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S.I GQME Derivation

The derivation of the GQME starts with the quantum Liouville equation (sometimes also called
the von Neumann equation) for the density operator of the overall system ρ̂(t):

d

dt
ρ̂(t) = − i

h̄
Lρ̂(t), (S.1)
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where the L = [Ĥ, · ] is the Liouvillian superoperator and Ĥ is the Hamiltonian of the overall
system and is assumed to be time-independent for simplicity. Throughout these notes, boldfaced
variables, e.g., A, indicate vector quantities; a hat over a variable, e.g., B̂, indicates an operator
quantity; and calligraphic font, e.g., L, indicates a superoperator.

The derivation of the GQME equation uses projection operator techniques. A projection
operator is an operator that satisfies idempotence, i.e., additional applications of the operator do not
change the result beyond the initial application of operator (e.g., Â2 = Â), and is used to project
on to a certain subspace of the system.

We use any projection superoperator P , apply it to both sides of Eq. (S.1), and use its
complimentary projection superoperator Q = 1 −P (i.e., Q projects onto what P projects out) to
reach:

d

dt
P ρ̂(t) = − i

h̄
PLρ̂(t)

= − i

h̄
PL(P +Q)ρ̂(t)

= − i

h̄
PLP ρ̂(t)− i

h̄
PLQρ̂(t). (S.2)

The same can be done for Qρ̂(t):

d

dt
Qρ̂(t) = − i

h̄
QLP ρ̂(t)− i

h̄
QLQρ̂(t), (S.3)

which, when considered as an inhomogeneous first-order differential equation, can be solved
explicitly to give

Qρ̂(t) = e−iQLt/h̄Qρ̂(0)− i

h̄

∫ t

0

dt′e−iQL(t−t′)/h̄QLP ρ̂(t′). (S.4)

The proof of Eq. (S.4) is done by first plugging the RHS of Eq. (S.4) into the LHS of Eq. (S.3) and

evaluating the derivative, using the identity
d

dt

∫ t

0

dt′f(t, t′) = f(t, t) +

∫ t

0

dt′
∂f(t, t′)

∂t
:

d

dt

{
e−iQLt/h̄Qρ̂(0)− i

h̄

∫ t

0

dt′ e−iQL(t−t′)/h̄QLP ρ̂(t′)

}

= − i

h̄
QL e−iQLt/h̄Qρ̂(0)− i

h̄
QLP ρ̂(t)− 1

h̄2

∫ t

0

dt′QL e−iQL(t−t′)/h̄QLP ρ̂(t′). (S.5)

We then substitute the RHS of Eq. (S.4) into the second term on the RHS of Eq. (S.3):

− i

h̄
QLQρ̂(t) = − i

h̄
QL e−iQLt/h̄Qρ̂(0)− 1

h̄2

∫ t

0

dt′QL e−iQL(t−t′)/h̄QLP ρ̂(t′). (S.6)
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If we combine the RHS of the above equation with the first, and only other, term of the RHS of

Eq. (S.3), − i

h̄
QLP ρ̂(t), we can see that it is equivalent to Eq. (S.5) [which is the evaluation of the

LHS of Eq. (S.3)], proving Eq. (S.4).
We then change the integration variable of Eq. (S.4) with t′ = t− τ , giving

Qρ̂(t) = e−iQLt/h̄Qρ̂(0)− i

h̄

∫ t

0

dτe−iQL(τ)/h̄QLP ρ̂(t− τ). (S.7)

Plugging Eq. (S.7) into Eq. (S.2) leads to the the Nakajima-Zwanzig equation:1–4

d

dt
P ρ̂(t) = − i

h̄
PLP ρ̂(t)− i

h̄
PL

[
e−iQLt/h̄Qρ̂(0)− i

h̄

∫ t

0

dτe−iQL(τ)/h̄QLP ρ̂(t− τ)

]

= − i

h̄
PLP ρ̂(t)− i

h̄
PLe−iQLt/h̄Qρ̂(0)− 1

h̄2

∫ t

0

dτPLe−iQLτ/h̄QLP ρ̂(t− τ). (S.8)

Importantly, there is a lot of flexibility when it comes to the choice of projection superoperator,
P , and thereby observables of interest. Each such choice would in turn give rise to a different
equation of motion, or GQME, for the observable quantity of interest, as dictated by the choice
of projection superoperator. In Ref. 5, we explored several different projection operators that
gave different GQMEs for the reduced electronic density operator and found that the modified
approach to the GQME (previously introduced in Ref. 6) was the best choice. In Ref. 7, we
outlined different projection operators that resulted in reduced-dimensionality GQMEs for subsets
of electronic populations and/or coherences. The next two subsections will outline the modified
approach to the GQME (M-GQME) and the general reduced-dimensionality GQME for any subset
of the elements of the electronic reduced density matrix.

S.I.1 Modified Approach to the GQME (M-GQME)

The modified approach to the GQME (M-GQME) gives an equation of motion for the full
electronic reduced density matrix. We will assume the initial state of the overall system has the
commonly-encountered factorized form

ρ̂(0) = ρ̂n(0)⊗ σ̂(0), (S.9)

where ρ̂n(0) = Tre{ρ̂(0)} and σ̂(0) = Trn{ρ̂(0)} are the reduced density operators that describe
the initial states of the nuclear DOF and electronic DOF, respectively, and Tre{·} and Trn{·} stand
for partially tracing over the electronic Hilbert space and the nuclear Hilbert space, respectively. It
should be noted that this initial state is not required for the GQME and Ref. 6 outlines a method of
using the GQME approach for an entangled initial state. The M-GQME is based on the following
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choice of projection superoperator:

P full(Â) = ρ̂n(0)⊗ Trn{Â} . (S.10)

Here, Â is an arbitrary overall system operator that the projection superoperator P operates on
and ρ̂n(0) must satisfy the condition Trn{ρ̂n(0)} = 1. If it does not, a different nuclear reference
density operator can be used, as outlined in Ref. 6.

Breaking down each term in Eq. (S.8), we substitute in P full = ρ̂n(0) ⊗ Trn{ · } and Qfull =

1 −P full (always substituting the furthest right projection operator first, for ease of derivation) and
perform a partial trace over the nuclear Hilbert space (Trn) for each term:

• LHS:

Trn

{
d

dt
P fullρ̂(t)

}
=

d

dt
Trn

{
ρ̂n(0)⊗ Trn{ρ̂(t)}︸ ︷︷ ︸

σ̂(t)

}
=

d

dt
Trn

{
ρ̂n(0)

}
︸ ︷︷ ︸

1

⊗σ̂(t)

=
d

dt
σ̂(t)

• First term RHS:

Trn

{
− i

h̄
P fullLP fullρ̂(t)

}
= − i

h̄
Trn

{
P fullLρ̂n(0)⊗ Trn{ρ̂(t)}︸ ︷︷ ︸

σ̂(t)

}

then we operate the first projection superoperator

= − i

h̄
Trn

{
ρ̂n(0)⊗ Trn

{
Lρ̂n(0)⊗ σ̂(t)

}}
σ̂(t) is purely electronic so it can be pulled out of the Trn and the inner trace

can be pulled out of the outer trace (since it will be purely electronic)

= − i

h̄
Trn

{
ρ̂n(0)

}
︸ ︷︷ ︸

1

⊗Trn
{
Lρ̂n(0)

}
σ̂(t)

= − i

h̄
⟨L⟩0nσ̂(t)
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• Second term RHS:

Trn

{
i

h̄
P fullLe−iQfullLt/h̄Qfullρ̂(0)

}
= Trn

{
i

h̄
P fullLe−iQfullLt/h̄

(
1 − P full

)
ρ̂(0)

}

= Trn

{
i

h̄
P fullLe−iQfullLt/h̄

(
ρ̂(0)− ρ̂n(0)⊗ Trn

{
ρ̂(0)

}
︸ ︷︷ ︸

σ̂(t)

)}

= Trn

{
i

h̄
P fullLe−iQfullLt/h̄

(
ρ̂(0)︸ ︷︷ ︸

ρ̂n(0)⊗ σ̂(0)

−ρ̂n(0)⊗ σ̂(0)
)}

= 0

• Third term RHS:

Trn

{
1

h̄2

∫ t

0

dτP fullLe−iQfullLτ/h̄QfullLP fullρ̂(t− τ)

}

=

∫ t

0

dτ
1

h̄2
Trn

{
P fullLe−iQfullLτ/h̄QfullLρ̂n(0)⊗ Trn{ρ̂(t− τ)

}
︸ ︷︷ ︸
σ̂(t− τ)

}

next we substitute the furthest left projection operator

=

∫ t

0

dτ
1

h̄2
Trn

{
ρ̂n(0)⊗ Trn

{
Le−iQfullLτ/h̄QfullLρ̂n(0)

}}
σ̂(t− τ)

taking the inner trace out of the outer trace and using Trn{ρ̂n(0)} = 1 leads to

=

∫ t

0

dτ
1

h̄2
Trn

{
Le−iQfullLτ/h̄QfullLρ̂n(0)

}
︸ ︷︷ ︸

Kfull(τ)

σ̂(t− τ)

Putting these terms back together yields the following equation of motion, or GQME, for σ̂(t):6

d

dt
σ̂(t) = − i

h̄
⟨L⟩0nσ̂(t)−

∫ t

0

dτ Kfull(τ)σ̂(t− τ). (S.11)

Within this GQME, the effect of the projected-out nuclear DOF on the dynamics of σ̂(t) is fully
accounted for by two electronic superoperators:

• The projected Liouvillian,

⟨L⟩0n ≡ Trn {ρ̂n(0)L} (S.12)
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which can be represented by a time-independent N2
e ×N2

e matrix, and
• The memory kernel,

Kfull(τ) =
1

h̄2
Trn

{
L e−iQfullLτ/h̄QfullLρ̂n(0)

}
, (S.13)

which can be represented by a time-dependent N2
e ×N2

e matrix.
While calculating the matrix elements of ⟨L⟩0n is straightforward, this is not the case for the

matrix elements of Kfull(τ). The memory kernel of the GQME cannot be obtained directly due
to its projected dynamics, seen in the presence of the projection operator Q in its exponential,
e−iQLτ/h̄ [see Eq. (S.13)]. Significant effort over the last two decades has been directed at
developing, testing, and applying various computational schemes for calculating Kfull(τ). Those
schemes were all based on the fact that Kfull(τ) can be obtained from projection-free inputs
(PFIs) by solving integral Volterra equations, as was first shown in Refs. 8–11. The PFIs
can be calculated using either quantum-mechanically exact or approximate semiclassical and
mixed quantum-classical input methods.8–23,6,24,25,5 Additional studies advanced the understanding
of the pros and cons of different implementations and expanded the range of applications
of such GQMEs.12–23,6,24,25,5 Further details on obtaining the M-GQME memory kernel from
projection-free inputs will be outlined in Sec. S.II.

S.I.2 Reduced-Dimensionality GQMEs

In this section, we explore an alternative approach for scaling up the GQME approach which
is based on utilizing the flexibility offered by the GQME formalism with respect to the choice of
projection operator. To this end, we use the fact that it is possible to derive a GQME for any subset
of electronic reduced density matrix elements of one’s choice. It should be noted that a similar
approach has been previously discussed in Refs. 26 and 19.

In this subsection, we consider the case where the electronic observables of interest correspond
to a subset of the electronic reduced density matrix elements, {σab(t)}. The equation of motion for
{σab(t)} is obtained by using the following projection superoperator:

P setÂ =
∑

jk∈{ab}

PjkÂ =
∑

jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|Tr
{(

|k⟩⟨j|⊗1̂n

)
Â
}
. (S.14)

For ease of the derivation later, we note that this projection operator when applied to the overall
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system density operator gives

P setρ̂(t) =
∑

jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|Tr
{(

|k⟩⟨j|⊗1̂n

)
ρ̂(t)

}
=

∑
jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|Tre
{
⟨j|Trn

{
1̂nρ̂(t)

}
|k⟩

}
=

∑
jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|Tre
{
⟨j| σ̂(t)|k⟩

}
=

∑
jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|σjk(t) (S.15)

For the derivation of the subset GQME, we first write Eq. (S.8) with P set and split into terms:

d

dt
P setρ̂(t)︸ ︷︷ ︸
(1)

= − i

h̄
P setLP setρ̂(t)︸ ︷︷ ︸

(2)

− 1

h̄2

∫ t

0

dτP setLe−iQsetLτ/h̄QsetLP setρ̂(t− τ)︸ ︷︷ ︸
(3)

− i

h̄
P setLe−iQsetLt/h̄Qsetρ̂(0)︸ ︷︷ ︸

(4)

,

(S.16)

where Qset = 1 − P set is the complimentary projection operator to P set (i.e., Qset projects-in what
P set projects-out).

Plugging in the projection operator from Eq. (S.14) [always starting with the furthest right
projection operator and using Eq. (S.15): P setρ̂(t) = ρ̂n(0) ⊗ |j⟩⟨k|σjk(t) ] and tracing over the
nuclear DOF, we get the following for each term:

(1)

Trn

{
d

dt
P setρ̂(t)

}
=

d

dt
Trn

{ ∑
jk∈{ab}

ρ̂n(0)⊗ |j⟩⟨k|σjk(t)

}

=
d

dt

∑
jk∈{ab}

Trn

{
ρ̂n(0)

}
|j⟩⟨k|σjk(t)

=
∑

jk∈{ab}

|j⟩⟨k| d
dt
σjk(t) (S.17)
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(2)

Trn

{
− i

h̄
P setLP setρ̂(t)

}
= − i

h̄
Trn

{
P setL

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(t)
}

= − i

h̄

∑
jk∈{ab}
lm∈{ab}

Trn

{
|j⟩⟨k|⊗ρ̂n(0)Tr

{(
|k⟩⟨j|⊗1̂n

)
Lρ̂n(0)|l⟩⟨m|

}
︸ ︷︷ ︸〈

Ljk,lm

〉0
n

σlm(t)

}

the Trn can pass over |j⟩⟨k| because it is purely electronic and

it can pass over ⟨Ljk,lm⟩0n and σlm(t) because they are numbers

= − i

h̄

∑
jk∈{ab}
lm∈{ab}

|j⟩⟨k|Trn
{
ρ̂n(0)

}
︸ ︷︷ ︸

1

〈
Ljk,lm

〉0
n
σlm(t)

= − i

h̄

∑
jk∈{ab}
lm∈{ab}

|j⟩⟨k|
〈
Ljk,lm

〉0
n
σlm(t) (S.18)
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(3)

Trn

{
− 1

h̄2

∫ t

0

dτP setLe−iQsetLτ/h̄QsetLP setρ̂(t− τ)

}
= −

∫ t

0

dτ
1

h̄2
Trn

{
P setLe−iQsetLτ/h̄QsetL

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(t− τ)

}
next, plugging in the furthest left projection operator

= −
∫ t

0

dτ
∑

jk∈{ab}
lm∈{ab}

1

h̄2
Trn

{
|j⟩⟨k|⊗ρ̂n(0)

× Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLτ/h̄QsetL ρ̂n(0)⊗ |l⟩⟨m|σlm(t− τ)

}}
the Trn can pass over |j⟩⟨k| because it is purely electronic and

it can pass over the full trace because it is a number

= −
∫ t

0

dτ
∑

jk∈{ab}
lm∈{ab}

|j⟩⟨k|Trn
{
ρ̂n(0)

}
︸ ︷︷ ︸

1

× 1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLτ/h̄QsetL ρ̂n(0)⊗ |l⟩⟨m|σlm(t− τ)

}
the σlm(t− τ) can be taken out of the full trace because it is a number

= −
∑

jk∈{ab}
lm∈{ab}

|j⟩⟨k|
∫ t

0

dτ
1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLτ/h̄QsetL

(
ρ̂n(0)⊗ |l⟩⟨m|

)}
︸ ︷︷ ︸

Kset
jk,lm(τ)

σlm(t− τ)

(S.19)
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(4)

Trn

{
− i

h̄
P setLe−iQsetLt/h̄Qsetρ̂(0)

}
= − i

h̄
Trn

{
P setLe−iQsetLt/h̄

(
1 − P set

)
ρ̂(0)

}
distributing (1 − P set)ρ̂(0)

= − i

h̄
Trn

{
P setLe−iQsetLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)

]}
plugging in the furthest left projection operator

= − i

h̄

∑
jk∈{ab}

Trn

{
|j⟩⟨k|⊗ρ̂n(0)Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)

]}}
the Trn can pass over |j⟩⟨k| because it is purely electronic and

it can pass over the full trace because it is a number

= − i

h̄

∑
jk∈{ab}

|j⟩⟨k|Trn
{
ρ̂n(0)

}
︸ ︷︷ ︸

1

Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)

]}

=
∑

jk∈{ab}

|j⟩⟨k|

[
− i

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)

]}
︸ ︷︷ ︸

I set
jk (t)

]

(S.20)

So this term goes to zero if ρ̂n(0) =
∑

lm∈{ab}

ρ̂n(0) ⊗ σlm(0)|l⟩⟨m|. This can often easily be true

if the system starts in one population, with the rest equal to zero, and this population is included
in the subset of states of interest. In other words, if ρ̂(0) = ρ̂n(0) ⊗ |α⟩⟨α| and αα ∈ {ab}, then
I set
jk (t) = 0.

Therefore, the overall GQME is given by

∑
jk∈{ab}

|j⟩⟨k| d
dt
σjk(t) = − i

h̄

∑
jk∈{ab}
lm∈{ab}

|j⟩⟨k|⟨Ljk,lm⟩0n σlm(t)

−
∑

jk∈{ab}
lm∈{ab}

|j⟩⟨k|
∫ t

0

dτ Kset
jk,lm(τ)σlm(t− τ) +

∑
jk∈{ab}

|j⟩⟨k| Î set
jk (t).

(S.21)
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Applying ⟨j| from the left and |k⟩ from the right leads to Eq. (6) in the manuscript:

d

dt
σjk(t) = − i

h̄

∑
lm∈{ab}

⟨Ljk,lm⟩0n σlm(t)

−
∑

lm∈{ab}

∫ t

0

dτ Kset
jk,lm(τ)σlm(t− τ) + Î set

jk (t),

(S.22)

where the memory kernel matrix elements are given by

Kset
jk,lm(τ) =

1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLτ/h̄QsetL ρ̂n(0)⊗ |l⟩⟨m|

}
(S.23)

and the inhomogeneous term vector elements are given by

Î set
jk (t) = − i

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)

]}
. (S.24)

Given Nset equal to the number of elements in {σab(t)}, the memory kernel and inhomogeneous
term in this case correspond to an Nset ×Nset matrix and an Nset-dimensional vector, respectively.
If the initial state is of the commonly encountered factored form ρ̂(0) = ρ̂n(0) ⊗ |α⟩⟨β| and
αβ ∈ {ab}, then Î set(t) = 0.

S.II Projection-Free Inputs

The memory kernels and inhomogeneous terms of the M-GQME and reduced-dimensionality
GQMEs can be found via integral Volterra equations with PFIs.

For the M-GQME, a scheme for evaluating Kfull(τ) from projection-free inputs can be
developed by using the following general operator identity:8,10

e−iBτ/h̄ = e−iAτ/h̄ − i

h̄

∫ τ

0

dτ ′e−iA(τ−τ ′)/h̄(B −A)e−iBτ ′/h̄. (S.25)

The proof of this identity can be shown by first starting with the differential equation

d

dτ
eiAτ/h̄e−iBτ/h̄ =

(
i

h̄
AeiAτ/h̄

)
e−iBτ/h̄ + eiAτ/h̄

(
− i

h̄
Be−iBτ/h̄

)
product rule

=
i

h̄
eiAτ/h̄

(
A− B

)
e−iBτ/h̄. A and eiAτ/h̄ commute, then gathering terms
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Integrating both sides from 0 to t leads to∫ t

0

dτ
d

dτ
eiAτ/h̄e−iBτ/h̄ =

∫ t

0

dτ
i

h̄
eiAτ/h̄

(
A− B

)
e−iBτ/h̄

evaluating the LHS and fliping th sign of the integral on the RHS

eiAt/h̄e−iBt/h̄ − 1 = − i

h̄

∫ t

0

dτ eiAτ/h̄
(
B −A

)
e−iBτ/h̄

multiplying from the left with e−iAt/h̄ and moving the second term

on the LHS to the RHS

e−iBt/h̄ = e−iAt/h̄ − i

h̄

∫ t

0

dτ e−iA(t−τ)/h̄
(
B −A

)
e−iBτ/h̄ (S.26)

This is equivalent to Eq. (S.25), proving the general operator identity.
Substituting A = L and B = QL into Eq. (S.25), we obtain

e−iQLτ/h̄ = e−iLτ/h̄ +
i

h̄

∫ τ

0

dτ ′e−iL(τ−τ ′)/h̄PLe−iQLτ ′/h̄. (S.27)

Substituting Eq. (S.27) into Eq. (S.13) gives

Kfull(τ) =
1

h̄2
Trn

{
L e−iQfullLτ/h̄QfullLρ̂n(0)

}
=

1

h̄2
Trn

{
L e−iLτ/h̄QfullLρ̂n(0)

}
+

i

h̄3

∫ τ

0

dτ ′Trn

{
L e−iL(τ−τ ′)/h̄P fullLe−iQfullLτ ′/h̄QfullLρ̂n(0)

}
plugging in Qfull = 1 − P full in the first term and P full into the second term

=
1

h̄2
Trn

{
L e−iLτ/h̄

(
1 − P full

)
Lρ̂n(0)

}
+

i

h̄3

∫ τ

0

dτ ′Trn

{
L e−iL(τ−τ ′)/h̄ρ̂n(0)⊗ Trn

{
Le−iQfullLτ ′/h̄QfullLρ̂n(0)

}}
distributing over the parentheses, plugging in P full in the new second term and

splitting the nuclear traces in the integral term

=
1

h̄2
Trn

{
L e−iLτ/h̄Lρ̂n(0)

}
︸ ︷︷ ︸

iḞ(τ)

−1

h̄

1

h̄
Trn

{
L e−iLτ/h̄ρ̂n(0)

}
︸ ︷︷ ︸

F(τ)

Trn

{
Lρ̂n(0)

}
︸ ︷︷ ︸

⟨L⟩0n

+ i

∫ τ

0

dτ ′
1

h̄
Trn

{
L e−iL(τ−τ ′)/h̄ρ̂n(0)

}
︸ ︷︷ ︸

F(τ − τ ′)

1

h̄2
Trn

{
Le−iQfullLτ ′/h̄QfullLρ̂n(0)

}
︸ ︷︷ ︸

Kfull(τ ′)
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Therefore, the full memory kernel can be found by solving the following Volterra equation of the
second kind:

Kfull(τ) = iḞ(τ)− 1

h̄
F(τ)⟨L⟩0n + i

∫ τ

0

dτ ′F(τ − τ ′)Kfull(τ ′), (S.28)

where F(τ) and Ḟ(τ) are the PFIs given by

F(τ) =
1

h̄
Trn

{
Le−iLτ/h̄ρ̂n(0)

}
,

Ḟ(τ) = − i

h̄2
Trn

{
Le−iLτ/h̄Lρ̂n(0)

}
.

(S.29)

Thus, given the PFIs, Eq. (S.28) can be solved numerically for the projection-dependent K(τ) (see
Appendix D of Ref. 6). Hence, the problem of calculating K(τ) translates into that of calculating
F(τ) and Ḟ(τ).

It should be noted that F(τ) = iU̇(τ), where U(τ) is the time evolution operator of the
electronic reduced density operator,

σ̂(τ) = U(τ)σ̂(0) ≡ Trn
{
e−iLτ/h̄ρ̂n(0)

}
σ̂(0) . (S.30)

Thus, Eq. (S.28) can be rewritten in the following form:

Kfull(τ) = −Ü(τ)− i

h̄
U̇(τ)⟨L⟩0n −

∫ τ

0

dτ ′U̇(τ − τ ′)Kfull(τ ′). (S.31)

This implies that the memory kernel of the M-GQME, Kfull(τ), can be obtained directly from the
time evolution operator of the reduced dynamics, U(τ). As shown in Ref. 5, when approximate
input methods are used, the PFIs F(τ) and Ḟ(τ) should be calculated explicitly in order to achieve
the accuracy benefit of the GQME. However, with an exact input method, the time evolution
operator of the reduced dynamics, U(τ), can be used along with a numerical derivative method.

For the reduced-dimensionality GQMEs, the memory kernel {Kset(τ)} can also be obtained
from PFIs by solving a set of N2

set coupled Volterra equations. We start with the explicit expression
for the memory kernel, Eq. (S.23):

Kset
jk,lm(τ) =

1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iQsetLτ/h̄QsetL ρ̂n(0)⊗|l⟩⟨m|

}
. We then substitute the identity

in Eq. (S.27) for e−iQsetLτ/h̄ (the identity is valid for any projection superoperator Q). This yields
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the following expression for the matrix elements of Kset(τ):

Kset
jk,lm(τ) =

1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLτ/h̄QsetLρ̂n(0)⊗ |l⟩⟨m|

}
+

i

h̄3

∫ τ

0

dτ ′ Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iL(τ−τ ′)/h̄P setLe−iQsetLτ ′/h̄QsetL ρ̂n(0)⊗ |l⟩⟨m|

}
.

Plugging in Qset = 1 − P set into the first term splits it into two terms. Using P set from Eq. (S.14)
in the term that involves P set leads to Eq. (S.32):

Kset
jk,lm(τ) =

1

h̄2
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLτ/h̄Lρ̂n(0)⊗ |l⟩⟨m|

}
︸ ︷︷ ︸

iḞjk,lm(τ)

− 1

h̄

∑
uv ∈{ab}

1

h̄
Tr

{(
|j⟩⟨j|⊗1̂n

)
Le−iLτ/h̄ρ̂n(0)⊗ |u⟩⟨v|

}
︸ ︷︷ ︸

Fjk,uv(τ)

Tr

{(
|v⟩⟨u|⊗1̂n

)
Lρ̂n(0)⊗ |l⟩⟨m|

}
︸ ︷︷ ︸

⟨Luv,lm⟩0n

+ i
∑

uv ∈{ab}

∫ τ

0

dτ ′
1

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iL(τ−τ ′)/h̄ρ̂n(0)⊗ |u⟩⟨v|

}
︸ ︷︷ ︸

Fjk,uv(τ − τ ′)

× 1

h̄2
Tr

{(
|v⟩⟨u|⊗1̂n

)
Le−iQsetLτ ′/h̄QsetL ρ̂n(0)⊗ |l⟩⟨m|

}
︸ ︷︷ ︸

Kset
uv,lm(τ

′)

.

Therefore, the Volterra equation for the subset memory kernel is given by

Kset
jk,lm(τ) = iḞjk,lm(τ)−

1

h̄

∑
uv ∈{ab}

Fjk,uv(τ)⟨Luv,lm⟩0n + i
∑

uv ∈{ab}

∫ τ

0

dτ ′Fjk,uv(τ − τ ′)Kset
uv,lm(τ

′)

(S.32)

Note that ⟨Ljj,kk⟩0n = 0.
Since the PFIs can be written in terms of the time evolution operator U(τ), this means that

Eq. (S.32) can be rewritten in terms of the time evolution operator for the reduced electronic density
operator:

Kset
jk,lm(τ) = −Üjk,lm(τ)−

i

h̄

∑
uv ∈{ab}

U̇jk,uv(τ)⟨Luv,lm⟩0n −
∑

uv ∈{ab}

∫ τ

0

dτ ′ U̇jk,uv(τ − τ ′)Kset
uv,lm(τ

′).

(S.33)
Next, we consider the explicit expression for the inhomogeneous term, Eq. (S.24). We
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substitute the identity in Eq. (S.27) for e−iQsetLτ/h̄, which yields:

I set
jk (t) = − i

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLt/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)
]}

+
1

h̄2

∫ t

0

dτ Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iL(t−τ)/h̄P setLe−iQsetLτ/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |l⟩⟨m|σlm(0)
]}
.

Splitting the first term into two terms at the minus sign and plugging P set from Eq. (S.14) into the
second term leads to Eq. (S.34)

I set
jk (t) = − i

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLt/h̄ρ̂(0)

}
︸ ︷︷ ︸

= Zjk(t)

+ i
∑

lm∈{ab}

1

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLt/h̄ρ̂n(0)⊗ |l⟩⟨m|

}
︸ ︷︷ ︸

= Fjk,lm(t)

σlm(0)

+ i
∑

uv ∈{ab}

∫ t

0

dτ
1

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iL(t−τ)/h̄ρ̂n(0)⊗ |u⟩⟨v|

}
︸ ︷︷ ︸

= Fjk,uv(t− τ)

×
[
− i

h̄
Tr

{(
|λ⟩⟨λ|⊗1̂n

)
Le−iQsetLτ/h̄

[
ρ̂(0)−

∑
lm∈{ab}

ρ̂n(0)⊗ |k⟩⟨k|σkk(0)
]}

︸ ︷︷ ︸
I set
uv(τ)

]
.

I set
jk (t) = Zjk(t) + i

∑
lm∈{ab}

Fjk,lm(t)σlm(0) + i
∑

uv ∈{ab}

∫ t

0

dτ Fjk,uv(t− τ)I set
uv(τ). (S.34)

Here, {Zjk(t)} is given by

Zjk(t) = − i

h̄
Tr

{(
|k⟩⟨j|⊗1̂n

)
Le−iLt/h̄ρ̂(0)

}
. (S.35)

If the overall initial state is of the commonly encountered form ρ̂(0) = ρ̂n(0)⊗|α⟩⟨α|, then Zjk(t)

is equivalent to −iFjk,αα(t) = U̇jk,αα(t).
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S.III Equivalence between the TFD Schrödinger equation and
the quantun Liouville equation

In this section, we show that when the thermal wavepacket |ψγ(β, t)⟩ is defined such that

ρ̂(t) = Trf
{
|ψγ(β, t)⟩⟨ψγ(β, t)|

}
, (S.36)

and evolves according to the so-called TFD Schrödinger equation:

d

dt
|ψγ(β, t)⟩ = − i

h̄
H̄|ψγ(β, t)⟩, (S.37)

where H̄ = Ĥ ⊗ 1̃n, then ρ̂(t) correctly evolves according to the quantum Liouville equation.
To see this, take the time derivative on both sides of Eq. (S.36), we obtain:

d

dt
ρ̂(t) = Trf [(

d

dt
|ψγ(β, t)⟩)⟨ψγ(β, t)|+|ψγ(β, t)⟩

d

dt
(⟨ψγ(β, t)|)]. (S.38)

Plugging Eq. (S.37) into the right hand side of Eq. (S.38), we obtain:

d

dt
ρ̂(t) = Trf [−

i

h̄
(Ĥ ⊗ 1̃n)|ψγ(β, t)⟩⟨ψγ(β, t)|+|ψγ(β, t)⟩⟨ψγ(β, t)|

i

h̄
(Ĥ ⊗ 1̃n)]. (S.39)

Pulling Ĥ out of the partial trace with Trf [(Ĥ ⊗ 1̃n)B̄] = ĤTrf [B̄] for any double space
operator B̄,

d

dt
ρ̂(t) = − i

h̄
ĤTrf [|ψγ(β, t)⟩⟨ψγ(β, t)|] + Trf [|ψγ(β, t)⟩⟨ψγ(β, t)|]

i

h̄
Ĥ

= − i

h̄
[Ĥ, ρ̂(t)],

(S.40)

which is the quantum Liouville equation.

S.IV Linear Combinations for Off-Diagonal Initial States of
U(t)

The TT-TFD method requires the initial electronic state to be in a pure state, e.g., |γ⟩⟨γ|.
However, in order to obtain the time evolution operator of the electronic reduced density matrix,
U(t), necessary for obtaining the PFIs, we need to start in off-diagonal initial states, e.g., σ̂(0) =
|u⟩⟨v| when u ̸= v. This problem can be bypassed by starting in a set of pure states and using
linear combinations to calculate the off-diagonal initial states. The choice of the set of initial states
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is not unique but a relatively unbiased choice is

X̂uv =
1

2

[
|u⟩⟨u|+|v⟩⟨v|+|u⟩⟨v|+|v⟩⟨u|

]
,

Ŷuv =
1

2

[
|u⟩⟨u|+|v⟩⟨v|−i|u⟩⟨v|+i|v⟩⟨u|

]
.

(S.41)

This choice is also used in Ref. 6 for PFIs obtained from the Ehrenfest method.
In practice, one starts with X̂uv and Ŷuv instead of |u⟩⟨v| and |v⟩⟨u| as initial electronic states,

to obtain the TT-TFD calculations of

⟨ψθ,jjX̂uv
(t)|ψθ,jkX̂uv

(t)⟩ , ⟨ψθ,jjŶuv
(t)|ψθ,jkŶuv

(t)⟩ . (S.42)

The corresponding results for |u⟩⟨v| and |v⟩⟨u| as the initial electronic states can then be expressed
as linear combinations of the results in Eq. (S.42). More specifically,

Ujk,uv(t) = ⟨ψθ,jjX̂uv
(t)|ψθ,jkX̂uv

(t)⟩+ i ⟨ψθ,jjŶuv
(t)|ψθ,jkŶuv

(t)⟩

− 1

2
(1 + i)

[
⟨ψθ,jjuu(t)|ψθ,jkuu(t)⟩ − ⟨ψθ,jjvv(t)|ψθ,jkvv(t)⟩

]
,

(S.43)

Ujk,vu(t) = ⟨ψθ,jjX̂uv
(t)|ψθ,jkX̂uv

(t)⟩ − i ⟨ψθ,jjŶuv
(t)|ψθ,jkŶuv

(t)⟩

− 1

2
(1− i)

[
⟨ψθ,jjuu(t)|ψθ,jkuu(t)⟩ − ⟨ψθ,jjvv(t)|ψθ,jkvv(t)⟩

]
.

(S.44)
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S.V Graphs of the Projection-Free Inputs

Given in this section are the graphs of the imaginary part of F(τ) and the real and imaginary
parts of Ḟ(τ) for models 1, 2, 3, and 6. The real part of F(τ) is not show because it is zero for all
models for both TT-TFD and LSC.
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Figure S1: Imaginary parts of theDDDD, DDAA, AADD andAAAAmatrix elements of F(τ)
for model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Figure S2: Real parts of the DDDD, DDAA, AADD and AAAA matrix elements of Ḟ(τ) for
model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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for model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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model 2, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Ḟ
D
D
D
D

TT-TFD vs. LSCII for the Imag Part of Ḟjj, kk(τ) for Model 2
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Figure S6: Imaginary parts of theDDDD, DDAA, AADD andAAAAmatrix elements of Ḟ(τ)
for model 2, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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model 3, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Figure S9: Imaginary parts of theDDDD, DDAA, AADD andAAAAmatrix elements of Ḟ(τ)
for model 3, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Figure S10: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of
F(τ) for model 6, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Ḟ
D
D
D
D

TT-TFD vs. LSCII for the Real Part of Ḟjj, kk(τ) for Model 6
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Figure S11: Real parts of the DDDD, DDAA, AADD and AAAA matrix elements of Ḟ(τ) for
model 6, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Figure S12: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of
Ḟ(τ) for model 6, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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S.VI Graphs of the Memory Kernels

Given in this section are the graphs of the real and imaginary parts of the memory kernels for
models 1, 2, 3, and 6.
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Figure S13: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [Kfull(τ)] for model 1 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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Figure S14: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [Kfull(τ)] for model 1 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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Figure S15: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 1 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S16: The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 1 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S17: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [Kfull(τ)] for model 2 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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Figure S18: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [Kfull(τ)] for model 2 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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Figure S19: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 2 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.

S36



0.003

0.000

0.003

0.006

0.009

K
D
D
D
D

          TT-TFD vs. LSCII for the Imag Part of the
Reduced-Dimensionality Memory Kernels for Model 2

PopOnly TT-TFD
Single Pop TT-TFD

PopOnly LSCII
Single Pop LSCII

0.008

0.004

0.000

0.004

K
D
D
A
A

0 2 4 6 8 10 12 14
Γτ

0.008

0.004

0.000

0.004

K
A
A
D
D

0 2 4 6 8 10 12 14
Γτ

0.006

0.003

0.000

0.003

0.006

0.009

K
A
A
A
A

Figure S20: The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 2 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S21: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [Kfull(τ)] for model 3 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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Figure S22: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [Kfull(τ)] for model 3 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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Figure S23: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 3 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S24: The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 3 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S25: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [Kfull(τ)] for model 6 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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Figure S26: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [Kfull(τ)] for model 6 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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Figure S27: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 6 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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Figure S28: The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 6 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [Kpop(τ)], which has four elements
(DDDD,DDAA,AADD,AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [Kdonor

DD,DD(τ)

and Kacceptor
AA,AA(τ)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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S.VII Graphs of the Inhomogeneous Terms of All of the
Models

Given in this section are the graphs of the real part of the inhomogeneous terms for models 1,
2, 3, and 6. The imaginary part is not shown, as it is zero for all models for both inhomogeneous
terms calculated via TT-TFD and LSCII.
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Figure S29: Real part of ÎAA(τ) for model 1, as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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