optical Rabi
frequency G and a random effective pulse duration � (duration of the resonance
between G and the desired optical transition). In the particular case of G� ¼ 2p, the
time-evolution operator becomes the deterministic 2p pulse, Û2p

2�2 ¼ �j1ih1j � j2ih2j
inducing only a p phase-shift jC2pi ¼ Û2pjCi in the time-evolved wave-packet
component corresponding to state j1i so long as h2 j Ci ¼ 0.

In previous applications, this quantum-control scheme has been applied for
manipulation of superexchange hole-tunnelling dynamics in functionalized TiO2

nanostructures [28, 34], where j1i was an electronic state of an adsorbate molecule
and j2i was an auxiliary state of the same adsorbate, also off-resonant to the
semiconductor valence and conduction bands. The current studies extend the range
of applications to studies of tunnelling dynamics in general model systems
and decoherence in quantum dots coupled to a phonon cavity. In all of these
applications, it is assumed that the colour of the perturbational pulses can be tuned
to be resonant with the j1i ! j2i transition, without significantly interacting with
any of the other N� 2 states within the N-level system. The full time evolution
operator is thus the sum IðN�2Þ�ðN�2Þ þ Û2p

2�2 ¼ IN�N � I2�2 þ Û2p
2�2. Furthermore,

for C0 � jCðt ¼ 0Þi, the 2p pulse time-evolution operator can be numerically
implemented as the unitary operator, Û2p ¼ I� 2jC0ihC0j=hC0jC0i ¼

I� 2jC0ihC0j, as reported in previous work [34], where I is the identity matrix and
hC0jC0i ¼ 1.

3. Coherent-control of tunnelling dynamics

This section illustrates the quantum-control scenario, introduced in section 2, as
applied to two archetype model systems. The first model involves an electron
tunnelling through the quartic double-well potential described by the Hamiltonian,
Ĥ ¼ ðp̂2=2meÞ þ Vðx̂Þ, where Vðx̂Þ ¼ ��x̂2 þ �x̂4, with � ¼ 0:5 au and � ¼ 0:0461 au
(i.e. an oscillating system, see figure 1(a)). The second model involves an electron
tunnelling through a barrier from a quasi-bound state into a continuum (i.e. a truly
decaying system). The potential energy barrier is defined according to the

Multiple unitary-pulses for coherent-control of tunnelling and decoherence 2619
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quartic potential, for x � xe where xe is the equilibrium position on the rhs of

the barrier, and constant otherwise (see figure 2(a)). Wave-packet propagations are

based on the standard grid-based implementation of the split operator Fourier

transform (SOFT) method [39–41] which can be applied in dynamically adaptive

coherent-state representations according to the matching-pursuit (MP)/SOFT

approach [42–48] in studies of quantum dynamics in multidimensional model

systems.
Figure 1(b) shows the time-dependent probability of finding the electron on the

left side of the tunnelling barrier during the first 25 fs of dynamics. A comparison of

the underlying tunnelling dynamics, in the absence of perturbational pulses (red line),

or perturbed (black line) by a sequence of 2p unitary pulses in the time-window

indicated by the arrows, is presented. Here, each pulse adds a phase shift to the

component of the time-dependent wavefunction corresponding to the initial state.

The phase manipulation could plausibly be effected by a sequence of ultrashort

Figure 1. (a) Quartic double-well potential (green) and initial state (black). (b) Probability
of the system to be found in the left well, as a function of time, without any external
perturbation (red) and perturbed by p phase unitary pulses (black) in the time interval
indicated by the arrows. (The colour version of this figure is included in the online version of
the journal.)

Figure 2. (a) Potential energy barrier defined in the text (green) and initial state (black).
(b) Probability of the system to be found in the left well, as a function of time, without any
external perturbation (red) and perturbed by p phase unitary pulses (black) in the time interval
indicated by the arrows. (The colour version of this figure is included in the online version of
the journal.)

2620 L. G. C. Rego et al.
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2p pulses coupling each of the two lowest energy levels of the double-well potential

surface, respectively, to two distinct levels of an auxiliary surface (one symmetric,

one antisymmetric to obey parity selection rules resulting from considering the dipole

operator). The simulation results for this case, presented in figure 1, clearly

demonstrate that a regular sequence of p phase kicks applied to a component of

the time-evolved wavepacket can inhibit tunnelling dynamics and yet preserve

coherence, since the coherent tunnelling dynamics continues after termination of

the pulse sequence. Similar results can be obtained with generalizations of this

scheme in which both the intervals between pulses and the values of the phase-shifts

are randomized [28], so long as the average time-interval between pulses is

much shorter than the tunnelling period. Note that coherent-control of tunnelling

dynamics is accomplished simply by manipulating the phase of a wavepacket

component through an interaction that is instantaneous compared to the timescales

determined by the potential energy barrier, but without affecting the potential energy

surface. However, the net-effect is similar to the phenomenon called coherent

destruction of tunnelling [26], first reported by Grossman and co-workers [21],

where the (usually monochromatic) oscillatory term in the Hamiltonian modulates

the potential barrier and may inhibit tunnelling or localize the wavepacket [49].
The coherent control scenario demonstrated for the quartic double-well potential

is also effective at hindering tunnelling from a quasi-bound state into a continuum.

Figure 2(b), shows the time-dependent probability of finding an electron in the initial

quasi-bound state on the left side of the tunnelling barrier into a continuum during

the first 25 fs of dynamics. A comparison of the underlying tunnelling dynamics, in

the absence of perturbational pulses (red line), or when perturbed (black line) by

a sequence of 2p unitary pulses in the time-window indicated by the arrows, is

presented. In analogy with the previous example, each pulse adds a phase shift to the

component of the time-dependent wavefunction corresponding to the initial state.

The simulation clearly demonstrates that spontaneous decay by tunnelling to

a continuum can be significantly slowed down while the train of 2p pulses is applied

and re-established upon termination of the pulse sequence.
An interesting observation can be made by comparing the results of

tunnelling dynamics into a continuum (figure 2) to the corresponding results

obtained for the double-well potential (figure 1). Note that in the absence of the

wall on the rhs of the double-well potential the first tunnelling event becomes

significantly slower, stretching the time it takes for reaching 50% of population

decay from less than 1 fs in the double-well potential to more than 5 fs when

tunnelling into a continuum. In the dynamics picture, this indicates that tunnelling

requires interference between wavepacket components on both sides of the barrier.

The underlying interference phenomena is more effective in the bound-to-bound

state tunnelling process than in the bound-to-continuum tunnelling dynamics simply

because the wavepacket components that tunnel into the continuum continue

moving outbound. Therefore, the bound-to-continuum tunnelling is slower than

the bound-to-bound tunnelling process. Analogously, the unitary pulses affect the

interference phenomena between the decaying state and the rest of the states in the

system, slowing down the underlying tunnelling dynamics.

Multiple unitary-pulses for coherent-control of tunnelling and decoherence 2621
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4. Coherent control of decoherence in a model quantum dot-nanoelectromechanical

system

A new exciting possibility for both implementing and investigating coherent
phenomena in semiconductors is the combination of quantum dot systems with
suspended nanostructures [50–54]. An immediate consequence of such a combination
is the improved isolation of the electronic quantum system from the bulk of the
sample, that can allow for longer lived coherent quantum states. Furthermore,
phonon cavities can also be envisaged as the solid state analogue of quantum
electrodynamic (QED) cavities [55]. Nonetheless, since the electron–phonon
interaction can be controlled in such devices, new physics can be expected to
develop. For instance, it has been shown that suspended nanoelectromechanical
structures can exhibit a rich quantum chaotic behaviour [56, 57].

In this section we make use of a free standing QD–phonon cavity structure to
demonstrate that the dynamics of a non-trivial quantum system can be coherently
manipulated through a train of unitary 2p pulses even in the presence of a thermal
bath. The physical model consists of a circular QD (electronic system) located at the
surface of a free standing quasi two-dimensional silicon membrane (see figure 3).
The proposed suspended heterostructure comprises typical nanomachining
technology [52], including the QD that can be produced by selectively doping
a circular area at the surface of the silicon plate or by means of suspended metallic
gates [51]; a finer detailed description of the system will be provided in the following.

In the following we solve the time-dependent Schrödinger equation by direct
diagonalization of the compound system, i.e. the QD coupled with the phonon
cavity. The Hamiltonian of the system can be written as

Ĥ ¼ Ĥel þ Ĥph þ Ĥel�ph

¼
X
�

E�b
y
�b� þ

X
�

n̂� þ
1

2

� �
�h!� þ

X
� � �0

V�0�� b
y
�0 ay� þ a�

h i
b�, ð2Þ

including the electron and phonon ensemble Hamiltonians and the electron–phonon
coupling term. The same general Hamiltonian describes the atom–field interaction in
a multi-mode QED cavity [58]. We assume that the QD is occupied by a single
electron. Single electron devices that make use of tunnel barriers have been

Figure 3. (a) Model quantum dot structure in a free-standing square phonon cavity.
(b) Free-standing silicon plate that is 50 nm thick and 4mm long, produced by the Cornell
Nanofabrication Facility.

2622 L. G. C. Rego et al.
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characterized extensively [59–62]. Thus, for a two-dimensional circular QD of radius
R, the undisturbed electronic states are

’�ðr, �Þ ¼
Jjlj �l�ðr=RÞð Þ exp ½il��

p1=2RjJjljþ1ð�l�Þj
, ð3Þ

with � � ðl, �Þ, l ¼ 0, � 1, � 2, . . . and �l� the �th root of the Bessel function of order
jlj, Jjljð�l�xÞ. The corresponding energies are E� ¼ ð�h2=2meÞð�

2
l�=R

2Þ, where me is the
effective mass of the electron.

The eigenstates of the phonon cavity are obtained through the quantization of its
mechanical modes of vibration [57], which are calculated within the classical plate
theory [63]. The operators ay� and a�, with n̂� ¼ ay�a�, create and annihilate
the phonon modes. Finally, the electron–phonon interaction is written in terms of
the matrix elements V�0�� that identify the particular type of interaction between the
electrons and the phonons in the cavity. The characteristics of V�0�� depend on
the material properties as well as the geometry of the structure. Therefore, it carries
information about the symmetries of the nanoelectromechanical system [56, 57].
At low temperatures the more important electron–phonon coupling mechanisms are
described by the deformation and piezoelectric potentials, however, only the former
is included in (2), because silicon is not a piezoelectric material.

In the present treatment, the basis in which Ĥ is diagonalized is constructed as the
product of the one-electron states j��i with multi-phonon states jn1, n2, n3, . . . , nNi.
Here, n� ¼ 0, 1, . . . , n denotes the number of phonon quanta in mode �. A total of N
distinct phonon modes are considered. A typical basis vector for the compound
system is written as

�;nj i¼ j��i
YN
�¼1

1

n1=2�

ðay� Þ
n� j0i, ð4Þ

with N¼ 27 and n� � 30 in the following calculations. The convergence of the results
has been tested with respect to both the electron and the phonon ensemble sizes.
Before the diagonalization of the Hamiltonian is performed, a large (>105) basis set
comprised by states (4) is generated and energy sorted. The diagonalization of Ĥ
is then carried out on a truncated basis of size �14 000. The ensuing coupled
electron–phonon eigenstates will serve as basis states for the time propagation of the
compound system.

In the remainder we investigate the quantum dynamics of the electronic system
coupled to the phonon cavity modes that are described by a thermal field at
temperature T. The energy of a multi-mode cavity state n � ðn1, n2, . . . , nNÞ is
EphðnÞ ¼

P
� n� þ

1
2

� �
�h!�, therefore, the density matrix elements of the phonon

ensemble in a thermal configuration are given by

�phnn ¼
exp ð�EphðnÞ=kBTÞP
fng exp ð�EphðnÞ=kBTÞ

: ð5Þ

In double quantum dot systems, which are analogous to artificial molecules, the
decoherence can be observed through the quenching of the oscillating tunnel current
between the resonant QDs [5, 6]. In our single quantum dot structure we calculate
the time evolution of the electronic angular momentum as it evolves starting from

Multiple unitary-pulses for coherent-control of tunnelling and decoherence 2623
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a well-defined angular momentum state, likewise the atom–field system. Here, we
consider the free-standing square phonon cavity, like the one shown in figure 3,
with side-length of 1 mm and thickness 50 nm. The QD is 250 nm in diameter and,
therefore, can be treated as a two-dimensional QD. The initial state of the system is
the rotational wave-packet jCðt ¼ 0Þi ¼ j1, 1i � j	bathi that describes a QD in its first
excited state (Lel ¼ 1) in contact with the phonon thermal bath described by
equation (5). The temperature of the thermal bath is fixed at T¼ 200mK, which is
typical in the study of quantum coherent phenomena.

The position of the quantum dot in the phonon cavity is also important for the
system dynamics, due to the interplay between the symmetries of the circular QD
states with the square cavity phonon modes. In fact, it has been shown that the
spectrum of such suspended nanostructures exhibits a distinct quantum chaotic
behaviour depending on the position of the QD inside the phonon cavity [56, 57].
In the following calculations we concentrate on the fully chaotic case (black curve) by
placing the QD in the completely nonsymmetric position ðx, yÞ ¼ ð0:650, 0:575Þ. In
that case the QD-phonon cavity spectrum is characterized by a Gaussian Unitary
Ensemble (GUE) of randommatrices [64, 65]. For the sake of comparison, if the QD is
placed in the centre of the cavity ðx, yÞ ¼ ð0:5, 0:5Þ (green curve) the compound system
has a regular dynamics, described by a Poissonian energy level spacing distribution.

Because of the coupling with the phonon cavity, Lel is no longer a good quantum
number. Figure 4(a) shows the electronic angular momentum Lel ¼ Tr f�̂elðtÞL̂g as it
evolves in time coupled with the phonon bath in the cavity. �̂elðtÞ ¼ Trph f�̂ðtÞg is the
reduced electronic density matrix and Trph designates the trace over phonon states.
It is important to observe that the behaviour of Lel depends on the position of the
QD in the phonon cavity. In both cases the electronic dynamics undergoes a fast
phase decoherence (time scale �1 �0:1 ns) followed by a slower energy dissipation
process (time scale �2 �300�500 ns). To evaluate more precisely the degree of
decoherence in the electronic wavefunction we use the quantity Gel � Tr f�̂2elðtÞg.
At time t¼ 0 the electronic system is in the pure state described by jCðt ¼ 0Þi and
Gel ¼ 1. The interaction with the phonon cavity is responsible for the decay of Gel,
which stabilizes after �2, indicating that the electronic wavefunction has been
partially randomized.

Figure 4. Quantum dynamics of the quantum dot state in the thermal phonon cavity:
(a) time evolving electronic average angular momentum Lel and (b) decohering process of the
electronic state. Black and green curves refer to the QD placed at non-symmetric and
symmetric positions in the phonon cavity, respectively. (The colour version of this figure is
included in the online version of the journal.)

2624 L. G. C. Rego et al.
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Following the original work of Agarwal et al. [35], it has been demonstrated that
the use of a train of very frequent 2p pulses, both at deterministic and stochastic
intervals, can inhibit the tunnelling dynamics in double-well systems as well as in
molecule functionalized semiconductor surfaces [28]. Moreover, the technique could
be used to steer a wavepacket through discrete quantum states [28]. Here we employ
exact calculations and the concept of suspended QD-phonon cavities to demonstrate
that the application of successive unitary pulses can also suspend the dynamics and,
therefore, the decoherence process in electronic QDs coupled to a thermal bath,
without compromise of the underlying quantum coherences. The action of the 2p
pulses on the electron–phonon system is realized by the following unitary operator

Û2p ¼ Û2p
� �

el
�Iph

¼ I� 2jl ¼ 1, �ihl ¼ 1, �jð Þel�Iph, ð6Þ

where Iph is the identity operator. Notice that the p phase is applied to the l¼ 1
subspace of the wavepacket, irrespective of the quantum number �.

The effect of a deterministic train of unitary pulses is demonstrated in figure 5 for
the chaotic case, where the dynamics of Lel and Gel (red curves) is presented in
comparison with the free dynamics scenario (black curves). Due to the action of
the 2p pulses, applied at intervals �t ¼ 0:9 ns0�1, the decoherence and energy
dissipation processes are inhibited, because of the dynamical decoupling between the
QD and the phonon cavity thermal bath. After the external control is interrupted the
QD and the thermal bath resume their original coupled dynamics. We ascribe
the additional decoherence produced after the pulse sequence (figure 5(b)) to
a side-effect due to the fact that the Zeno limit �t 	 �1 is not rigorously attained.

5. Conclusions

We conclude that a simple coherent control scenario based on the repetitive
application of frequent phase-kick pulses can efficiently inhibit quantum tunnelling

Figure 5. Effect of the coherent quantum control on the dynamics of the electron state in
the thermal phonon cavity (red curves), in comparison with freely evolving system (black
curves): (a) time-dependent electronic angular momentum Lel and (b) decohering process of
the electronic state. (The colour version of this figure is included in the online version of
the journal.)

Multiple unitary-pulses for coherent-control of tunnelling and decoherence 2625
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and decoherence without collapsing the coherent-quantum evolution. These
sequences of unitary pulses could be used to achieve coherent control of both
bound-to-bound state tunnelling and bound-to-continuum tunnelling processes, in
general, so long as the average time-interval between phase-kick pulses is much
shorter than the tunnelling time. Furthermore, we conclude that sequences of unitary
pulses could also be designed to coherently control electronic decoherence in
quantum dots coupled to a thermal bath. Considering the possibility of engineering
semiconductor devices at the nano and micro scales, where quantum tunnelling and
decoherence phenomena can be tested, it is natural to anticipate considerable
experimental interest in examining the proposed coherent control scenario.
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