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S.I GQME Derivation

The derivation of the GQME starts with the quantum Liouville equation (sometimes also called

the von Neumann equation) for the density operator of the overall system p(t):

d
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() = —5L(0), S.1)
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where the £ = [f] , -] is the Liouvillian superoperator and H is the Hamiltonian of the overall
system and is assumed to be time-independent for simplicity. Throughout these notes, boldfaced
variables, e.g., A, indicate vector quantities; a hat over a variable, e.g., B, indicates an operator
quantity; and calligraphic font, e.g., £, indicates a superoperator.

The derivation of the GQME equation uses projection operator techniques. A projection
operator is an operator that satisfies idempotence, i.e., additional applications of the operator do not
change the result beyond the initial application of operator (e.g., A? = A), and is used to project
on to a certain subspace of the system.

We use any projection superoperator P, apply it to both sides of Eq. (S.1), and use its
complimentary projection superoperator Q = 1 — P (i.e., Q projects onto what P projects out) to
reach:

l

d_ .. A
5 PPt) = =3 PLH)

h
= —2PL(P + Qp(H)
= —LPLPj(r) ~ L PLO?). (32)
The same can be done for Qp(t):
< Qp(t) = —LaLPi(t) - L L), (8.3)
dt h h

which, when considered as an inhomogeneous first-order differential equation, can be solved
explicitly to give

-
Qﬁ(t) _ e—iQCt/hQﬁ(O) . %/ dt’e_igﬁ(t_t/)/hQﬁp,ﬁ(t’). (54)

0

The proof of Eq. (S.4) is done by first plugging the RHS of Eq. (S.4) into the LHS of Eq. (S.3) and
,O0f(t 1)

d
evaluating the derivative, using the identity 7 / dt' f(t,t') = f(t,t) + / dt' ——— T
0

d , (1 , /
a{“gﬁ”"%(m e ’“Qﬁ%@')}
0

= —1QLeOMINQH(0) ~ T OLPH(r) - WQLENIQLPHY)  (59)

hQ
We then substitute the RHS of Eq. (S.4) into the second term on the RHS of Eq. (S.3):

. . ' 1 t ' )
—%QﬁQﬁ(t) - —%Qﬁ e 1OINQp(0) — / dt' QL e LM QrPA(t).  (S.6)
0
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If we combine the RHS of the above equation with the first, and only other, term of the RHS of

Eq. (S.3), —% QLPp(t), we can see that it is equivalent to Eq. (S.5) [which is the evaluation of the
LHS of Eq. (S.3)], proving Eq. (S.4).
We then change the integration variable of Eq. (S.4) with ' =t — 7, giving

. t
Qp(t) = e LY Qp(0) — % / dre " CFMQLP(t — 7). (S.7)

0

Plugging Eq. (S.7) into Eq. (S.2) leads to the the Nakajima-Zwanzig equation: '

d . i R )
Epp(t) =——PLPp(t) — hPﬁ

. t
- e LM Qp(0) — % / dre " FOMQLPp(t — 1)

0

. . ‘ 1 t )
"‘%Pﬁpﬁ@%—%PﬁeZ@”%Qmm-ga/‘”Pﬁe’@”MQEPMt—T» (S.8)
0

Importantly, there is a lot of flexibility when it comes to the choice of projection superoperator,
‘P, and thereby observables of interest. Each such choice would in turn give rise to a different
equation of motion, or GQME, for the observable quantity of interest, as dictated by the choice
of projection superoperator. In Ref. 5, we explored several different projection operators that
gave different GQMEs for the reduced electronic density operator and found that the modified
approach to the GQME (previously introduced in Ref. 6) was the best choice. In Ref. 7, we
outlined different projection operators that resulted in reduced-dimensionality GQMEs for subsets
of electronic populations and/or coherences. The next two subsections will outline the modified
approach to the GQME (M-GQME) and the general reduced-dimensionality GQME for any subset
of the elements of the electronic reduced density matrix.

S.I.1 Modified Approach to the GQME (M-GQME)

The modified approach to the GQME (M-GQME) gives an equation of motion for the full
electronic reduced density matrix. We will assume the initial state of the overall system has the

commonly-encountered factorized form
P(0) = 5. (0) © 6(0), (S.9)

where p,,(0) = Tr.{p(0)} and 5(0) = Tr,{p(0)} are the reduced density operators that describe
the initial states of the nuclear DOF and electronic DOF, respectively, and Tr.{-} and Tr, {-} stand
for partially tracing over the electronic Hilbert space and the nuclear Hilbert space, respectively. It
should be noted that this initial state is not required for the GQME and Ref. 6 outlines a method of
using the GQME approach for an entangled initial state. The M-GQME is based on the following
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choice of projection superoperator:
PM(A) = pn(0) © Tr{A} . (S.10)

Here, A is an arbitrary overall system operator that the projection superoperator P operates on
and p,,(0) must satisfy the condition Tr,,{p,(0)} = 1. If it does not, a different nuclear reference
density operator can be used, as outlined in Ref. 6.

Breaking down each term in Eq. (S.8), we substitute in P! = 5, (0) ® Tr,{-} and Q™! =
1 — Pl (always substituting the furthest right projection operator first, for ease of derivation) and
perform a partial trace over the nuclear Hilbert space (Tr,,) for each term:

* LHS:

v, { Lprspy = Loy { pn(0) @ Tr, {p(£)} } 4y { ﬁn(O)} R (t)
{dt } dt 7(;)_/ dt 1

¢ First term RHS:

1

Tr, { - %Pfu“mf““ﬁ(t)} =—5 T, {Pf““,c/snw) ® Tro{p(t)} }
()
o

then we operate the first projection superoperator

_ _% Tr,, {ﬁn(m @ Tro{ Ljn(0) ® 6(t>}}

o (t) is purely electronic so it can be pulled out of the Tr,, and the inner trace

can be pulled out of the outer trace (since it will be purely electronic)
- —% Tr, {ﬁnm)} ®Trn{£,6n(0)}[7(t)
1
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¢ Second term RHS:
Tr, {%Pfuuﬁe—igf“”a/h QfUIIﬁ(O)} — Ty, {%zpfullﬁe—iQf”“Et/h <1 _ Pfull>ﬁ(0)}

~ Ty, {%Pfuuﬁe_igunﬁt/h ([)(O) — pn(0) ® Tr,, {,6(0)} ) }

————
o(t)
_ bostull po—iQULe /R . .
= Tr, {—77 Le ( p(0) —pn(0) ®0(0))}
h ~——

pn(0) ©6(0)

-]

¢ Third term RHS:
1 ! full ; QM 27 /B ~full full
Tr, ﬁ/ drPhil Le—iQ L/ gl ppfull 54 _ 7y
0

t 1 i Ofu
_ / dr = Tr, {Pfullﬁe—zgt Yer/hgfile s (0) @ Tr {p(t — 7’)} }
0
——_———
a(t—r)

next we substitute the furthest left projection operator

t 1 ; Ofull
= /0 dr ﬁ Tr, {ﬁn(0> ® Trn{ﬁeilg Lr/h Qf““Lﬁn(O)}}&(t - T)

taking the inner trace out of the outer trace and using Tr,, {5, (0)} = 1 leads to

t
1 - ~full
_ / dr ?Trn{ﬁe_lg “/hgf““,cpn(o)}av(t—r)
0 RS _

ICqu ( 7_)

Putting these terms back together yields the following equation of motion, or GQME, for &(¢):°

Lo = —%<L>g&(t) - /O dr KM ()6 (t — 7). S.11)

Within this GQME, the effect of the projected-out nuclear DOF on the dynamics of (¢) is fully
accounted for by two electronic superoperators:

* The projected Liouvillian,

(L)) = Tr, {pn(0)L} (S.12)
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which can be represented by a time-independent N? x N? matrix, and

* The memory kernel,
1 Ofu
KM(r) = ?Trn{ﬁe—@ "L (0) ), (8.13)

which can be represented by a time-dependent N? x N? matrix.

While calculating the matrix elements of (L) is straightforward, this is not the case for the
matrix elements of X™!(7). The memory kernel of the GQME cannot be obtained directly due
to its projected dynamics, seen in the presence of the projection operator Q in its exponential,
e QLTI [see Eq. (S.13)]. Significant effort over the last two decades has been directed at
developing, testing, and applying various computational schemes for calculating X™!(7). Those
schemes were all based on the fact that K™!(7) can be obtained from projection-free inputs
(PFIs) by solving integral Volterra equations, as was first shown in Refs. 8-11. The PFIs
can be calculated using either quantum-mechanically exact or approximate semiclassical and
mixed quantum-classical input methods.%236-24235 Additional studies advanced the understanding
of the pros and cons of different implementations and expanded the range of applications
of such GQMEs. 12723624255 Fyrther details on obtaining the M-GQME memory kernel from

projection-free inputs will be outlined in Sec. S.II.

S.I.2 Reduced-Dimensionality GQMEs

In this section, we explore an alternative approach for scaling up the GQME approach which
is based on utilizing the flexibility offered by the GQME formalism with respect to the choice of
projection operator. To this end, we use the fact that it is possible to derive a GQME for any subset
of electronic reduced density matrix elements of one’s choice. It should be noted that a similar
approach has been previously discussed in Refs. 26 and 19.

In this subsection, we consider the case where the electronic observables of interest correspond
to a subset of the electronic reduced density matrix elements, {0 (¢)}. The equation of motion for

{ou(t)} is obtained by using the following projection superoperator:

Pa= 3 PrA= 3 pa(0) @ kT { (k) Glela) A (S.14)

jk €{ab} jk €{ab}

For ease of the derivation later, we note that this projection operator when applied to the overall
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system density operator gives

Pelst) = Z Pn(0) @ |7) (k| Tr { (|k><]|®in>ﬁ(t)}

jk €{ab}
- % a0 ol {611 {1}k |
jk €{ab}

= 3 O ) E T Glawin

jk €{ab}

= D 20 @)kl o) (8.15)

jk €{ab}

For the derivation of the subset GQME, we first write Eq. (S.8) with 5" and split into terms:

d ) 1 t - "set
) = —%Psetwse‘ﬁ(t) 2 /0 drP*Le "ML p(t — 7)

(T) (5) 3) (S.16)
. %zpsetﬁe—igsetﬁt/h Qsetﬁ(()),
)

where Q' = 1 — P** is the complimentary projection operator to P (i.e., Q' projects-in what
Pt projects-out).

Plugging in the projection operator from Eq. (S.14) [always starting with the furthest right
projection operator and using Eq. (S.15): P*'j(t) = p,(0) ® |7)(k| o;k(t) ] and tracing over the

nuclear DOF, we get the following for each term:
(1)
d set A d ~ .
Ty ¢ ZPp(t) 0 = = Tra g D pul0) @ 1) (K| o (8)

jk €{ab}
o IR OBt

jk €{ab}

—| ST ) 5.17)
dt

jk €{ab}
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(2)
Tr, {—%Psetmsetﬁ(t)} - _% Tr, {PS“L’ 3" ul0) @ |1 (ml alm(t)}

Im €{ab}

-y Trn{|j><k|®ﬁn<o>Tr{(\k><j|®in)£ﬁn<o>u><m\}azm<t>}

jk €{ab} N
Im €{ab}

s

().

the Tr,, can pass over |j) (k| because it is purely electronic and

it can pass over <£(,‘k‘[,,b>2’ and oy, (t) because they are numbers

i , R 0
=1 > DT {50} (Linan) inl®)
jk €{ab} N— "

Im €{ab} 1

i . 0
== 2 1k (Lonim) oinl®)

i efab} "

Im €{ab}
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(3)
1 t > O)set
Tr, { . ﬁ/ dTpsetﬁe_ZQ ET/hgsetﬁ'Psetﬁ(t . 7_)}

0

t 1 : set
_ /0 dr s T, {Psetce—@ cringser N ﬁn(())@\l)(m\alm(t—ﬂ}

Im €{ab}

next, plugging in the furthest left projection operator

! 1 : .
_ / ar 32 o T 1) (kl2pa(0)
<TI0l ) £ @ QL 0) @ 1 ol v 7 }}
the Tr,, can pass over |j) (k| because it is purely electronic and
it can pass over the full trace because it is a number

= [ 3 e {ao)

0 jkefab} —_—
im €{ab} 1

1 ~ : set
. {(rk><j\®1n),ce—@ £ QL 5, (0) @ 1) ] ot — T>}

the oy,,,(t — 7) can be taken out of the full trace because it is a number

— —jkg{;b} |j><k|/0t dq—ﬁ% Tr {<|k) (j|®in> LemiQuLr/h gty (ﬁn(O) ® |l><m])} Opm(t —T)

JR,tm

J/

(S.19)
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@

Tr, { - %P“tceiQ*““/hQS“ﬁ<o)} =~ T, {Pmﬁei@&t“/ "1~ 7’“)/%0)}

distributing (1 — P*")5(0)

_ _% Tr, {fpsetce—igsﬂﬁt/ﬁ [[)(O) _ Z Pn(0) @ |1)(m] alm(O)] }

Im e{ab}

plugging in the furthest left projection operator

>, {|j><k|®ﬁn(0) Tr{(|k><j|®1n>£e—@w [ﬁ(O) AL |z><m|o—lm<o>]}}

jk €{ab} Im €{ab}
the Tr,, can pass over |j) (k| because it is purely electronic and

it can pass over the full trace because it is a number

Zu><k:|Trn{ﬁn<o>}Tr{(|k><j|®in) %Q‘“’Jt/h[A - aOel) m|alm<o>]}
N e’

jk €{ab} Im e€{ab}
1
. 7/ . ~ —q set A
= 2 | =5 {(|k><j\®1n) & /[ = 50 ® |1y ml alm<o>] H
jk €{ab} Im €{ab}
(@)
(5.20)
So this term goes to zero if p, (0 Z Pn(0) ® 03, (0)]1) (m]. This can often easily be true

Ime{ab}
if the system starts in one population, with the rest equal to zero, and this population is included

in the subset of states of interest. In other words, if p(0) = p,(0) ® |a){a| and aa € {ab}, then
(1) = 0,

Therefore, the overall GQME is given by

> Lk ng Z 19) (R I(L ), Tm (1)

jk €{ab} Jk €{ab}

Im e{ab

st} (S.21)
— S i / A7 K (D)ot — 1) + 3 ) (k] (1),
ljkif{al[))}}»} jk €{ab}
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Applying (j| from the left and |k) from the right leads to Eq. (6) in the manuscript:

d ?
dtajk<t) = _ﬁ Z <£jk,lm>20-lm<t)
Im €{ab}
(S.22)
- / AT K5 1 (T) o1 (t — 7) + I35(8),
Im €{ab}
where the memory kernel matrix elements are given by
1 Sl > —iQ%t LT set o A
Jham(T) = ﬁTr{<|k><J|®1n>£€ eLr/hgsetr b (0) © |l>(m|} (S.23)

and the inhomogeneous term vector elements are given by

fsz%t):—%Tr{(\mgl@in) Q/[ -2 mOel m!mm<0>]}- (5.24)

Im €{ab}

Given N, equal to the number of elements in {o,;(¢)}, the memory kernel and inhomogeneous
term in this case correspond to an Ny X Ny matrix and an Ny-dimensional vector, respectively.
If the initial state is of the commonly encountered factored form 5(0) = p,(0) ® |a)(B| and
aff € {ab}, then I**'(t) = 0.

S.II Projection-Free Inputs

The memory kernels and inhomogeneous terms of the M-GQME and reduced-dimensionality
GQMEs can be found via integral Volterra equations with PFIs.

For the M-GQME, a scheme for evaluating K™!(7) from projection-free inputs can be

developed by using the following general operator identity:*!°
e—iBT/h _ e—iAT/Tz . %/ dr'e —iA(T—7' /h(B ./4) —ZBT’/E. (525)
0

The proof of this identity can be shown by first starting with the differential equation

_ezAT/he—zBT/FL — iAez.AT/h e—zBT/h + ez.AT/FL . £B€—ZBT/FL pTOdLlCl rule
dr h h

= ﬁe“‘wh (A - B> e"B7/h A and ¢A"/" commute, then gathering terms
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Integrating both sides from O to ¢ leads to

t t .
/ dTieiAr/ﬁe—'LBT/h — / dr leiAT/FL <A o B) e—iBT/FL
o dr 0 h
evaluating the LHS and fliping th sign of the integral on the RHS
-t
AR —iBt/h | _ _ﬁ/ dr o AT/H (B _ A) o—iBr/h
h Jo
multiplying from the left with e~ HALR
on the LHS to the RHS

.
o~ iBt/h _ ,—iAt/h _ % / dr e AC=T)/h (B _ A) e~ iBT/h (S.26)
0

and moving the second term

This is equivalent to Eq. (S.25), proving the general operator identity.
Substituting A = £ and B = QL into Eq. (S.25), we obtain

e—iQﬁT/h _ e—iﬁ'r/h + % /T dT/G_Z[(T_T/)/hpﬁe_igﬁT,/h. (827)
0

Substituting Eq. (S.27) into Eq. (S.13) gives
1 - Of
le“H(T) — ?Trn{ﬁ eszf 115-,-/h qullﬁﬁna])}
1 )
_ ﬁTrn{‘C e_lcT/thUIlﬁﬁn(O)}
+ % /T dT/Trn{£ efil:(fff’)/hr])fullﬁefigf““ﬁﬂ/h qullﬁﬁn(o)}
0
plugging in Q™! = 1 — P™!in the first term and P™" into the second term
1 )
= Tr, {L e HET/R (1 — Pf““) Lpn(0) }
+ 7; / dT’Trn{E e (0) @ Ty, {ceiQf“““’/th““cﬁn<o)}}
0

distributing over the parentheses, plugging in P™" in the new second term and

splitting the nuclear traces in the integral term

_ i —iLT/h p A _1 1 LT /R A ~
= hZTrn{Ee Epn(O)} : hTrn{Ee Pn (O)}/Trn {ﬁpn(())}/
iF(r) F(7) (L)
! 1 —iL(T— T)/hA i —i QM LT/ Afull p A
wi [ o fee (0)} 52 T { e QL7 (0)}
]:(7- — T ) ’Cqu(T/)
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Therefore, the full memory kernel can be found by solving the following Volterra equation of the

second kind:

Kl(r) = Z]:(T) — %.F(T)<£>2 +1 /T dr' F(r — )K", (S.28)

0
where F(7) and F(7) are the PFIs given by

Flr) = %Trn{ce—i“/ "5al0) },

' ; ‘ (S.29)

F(r) = —ﬁTrn{Ee_ZﬁT/hﬁﬁn(O)}.

Thus, given the PFIs, Eq. (S.28) can be solved numerically for the projection-dependent K(7) (see

Appendix D of Ref. 6). Hence, the problem of calculating IC(7) translates into that of calculating
F(7) and F(1).

It should be noted that F(7) = ild(r), where U(7) is the time evolution operator of the

electronic reduced density operator,
5(r) = U(T)5(0) = Trn{e’i“/hﬁn(())}&(()) . (S.30)
Thus, Eq. (S.28) can be rewritten in the following form:

KM(r) = ~U(7) = ZUT)(L)) - / dr'(r — ) (7). (S.31)
0
This implies that the memory kernel of the M-GQME, K™!(7), can be obtained directly from the
time evolution operator of the reduced dynamics, (7). As shown in Ref. 5, when approximate
input methods are used, the PFIs F(7) and F(7) should be calculated explicitly in order to achieve
the accuracy benefit of the GQME. However, with an exact input method, the time evolution
operator of the reduced dynamics, U(7), can be used along with a numerical derivative method.
For the reduced-dimensionality GQMEs, the memory kernel {/*'(7)} can also be obtained
from PFIs by solving a set of N2

< coupled Volterra equations. We start with the explicit expression

for the memory kernel, Eq. (S.23):
1 I o set A . . .
Kot im () = ﬁTr{(U{:) (j\@ln) LeT1TET/hQsetr 5 (0)@11) (m| } We then substitute the identity

in Eq. (S.27) for e *<*'£7/" (the identity is valid for any projection superoperator Q). This yields
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the following expression for the matrix elements of /C5(7):
set 1 P | —iLT /R Ayset p o
() = 23 TS ()@ ) Lo QL0 (0) @ [1) (m
+ % /0 dr' Tr {(WU |®1n>£e‘w“‘”/ "PeLeT NN L ,(0) @ |l><m|}-

Plugging in Q**' = 1 — P*" into the first term splits it into two terms. Using P*' from Eq. (S.14)
in the term that involves P**' leads to Eq. (S.32):

Kitanlr) = 1 T { (101, ) £/ 0) & I ]
F i)
1 2 ] (vt e w0 o o b (0wt 20 @ )
uv €{ab} « ;N - .
]ku’U( 7) (Lowim)o
+ 1 Z /dT—Tr{|k: ]|®1> Llr=r/h (O)®]u><v|}

uv €{ab}

uv ,)
{ u|®1 —iQsam—//hQsetﬁ ﬁn(o) ® |l> <m|} ‘

Kfﬁ; lm( /)

Therefore, the Volterra equation for the subset memory kernel is given by

T
Soim(T) = i P (T Z Fitan(T) (Lo im)s + 7 Y / A7 Fijtun(T — T 1 (T7)

uv €{ab} uv €{ab} 0

(8.32)

Note that (L, k)2 = 0.
Since the PFIs can be written in terms of the time evolution operator U(7), this means that

Eq. (S.32) can be rewritten in terms of the time evolution operator for the reduced electronic density
operator:

;‘;ct,lm(T) = .]klm T F Z ujkuv Lo im)n Z / dr’ ulkuv - )quﬁ;tlm( )

uv e{ab} uv €{ab}

(S.33)
Next, we consider the explicit expression for the inhomogeneous term, Eq. (S.24). We

S14



substitute the identity in Eq. (S.27) for e*<*£7/% which yields:

I5(t) = _%Tr {<|k>(j|®in)£e‘i“/ﬁ [/3(0) =Y ) |l>(m|01m(0)}}

Im e{ab}

o / dr Tr{(\k><j|®in)£eWtﬂ/hp“tﬁe@“‘“/h 5(0) =Y ful0) @ 1) (] alm<o>]}.

Im e{ab}

Splitting the first term into two terms at the minus sign and plugging P*¢' from Eq. (S.14) into the
second term leads to Eq. (S.34)

) = -3 { (Wl ) e 50}

(.

= Zu(1)
i Y (R0l e 0,0 0 i} o)
lme{ab} ~
ki (1)
T —Tr Le = TW“ U
Z{}/ ar {(\kwr@l) 0 9 |}
- jk7uv(t_7)
<[ —p (W) e 50 - 5 500 B EHowo)] |
. Im e{ab} )
I3(7)
i) = Zp(t) +i Y Fikam(t)om(0)+ i Y / A7 Fipu(t — T) (7). (S.34)
Im e{ab} uv €{ab}
Here, {Z;x(t)} is given by
Zi(t) = —%Tr {<|k><j|®in)ceiﬁt/hp(O)}. (S.35)

If the overall initial state is of the commonly encountered form 5(0) = $,,(0) @ |a){«|, then Zj;(t)
is equivalent to —iFjj oo (t) = Z}{jhaa(zﬁ).
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S.III Equivalence between the TFD Schrodinger equation and

the quantun Liouville equation

In this section, we show that when the thermal wavepacket |1, (3, t)) is defined such that
() = Tey{ [0,(8. )0 (5, 1)I . (5.36)
and evolves according to the so-called TFD Schrdédinger equation:
d i -

where H = H ® 1,, then p(t) correctly evolves according to the quantum Liouville equation.
To see this, take the time derivative on both sides of Eq. (S.36), we obtain:

d d d
SBE) = Teg (1 (B, 0D 1y (B, )+, (8, 1)) 2 (0 (B, ) (5.38)
Plugging Eq. (S.37) into the right hand side of Eq. (S.38), we obtain:
d . —_—
() = Trg [ (H @ L) |t (8, ) (0 (8. )1+ (B,) (0, (B0 - (H @ 1)) (85:39)

Pulling H out of the partial trace with Tr;[(H ® 1,)B] = HTr[B] for any double space
operator B,

l ?

(0) =~ ETegl1, (5,0 (0 8, O] + Tl (5, )0 (8, O]

A h (S.40)
[H, p(t)],

1

h

which is the quantum Liouville equation.

S.IV Linear Combinations for Off-Diagonal Initial States of
U(t)

The TT-TFD method requires the initial electronic state to be in a pure state, e.g., |v)(7/|.
However, in order to obtain the time evolution operator of the electronic reduced density matrix,
U(t), necessary for obtaining the PFIs, we need to start in off-diagonal initial states, e.g., 6(0) =
|u)(v| when u # v. This problem can be bypassed by starting in a set of pure states and using
linear combinations to calculate the off-diagonal initial states. The choice of the set of initial states
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is not unique but a relatively unbiased choice is

A

Koo = 5 [Ju e ol ol +Ho) o]
) N (S.41)
Vo = 5 [Fudul+o) ol =dlu) (vl +ilo) ul

This choice is also used in Ref. 6 for PFIs obtained from the Ehrenfest method.
In practice, one starts with X,,, and Y,,, instead of |u)(v| and |v)(u| as initial electronic states,
to obtain the TT-TFD calculations of

<¢9,jj)”(w(t)We,ijw(t» ) <¢0,jjf/uv(t)‘we,jkf/w(t»' (5.42)

The corresponding results for |u)(v| and |v) (u| as the initial electronic states can then be expressed

as linear combinations of the results in Eq. (S.42). More specifically,

ujk,uv(ﬂ = <w9,jjf(uv (t)h/’e,jkf(w( )> +1 <¢9 gij( )Wa,jkffw (t»
1 (5.43)
— S+ 0) [ Woggua®) Wogiun (8)) = (g5 o (D)]
ujk,vu(t) = <¢9,jj)2’w, (t)|¢9,jkf(w( )> W{% ija“,< )W@,jkffw (t)>
(S.44)

= 50 = ) [0 ) (1)) — (g0 1) g 1))
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S.V  Graphs of the Projection-Free Inputs

Given in this section are the graphs of the imaginary part of F(7) and the real and imaginary
parts of F(7) for models 1, 2, 3, and 6. The real part of F(7) is not show because it is zero for all
models for both TT-TFD and LSC.

TT-TFD vs. LSCII for the Imag Part of 7 ; ;,(r) for Model 1
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Figure S1: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7)
for model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of 7 ;.(7) for Model 1
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Figure S2: Real parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7) for

model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of 7, ;.(7) for Model 1
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Figure S3: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7)
for model 1, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of F;; ;;(7) for Model 2
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Figure S4: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7)
for model 2, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of 7 ;.(7) for Model 2
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Figure S5: Real parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7) for

model 2, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of 7, ;.(7) for Model 2
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Figure S6: Imaginary parts of the DD DD, DDAA, AADD and AAAA matrix elements of F(7)
for model 2, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of 7, ;.(7) for Model 3
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Figure S7: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of F(7)
for model 3, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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Figure S8: Real parts of the DDDD, DDAA, AADD and AAAA matrix elements of F (1) for

model 3, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).



TT-TFD vs. LSCII for the Imag Part of 7;; ;.(7) for Model 3
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Figure S9: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of F (1)
for model 3, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of 7; ;,.(7) for Model 6
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Figure S10: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of
F(7) for model 6, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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TT-TFD vs. LSCII for the Imag Part of 7, () for Model 6
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Figure S12: Imaginary parts of the DDDD, DDAA, AADD and AAAA matrix elements of
F(7) for model 6, as obtained via TT-TFD (solid blue lines) and LSCII (dashed red lines).
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S.VI Graphs of the Memory Kernels

Given in this section are the graphs of the real and imaginary parts of the memory kernels for

models 1, 2, 3, and 6.
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Figure S13: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [K™!(7)] for model 1 as obtained from TT-TFD-based PFIs (solid blue

TT-TFD vs. LSCII for the Real Part of the Full Memory Kernels for Model 1

— TT-TFD -=-- LSCII

0.00100 0.0001 0.0008
\/\—’——- < 0.00075 [ s e o a o.oooo\/_ml_’\-  0.0006
g 0.00050 E —0.0001} J < 0.0004
Q0.00025 Q -0.0002} 4 Q0.0002
e o e e e = 0.00000 ) ;R ~0.0003}/ 0.0000
0.24 0.025 0.06
<018 a o.oooW/\/\ < 0.04
Qo.12 :tc —0.025}+* g :f: 0.02
Q0.06 Q -0.050 Q 0.00
0.00 X _0.075 R -0.02
0.025 0.24 0.06
< 0.000 \/\-x\/-\/\ 0.18 <~ 004
g—o.ozs v 1 <0.12 E 0.02
<t -0.050 < 0.06} < 0.00
X _0.075 0.00} R —-0.02
0.00025 0.0004 0.0002
P o.oo000y | o 0.0003\ _ 1 < o000
Q -0.00025 < 0.0002} 1 < -0.0002

< < <
< —0.00050 < 0.0001} 4 <X -0.0004
/\_/—_—- = -0.00075{ __ . . = o.oooo/\w_‘/- = —0.0006
0 15 30 45 60 000G T5 3525 60 T%09% G5 15 30 45 60 0009

I'r

I'r

lines) and LSCII-based PFIs (dashed red lines).

S30

I'r

how T - o—cm—

o~
o

/\/—~__—

—— =
.0 1.5 3.0 45 6.0

I'r




TT-TFD vs. LSCIl for the Imag Part of the Full Memory Kernels for Model 1
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Figure S14: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [KX™!(7)] for model 1 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of the
Reduced-Dimensionality Memory Kernels for Model 1
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Figure S15: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 1 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA,AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [IC%)E)O,FDD@')
and IC?XX‘Z;‘Z(T)], which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFlIs.
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TT-TFD vs. LSCII for the Imag Part of the
Reduced-Dimensionality Memory Kernels for Model 1
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Figure S16:  The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 1 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA,AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [K%’Eﬁr[)D(T)
and Kfj‘ﬁj(ﬂ], which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFlIs.
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TT-TFD vs. LSCII for the Real Part of the Full Memory Kernels for Model 2
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Figure S17: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [JC™!(7)] for model 2 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCIl for the Imag Part of the Full Memory Kernels for Model 2
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Figure S18: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [X™!(7)] for model 2 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of the
Reduced-Dimensionality Memory Kernels for Model 2
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Figure S19: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 2 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KP°P(7)], which has four elements
(DDDD,DDAA, AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [KEK",,(T)
and Kfﬁﬁﬁj(ﬂ], which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFlIs.
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TT-TFD vs. LSCII for the Imag Part of the
Reduced-Dimensionality Memory Kernels for Model 2
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Figure S20:  The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 2 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA,AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [K%’Eﬁr[)D(T)
and IC?X;‘Z;CX(T)], which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFlIs.
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TT-TFD vs. LSCII for the Real Part of the Full Memory Kernels for Model 3
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Figure S21: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [ICf““(T)] for model 3 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCIl for the Imag Part of the Full Memory Kernels for Model 3
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Figure S22: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [KX™!(7)] for model 3 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of the
Reduced-Dimensionality Memory Kernels for Model 3
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Figure S23: The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 3 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA, AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [K%’Eﬁr[)D(T)
and IC?:X‘Z;X(T)], which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSClII-based PFlIs.
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TT-TFD vs. LSCII for the Imag Part of the
Reduced-Dimensionality Memory Kernels for Model 3
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Figure S24:  The imaginary parts of the matrix elements of the memory kernels for the

populations-only and single-population GQMEs for model 3 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA,AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and
(3) The single-element memory kernels of the scalar single-population GQMEs [IC%’,‘}{BD(T)
and K%5P0 (7)1, which are depicted in the DDDD and AAAA panels, respectively, with solid
green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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TT-TFD vs. LSCII for the Real Part of the Full Memory Kernels for Model 6
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Figure S25: Real parts of the matrix elements of the memory kernel of the GQME for the full
electronic density matrix [C™!(7)] for model 6 as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCIl for the Imag Part of the Full Memory Kernels for Model 6
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Figure S26: Imaginary parts of the matrix elements of the memory kernel of the GQME for the
full electronic density matrix [KX™!(7)] for model 6 as obtained from TT-TFD-based PFIs (solid
blue lines) and LSCII-based PFIs (dashed red lines).
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TT-TFD vs. LSCII for the Real Part of the
Reduced-Dimensionality Memory Kernels for Model 6
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Figure S27:

The real parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 6 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA, AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and

(3) The single-element memory kernels of the scalar single-population GQMEs [K%’Eﬁr[)D(T)
and K537\ (7)1, which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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TT-TFD vs. LSCII for the Imag Part of the
Reduced-Dimensionality Memory Kernels for Model 6
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Figure S28:

The imaginary parts of the matrix elements of the memory kernels for the
populations-only and single-population GQMEs for model 6 as obtained from TT-TFD-based
PFIs and LSCII-based PFIs. Shown are the matrix elements of three different memory kernels:
(1) The memory kernel of the populations-only GQME [KPP(7)], which has four elements
(DDDD,DDAA,AADD, AAAA) and is depicted with solid cyan lines for the results from
TT-TFD-based PFIs and dashed magenta lines for the results from LSCII-based PFIs; (2) and

(3) The single-element memory kernels of the scalar single-population GQMEs [K%’Eﬁr[)D(T)
and IC?XX‘Z&(T)], which are depicted in the DDDD and AAAA panels, respectively, with solid

green lines for the results from TT-TFD-based PFIs and dashed yellow lines for the results from
LSCII-based PFIs.
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S.VII Graphs of the Inhomogeneous Terms of All of the
Models

Given in this section are the graphs of the real part of the inhomogeneous terms for models 1,
2, 3, and 6. The imaginary part is not shown, as it is zero for all models for both inhomogeneous
terms calculated via TT-TFD and LSCII.
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Figure S29: Real part of I 4(7) for model 1, as obtained from TT-TFD-based PFIs (solid blue
lines) and LSCII-based PFIs (dashed red lines).
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