Supporting Information

T-ALPHA: a hierarchical transformer-based deep neural network for protein-ligand binding affinity prediction with uncertainty-aware self-learning for protein-specific alignment

Gregory W. Kyro, Anthony M. Smaldone, Yu Shee, Chuzhi Xu, Victor S. Batista

Department of Chemistry, Yale University

Corresponding author emails: {gregory.kyro, victor.batista}@yale.edu

Contents

1 Featurization and Training

- Table S1. List of all descriptors in the ligand physicochemical property-based feature vector.
- Figure S2. Training and validation loss curves for T-ALPHA corresponding to testing on the CASF 2016 test set. Loss is calculated using the custom loss function and plotted as a function of epoch number.
- Figure S3. Training and validation loss curves for T-ALPHA corresponding to testing on the LP-PDBbind test set. Loss is calculated using the custom loss function and plotted as a function of epoch number.
- Figure S4. Training and validation loss curves for T-ALPHA corresponding to testing on the BDB2020+ test set, as well as protein-specific test sets for SARS-CoV-2 main protease (Mpro) and epidermal growth factor receptor (EGFR). Loss is calculated using the custom loss function and plotted as a function of epoch number.

2 Custom Loss Function

• Figure S5. Weighting function for uncertainty-aware training. The figure shows the transformation applied to normalized uncertainty values to calculate weights for the loss function during parameter optimization. The function is defined as $w_i = 1 - \frac{1}{1+e^{-10}(\sigma_i - 0.5)}$, where σ_i is the normalized uncertainty. The transformation maps normalized uncertainty values to weights in the range (0, 1), smoothly decreasing the weight as uncertainty increases.

3 CASF 2016 Benchmark

- Figure S6. Predicted versus true binding affinities for T-ALPHA on the CASF 2016 test set using crystal structures of protein-ligand complexes. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).
- Figure S7. Predicted versus true binding affinities for T-ALPHA[†] on the CASF 2016 test set using Chai1generated protein-ligand complex structures. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (*r*²), Pearson correlation coefficient (*r*), and Spearman rank correlation coefficient (*ρ*).
- Figure S8. Absolute error of predicted binding affinities on the CASF 2016 test set using Chai1generated protein-ligand complex structures as a function of the prediction confidence of Chai-1. Relevant metrics include Pearson correlation coefficient (r) and Spearman rank correlation coefficient (ρ).

4 LP-PDBbind Benchmark

- Table S9. Performance of T-ALPHA and models reported in the literature on the LP-PDBbind test set.
- Figure S10. Predicted versus true binding affinities for T-ALPHA on the LP-PDBbind test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

5 BDB2020+ Benchmark

- Figure S11. Predicted versus true binding affinities for T-ALPHA on the BDB2020+ test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).
- Figure S12. Predicted versus true binding affinities for T-ALPHA[†] on the Chai1-generated proteinligand complex structures of the BDB2020+ test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (*r*²), Pearson correlation coefficient (*r*), and Spearman rank correlation coefficient (*ρ*).

6 Protein-Specific Mpro and EGFR Benchmarks

- Figure S13. Predicted versus true binding affinities for T-ALPHA on the Mpro test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (*r*²), Pearson correlation coefficient (*r*), and Spearman rank correlation coefficient (*ρ*).
- Figure S14. Predicted versus true binding affinities for T-ALPHA[†] on the Chai1-generated proteinligand complex structures of the Mpro test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (*r*²), Pearson correlation coefficient (*r*), and Spearman rank correlation coefficient (*ρ*).
- Figure S15. Predicted versus true binding affinities for T-ALPHA on the EGFR test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r²), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).
- Figure S16. Predicted versus true binding affinities for T-ALPHA[†] on the Chail-generated proteinligand complex structures of the EGFR test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (*r*²), Pearson correlation coefficient (*r*), and Spearman rank correlation coefficient (*ρ*).

7 Uncertainty-Aware Self-Learning Method

- Table S17. Improvements in Spearman rank correlation coefficient (ρ) for Mpro using the proposed self-learning method. Performance metrics are shown for comparing the baseline, new model, and fine-tuned model for SARS-CoV-2 main protease (Mpro). Spearman ρ improvements of 9.91% for the new model and 5.43% for the fine-tuned model highlight the effectiveness of the self-learning method. Results are reported separately for crystal structures (first value) and Chai1-generated structures (values in parentheses).
- Table S18. Improvements in Spearman rank correlation coefficient (ρ) for EGFR using the proposed self-learning method. Performance metrics are shown for comparing the baseline, new model, and fine-tuned model for epidermal growth factor receptor (EGFR). Spearman ρ improvements of 3.41% for the new model and 1.14% for the fine-tuned model highlight the effectiveness of the self-learning method. Results are reported separately for crystal structures (first value) and Chai1-generated structures (values in parentheses).

	M EGG I I		
MaxAbsEStateIndex	MaxEStateIndex	MinAbsEStateIndex	MinEStateIndex ExectMolW/t
Qeu Norm Valen es Electron e	Morwit	ManDartialChange	Min Dertial Change
Num valence Electrons	NumRadicalElectrons	MaxPartialCharge	MinPartialCharge
MaxAbsPartialCharge	MinAbsPartialCharge	FpDensityMorgan1	FpDensityMorgan2
FpDensityMorgan3	BCUT2D_MWHI	BCUT2D_MWLOW	BCUT2D_CHGHI
BCUT2D CHGLO	BCUT2D LOGPHI	BCUT2D LOGPLOW	BCUT2D MRHI
BCUT2D MRLOW	AvgIpc	BalabanJ	BertzCT
Chi0	Chi0n	Chi0v	Chi1
Chiln	Chilv	Chi2n	Chi2v
Chi3n	Chi3v	Chi4n	Chi4v
HallKierAlpha	Ipc	Kappa1	Kappa2
Kappa3	LabuteASA	PEOE VSA1	PEOE VSA10
PEOE VSA11	PEOE VSA12	PEOE VSA13	PEOE VSA14
PEOE VSA2	PEOE VSA3	PEOE VSA4	PEOE VSA5
PEOE VSA6	PEOE VSA7	PEOE VSA8	PEOE VSA9
SMR_VSA1	SMR_VSA10	SMR VSA2	SMR_VSA3
SMR VSA4	SMR VSA5	SMR VSA6	SMR VSA7
SMR_VSA8	SMR_VSA9	SlogP VSA1	SlogP VSA10
SlogP VSA11	SlogP VSA12	SlogP VSA2	SlogP VSA3
SlogP VSA4	SlogP VSA5	SlogP VSA6	SlogP VSA7
SlogD VSA9	SlogP VSA9		EState VSA1
Estate VSA0	Estate VSA	EState VSA2	EState_VSA1
Estate VSA10	EState VSAII	EState VSA2	EState VSA5
Estate_VSA4	Estate_VSA3	Estate_vSA0	Estate_vSA/
Estate VSA8	Estate VSA9	VSA Estatel	VSA EState10
VSA EState2	VSA EState3	VSA EState4	VSA EState5
VSA_EState6	VSA_EState/	VSA_EState8	VSA_EState9
FractionCSP3	HeavyAtomCount	NHOHCount	NOCount
NumAliphaticCarbocycles	NumAliphaticHeterocycles	NumAliphaticRings	NumAromaticCarbocycles
NumAromaticHeterocycles	NumAromaticRings	NumHAcceptors	NumHDonors
NumHeteroatoms	NumRotatableBonds	NumSaturatedCarbocycles	NumSaturatedHeterocycles
NumSaturatedRings	RingCount	MolLogP	MolMR
fr_Al_COO	fr_Al_OH	fr_Al_OH_noTert	fr_ArN
fr_Ar_COO	fr_Ar_N	fr_Ar_NH	fr_Ar_OH
fr COO	fr COO2	fr C O	fr C O noCOO
fr C S	fr HOCCN	fr Imine	fr NH0
fr NH1	fr NH2	fr N O	fr Ndealkylation1
fr Ndealkylation2	fr Nhpyrrole	fr SH	fr aldehyde
fr alkyl carbamate	fr alkyl halide	fr allylic oxid	fr amide
fr amidine	fr aniline	fr arvl methyl	fr azide
fr azo	fr barbitur	fr benzene	fr benzodiazepine
fr bicyclic	fr diazo	fr dihydropyridine	fr epoxide
fr ester	fr ether	fr furan	fr guanido
fr halogen	fr hdrzine	fr hdrzone	fr imidazole
fr imide	fr isocyan	fr isothiocyan	fr ketone
fr katona Taplias	fr lootom	fr lactone	fr mothovy
fr morpholing	fr nitrilo	fr nitro	fr nitro arom
fa nitro orone non ortho	fr nitrose	fr overele	fr ovince
Ir nitro arom nonortho	IF NITOSO	IT OXAZOIE	Ir oxime
Ir_para_nydroxylation	Ir_pnenoi	Ir_pnenoi_noOrthoHbond	<u>ir_pnos_acia</u>
tr phos ester	fr piperdine	tr piperzine	fr priamide
tr_prisulfonamd	tr_pyridine	tr_quatN	tr_sulfide
frsulfonamd	fr_sulfone	tr_term_acetylene	fr_tetrazole
fr thiazole	fr thiocyan	fr thiophene	fr unbrch alkane
fr urea			

Table S1. List of all descriptors in the ligand physicochemical property-based feature vector.

Figure S2. Training and validation loss curves for T-ALPHA corresponding to testing on the CASF 2016 test set. Loss is calculated using the custom loss function and plotted as a function of epoch number.

Figure S3. Training and validation loss curves for T-ALPHA corresponding to testing on the LP-PDBbind test set. Loss is calculated using the custom loss function and plotted as a function of epoch number.

Figure S4. Training and validation loss curves for T-ALPHA corresponding to testing on the BDB2020+ test set, as well as protein-specific test sets for SARS-CoV-2 main protease (Mpro) and epidermal growth factor receptor (EGFR). Loss is calculated using the custom loss function and plotted as a function of epoch number.

Figure S5. Weighting function for uncertainty-aware training. The figure shows the transformation applied to normalized uncertainty values to calculate weights for the loss function during parameter optimization. The function is defined as $w_i = 1 - \frac{1}{1+e^{-10}(\sigma_i - 0.5)}$, where σ_i is the normalized uncertainty. The transformation maps normalized uncertainty values to weights in the range (0, 1), smoothly decreasing the weight as uncertainty increases.

Figure S6. Predicted versus true binding affinities for T-ALPHA on the CASF 2016 test set using crystal structures of protein-ligand complexes. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S7. Predicted versus true binding affinities for T-ALPHA[†] on the CASF 2016 test set using Chai1-generated protein-ligand complex structures. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S8. Absolute error of predicted binding affinities on the CASF 2016 test set using Chai1generated protein-ligand complex structures as a function of the prediction confidence of Chai-1. Relevant metrics include Pearson correlation coefficient (r) and Spearman rank correlation coefficient (ρ).

Model	RMSE	MAE	r ²	Pearson r	Spearman ρ
T-ALPHA	1.498	1.183	0.258	0.549	0.533
AutoDock Vina	1.88	N/R	N/R	N/R	N/R
IGN	1.58	N/R	N/R	N/R	N/R
RF-Score	1.54	N/R	N/R	N/R	N/R
DeepDTA	1.68	N/R	N/R	N/R	N/R

Table S9. Performance of T-ALPHA and models reported in the literature on the LP-PDBbind test set.

^a The table reports Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2) , Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ) for each model.

^b The best value for each metric is shown in bold.

^c N/R indicates not reported in the literature. ^d Error metrics (RMSE and MAE) are reported in units of pK_i / pK_d .

Figure S10. Predicted versus true binding affinities for T-ALPHA on the LP-PDBbind test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S11. Predicted versus true binding affinities for T-ALPHA on the BDB2020+ test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S12. Predicted versus true binding affinities for T-ALPHA[†] on the Chai1-generated protein-ligand complex structures of the BDB2020+ test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S13. Predicted versus true binding affinities for T-ALPHA on the Mpro test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S14. Predicted versus true binding affinities for T-ALPHA[†] on the Chai1-generated protein-ligand complex structures of the Mpro test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S15. Predicted versus true binding affinities for T-ALPHA on the EGFR test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Figure S16. Predicted versus true binding affinities for T-ALPHA[†] on the Chai1-generated protein-ligand complex structures of the EGFR test set. Performance metrics include Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (r^2), Pearson correlation coefficient (r), and Spearman rank correlation coefficient (ρ).

Table S17. Improvements in Spearman rank correlation coefficient (ρ) for Mpro using the proposed self-learning method. Performance metrics are shown for comparing the baseline, new model, and fine-tuned model for SARS-CoV-2 main protease (Mpro). Spearman ρ improvements of 9.91% for the new model and 5.43% for the fine-tuned model highlight the effectiveness of the self-learning method. Results are reported separately for crystal structures (first value) and Chai1-generated structures (values in parentheses).

Model	RMSE	MAE	Pearson r	Spearman <i>p</i>	% $\uparrow \Delta$ Spearman $ ho$
Baseline	0.650 (0.741)	0.511 (0.574)	0.715 (0.668)	0.737 (0.733)	0.00% (0.00%)
New Model	1.397 (1.468)	1.259 (1.324)	0.790 (0.776)	0.810 (0.803)	9.91% (9.55%)
Control (New Model)	1.374 (1.387)	1.210 (1.200)	0.741 (0.700)	0.737 (0.702)	0.00% (-4.22%)
Fine Tune	0.615 (0.651)	0.529 (0.549)	0.752 (0.718)	0.777 (0.762)	5.43% (3.96%)
Control (Fine Tune)	0.915 (0.923)	0.779 (0.776)	0.764 (0.750)	0.735 (0.732)	-0.27% (-0.14%)

^a The table reports Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (*r*), Spearman rank correlation coefficient (ρ), and the percentage increase in Spearman ρ compared to the baseline (% $\uparrow \Delta$ Spearman ρ).

^b Error metrics (RMSE and MAE) are reported in units of pK_i / pK_d .

Table S18. Improvements in Spearman rank correlation coefficient (ρ) for EGFR using the proposed self-learning method. Performance metrics are shown for comparing the baseline, new model, and fine-tuned model for epidermal growth factor receptor (EGFR). Spearman ρ improvements of 3.41% for the new model and 1.14% for the fine-tuned model highlight the effectiveness of the self-learning method. Results are reported separately for crystal structures (first value) and Chai1-generated structures (values in parentheses).

Model	RMSE	MAE	Pearson r	Spearman <i>p</i>	% $\uparrow \Delta$ Spearman $ ho$
Baseline	0.694 (0.842)	0.572 (0.670)	0.702 (0.593)	0.791 (0.665)	0.00% (0.00%)
New Model	3.132 (3.407)	3.078 (3.334)	0.772 (0.685)	0.818 (0.679)	3.41% (2.11%)
Control (New Model)	3.520 (3.507)	3.455 (3.432)	0.663 (0.580)	0.791 (0.668)	0.00% (0.45%)
Fine Tune	1.033 (1.010)	0.911 (0.858)	0.755 (0.665)	0.800 (0.709)	1.14% (6.62%)
Control (Fine Tune)	1.172 (1.103)	1.001 (0.900)	0.569 (0.545)	0.773 (0.579)	-2.28% (-12.93%)

^a The table reports Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation coefficient (r), Spearman rank correlation coefficient (ρ), and the percentage increase in Spearman ρ compared to the baseline (% $\uparrow \Delta$ Spearman ρ).

^b Error metrics (RMSE and MAE) are reported in units of pK_i / pK_d .