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ABSTRACT: A rigorous method for simulations of quantum dynamics is introduced
on the basis of concatenation of semiclassical thawed Gaussian propagation steps. The
time-evolving state is represented as a linear superposition of closely overlapping
Gaussians that evolve in time according to their characteristic equations of motion,
integrated by fourth-order Runge−Kutta or velocity Verlet. The expansion coefficients
of the initial superposition are updated after each semiclassical propagation period by
implementing the Husimi Transform analytically in the basis of closely overlapping
Gaussians. An advantage of the resulting time-sliced thawed Gaussian (TSTG) method
is that it allows for full-quantum dynamics propagation without any kind of
multidimensional integral calculation, or inversion of overlap matrices. The accuracy of
the TSTG method is demonstrated as applied to simulations of quantum tunneling,
showing quantitative agreement with benchmark calculations based on the split-
operator Fourier transform method.

■ INTRODUCTION
An outstanding challenge in chemical dynamics is the
development of rigorous methods for simulations of quantum
dynamics in complex molecular systems, including accurate
descriptions of tunneling and coherences.1 The main difficulty
is the efficient integration of the time-dependent Schrödinger
equation (TDSE). For systems with a few degrees of freedom,
numerically exact methods are available, including the split-
operator Fourier transform (SOFT)2−4 and a variety of other
wavepacket propagation methods5−8 which have been applied
for studies of collision processes9−11 and femtosecond laser-
induced processes.12 However, the study of systems with more
than six degrees of freedom (DOF) typically requires problem-
specific Hamiltonians that partition DOFs into weakly
correlated components. In particular, pseudoharmonic poten-
tials (e.g., reaction surface Hamiltonians) with a few large-
amplitude DOFs weakly coupled to a bath of harmonic
oscillators, enable simulations based on MP/SOFT,13−15 or the
multiconfigurational time-dependent Hartree methods
(MCTDH)1,16,17 and its multilayer variant18 that treats
correlations between tens19−22 or hundreds of DOFs23,24 by
employing multiple configurations.
Approximate semiclassical methods have been developed to

include quantum effects in simulations of dynamics of systems
with many degrees of freedom.25 One of the these approaches
is the so-called thawed Gaussian propagation scheme also called
the Gaussian beam method,26−34 based on Gaussians that evolve
according to semiclassical equations of motion.35−37 A recent
application of that methodology is the study of ultrashort
electron dynamics in plasmas.38 Several quantum propagation
methods have been developed inspired by the thawed Gaussian
wavepacket propagation scheme, including the multiple
spawning approach,39−42 the coupled coherent states meth-
od,43−45 and the multiconfigurational Ehrenfest method,46,47

recently combined with the spawning approach to form the
multiple cloning method.48

Quantum propagation methods that exploit re-expansion of
the time-dependent state into Gaussian representations have
been developed in conjunction with semiclassical49 and split-
operator13−15,50,51 propagators, where the stability of the
resulting propagation can be enhanced by removal of linearly
dependent Gaussian components.52 Re-expansion has also been
exploited by the basis expansion leaping algorithm,53 and the
Gaussian MCTDH method54 aimed at system-bath prob-
lems.55,56 Its multilayer variant57 established equations of
motion for Gaussian basis functions in the MCTDH formalism,
related to the local coherent state approximation approach.58

Elimination of grid-based functions from G-MCTDH has led to
the variational multiconfiguration Gaussian wavepacket
(vMCG) method.59−64

In this paper, we introduce a rigorous method for the
simulation of quantum dynamics based on concatenation of
semiclassical thawed Gaussian propagation steps. The time-
evolving state is represented as a linear superposition of
overlapping Gaussians that evolve in time along characteristic
curves integrated by fourth-order Runge−Kutta or velocity
Verlet. The expansion coefficients of the initial superposition
are updated analytically after each semiclassical propagation
period by implementing the Husimi transform in the basis of
closely overlapping Gaussians.
An advantage of the resulting time-sliced thawed Gaussian

(TSTG) method is that it allows for full-quantum dynamics
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propagation for arbitrary potential energy surfaces and avoids
the need of calculating numerical multidimensional integrals,
inversion of overlap matrices, or Fourier transform calculations.
The method can be trivially parallelized with efficient matrix
multiplication algorithms and is shown to yield accurate
simulations of quantum tunneling in model systems that
allow for direct comparisons to benchmark SOFT calculations.
A drawback of the method when implemented with over-
complete basis sets arranged on equally spaced grids of basis
Gaussians is the exponential scaling with dimensionality.
However, implementations based on time-adaptive subsets of
basis functions can reduce the computational effort necessary
for propagation of states that remain sufficiently localized in
phase space.
The paper is organized as follows. First, we introduce the

derivation of the Husimi transform expansion for representa-
tion of the time-dependent wave function as well as the
equations of motion for the basis Gaussians and reinitialization
procedure of the TSTG method. Then, we illustrate the
application of the TSTG propagation as applied to the
description of tunneling dynamics including a 2-dimensional
model system with strongly correlated DOF that allow for
direct comparisons with benchmark calculations.

■ METHODS
Husimi Transform Expansion. We introduce the TSTG

method as applied to the propagation of an initial state,

π αΨ = α ι− − − + −x( ) e x x p x x1/4 1/4 /2( ) ( )0
2

0 0 (1)

describing a 1-dimensional system, initially placed at x0 with
momentum p0. The Fourier transform Ψ̂ can be represented
according to the Fast Gaussian Wavepacket Transform
approach,65,66 as follows:
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We note that pj defines the center of Gaussian ϕ̂j,k(p), in
momentum space, whereas xk corresponds to the center of the
inverse Fourier transform basis functions,
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that represent Ψ(x) in the space of coordinates x,
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as obtained by the inverse Fourier transform of both sides of eq
2.
According to eq 10, the expansion coefficient can also be

obtained as follows:

∫ ψ= * Ψc x x xd ( ) ( )i k i k, , (11)
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Appendix A shows that any target state Ψ̂ can be represented
exactly, according to eq 2, as a linear superposition of Gaussians
ϕ̂j,k(p) defined by eq 3, with expansion coefficients cj,k defined
by eq 5. For simplicity, the basis Gaussians are equally spaced
with Δx = (xk − xk−1) and Δp = (pi − pi−1), although
nonuniform phase-space distributions of basis functions are also
possible.

Figure 1.Weighting function S(p) =∑gi
2(p) (black) as a function of p, obtained with Gaussian basis elements gi (blue) spaced by Δp = σ (left), and

Δp = σ/2 (right). We note that S(p) changes by about ±1% (left) whereas it only varies by 5 × 10−7% (right) as a function of p within the support
range of any basis function gi.
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To obtain the Husimi transform expansion, we depart from
the original implementation of the fast Gaussian wavepacket
transform based on Δp = σ,65 because such a spacing makes
S(p) = ∑gi

2(p) a complicated function of p (Figure 1a).
Calculations of ci,k based on eq 5 thus require numerical
integration, making the fast Gaussian wavepacket transform
expansion numerically impractical for high dimensional
problems. Instead, we construct a basis set with Δp = σ/2
that makes S = ∑gi

2(p) approximately constant (i.e.,
independent of p) within the support of any basis function gi
(Figure 1b).
In our representation with Δp = σ/2,

ψ
π

̂ = Δ σ ι− − −p
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where S is constant, allowing for analytic calculations of cj,k,
according to eq 11, when Ψ is defined according to eq 1.
Evaluation of those Husimi transform Gaussian integrals, after
substitution of eq 13 or 14 into eq 11, gives
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We refer to the resulting Gaussian representation, introduced
by eq 10 with cj,k defined by eq 15, as the Huisimi transform
expansion of the TSTG propagation scheme.
TSTG Equations of Motion. Ψ(x) is expanded according

to eq 10 and it is evolved in time by moving the basis functions,
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according to the thawed Gaussian equations of motion
(Appendix B),26,30,34,67,68
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which can be accurately integrated by fourth-order Runge−
Kutta, or velocity Verlet algorithms.
The evolution of the basis set parameters, according to eq 17,

ensures that ϕi,k(x) evolves according to the TDSE so long as
V(x) is harmonic within the support of ϕi,k(x,t) (Appendix B).
Such a propagation scheme, known as the thawed Gaussian (or
Gaussian beam) method,26,30,34,67,68 is usually accurate only for
a short propagation period τ. Beyond that time, ϕi,k(x,t)
typically gets wider and eq 17 no longer reproduce the TDSE

because V(x) can no longer be approximated as harmonic
throughout the whole support of ϕi,k(x,t).
To bypass the limitations of the thawed Gaussian method

and perform accurate long-time simulations, we interrupt the
semiclassical propagation after a short time τ, as proposed
before,49,65 and we reinitialize the state by re-expanding the
time-evolved basis functions ϕi,k(x,τ) in terms of the original
functions ϕi,k(x,0), using the Husimi transform:
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with γτ = Pτ
j,k/Qτ

j,k and γ = σ2/2. According to eq 19, the time-
evolved wave function is represented in the original basis set, as
follows:

∑ ∑

∑

τ τ ϕ

τ ϕ

Ψ = ̃

=

′ ′
′ ′ ′ ′

′ ′
′ ′ ′ ′

x c c x

c x

( , ) ( ( ) ( ))

( ) ( )

j k
j k

j k
j k
j k

j k

j k
j k j k

,
,

,
,
,

,

,
, ,

(20)

where
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The re-expansion after semiclassical propagation completes a
TSTG propagation step for time τ, which is then repeated N
times to evolve the system for time t = N × τ. As presented in
this section, it is clear that the resulting propagation scheme
avoids the need of computing any kind of multidimensional
integrals, inversion of overlap matrices, or numerical Fourier
transform. Computations can be trivially parallelized with
efficient matrix multiplication algorithms.

Multidimensional Systems. We implement the TSTG
method for multidimensional systems, with n coupled DOFs,
assuming that the initial state is a Gaussian,

Ψ = ι γ− · · − + · − +x( ) e x x A x x p x x[( ) ( ) ( ) ]0 0 0 0 0 0 (22)

where x, x0, and p0 are real n-dimensional vectors, and A0 is an n
× n complex symmetric matrix. γ0 is a complex number that
includes the phase and normalization variables. More general
initial states can be defined as linear combinations of Gaussians.
To solve the TDSE, we expand the initial state as a linear

superposition of products of one-dimensional Gaussians,

∑ ϕΨ = cx x( ) ( )
i k

i k i k
,

, ,
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with
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d
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1
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where i = (i1, ..., in) and k = (k1, ..., kn) are n-dimensional indices
that enumerate the basis functions ϕid,kd(xd). Using a Gaussian
basis lends itself naturally to on-the-fly computions, using
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quantum chemistry algorithms that include the analytical
Hessians.
The expansion coefficients ci,k are defined, according to eq

11, as follows:

∫ ∏ ψ= ··· * Ψ
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c x x x x xd d ( ) ( ,..., )n
d
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i k d ni k, 1
1

, 1d d (25)

where the weighted basis functions ψid,kd(xd) are defined,
according to eq 14, as follows:
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Expansion Coefficients. We note that the n-dimensional

integral, introduced by eq 25, is not factorable when A0 has off-

diagonal elements different from zero. To integrate eq 25

analytically, we implement a coordinate transformation, as

described below. First, we substitute Ψ and ψid,kd(xd) as defined

by eqs 23 and 26, respectively, and we group terms of the same

order of x, as follows:
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A0′ is a complex symmetric matrix that can be diagonalized by
using an orthogonal coordinate transformation defined by the
unitary matrix U, described in Appendix C. Therefore,
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where we have introduced the substitutions ξ ξ
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Propagation. The basis functions are initialized as follows
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and propagated by integration of the following equations of

motion:69
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where Vk is the potential, Vk′ the gradient of the potential, and
Vk″ the n × n matrix of second derivatives of the potential

evaluated at x = xk.
The integration of the equations of motion, introduced by eq

32, is performed by using velocity Verlet, or fourth-order

Runge−Kutta algorithms. The evolution is interrupted after a

short time τ and the time-evolved basis functions are re-

expanded in the original basis, as follows:
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j,k (τ) are defined analogously to eq 29, allowing for re-

expansion of the time-evolved wavepacket, as follows:
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which completes the propagation for a time slice τ. The
procedure is then repeated N times until reaching the final
propagation time t = N × τ.
To parallelize the program, we distribute the propagation and

re-expansion of basis functions equally among processors. To
reduce the computational cost, only basis functions with
coefficients above a certain threshold are to be propagated and
re-expanded. Re-expansion can be greatly accelerated by
evaluating only Husimi transforms with basis functions within
a limited range in phase space.

■ RESULTS
One Dimensional Double-Well Potential. We consider

modeling tunneling in a 1-dimensional double-well potential
that allows for direct comparisons with benchmark calculations
based on the split operator Fourier transform (SOFT) method.
The double-well model system is described by the

Hamiltonian

= +H
p
m

V
2

(35)

with

η
= −V x

x x
( )

16 2

4 2

(36)

which is expresed in atomic units, with ℏ = 1, m = 1, and η =
1.3544. Though simple, this 1-dimensional model has been
shown to defeat the capabilities of rigorous semiclassical
methods such as the Herman−Kluk semiclassical initial value
representation.49

The initial wave function is defined, as follows:

πΨ = η− − +x( ,0) e x1/4 (1/2)( 2 )2

(37)

corresponding to an electron with energy E = −1.576 au, far
below the double-well energy barrier at E = 0 au.
SOFT simulations are implemented with a 256 point grid in

the range x ∈ (−8, +8). Husimi transform expansions for

Figure 2. Comparison of |C(t)| (a) and Re[C(t)] (b) calculated by the weighted Gaussian method (black) and the reference SOFT method (blue).
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TSTG propagation are based on 64 values of xk in the range
(−8, +8) and 32 values of pi spanning over the range (−8π,
+8π). The integration time increment dt = 0.02 au is used for
both SOFT and velocity Verlet propagation. Re-expansion is
performed at time increments τ = 5 × dt.
Figure 2 compares SOFT and TSTG results for the survival

amplitude,

∫= Ψ* − ΨC t x x x t( ) d ( ,0) ( , )
(38)

computed as the overlap between the time-dependent wave
function Ψ(x,t) and the mirror image of the initial state on the
opposite side of the double-well, Ψ(−x,0).
The comparison of Figure 2 shows that both the tunneling

amplitude and period are accurately reproduced by the TSTG
method, as compared to benchmark SOFT calculations.
Tunneling in a Two-Dimensional Double-Well. To

illustrate the capabilities of the TSTG method as applied to the
description of tunneling in a multidimensional potential energy
surface that allows for comparisons with benchmark SOFT
calculations, we consider the following model potential:

η
= − + +V x x

x x x x x
( , )

16 2 2 21 2
1

4
1

2
2

2
1 2

(39)

describing two strongly correlated DOF. Figure 3 shows
contour lines of V(x1,x2), as well as contour lines for the time-
dependent probability density described by the SOFT and
TSTG methods.
The initial wave function was defined as follows:

π
Ψ = η− + +x( ,0)

1
e x x(1/2)( 2 ) (1/2)1

2
2

2

(40)

centered at (−2 η , 0), which corresponds to the system in one
of the double-well minima and displaced relative to the
minimum along the other coordinate.
SOFT calculations were based on a 64 × 64 grid

representation with x1∈ (−8, +8), x2 ∈ (−8, +8), whereas
the TSTG simulations were based on 48 × 48 weighted
Gaussians in the same range of coordinates, and 24 × 24 basis
functions in momentum space. The time step propagation
increment dt = 0.02 au and re-expansion period τ = 0.1 were
chosen as for the 1-dimensional simulations.
Figure 4 compares the time-dependent tunneling probability

calculated by SOFT and TSTG by integrating the probability
density for x1 < 0. The results show excellent quantitative
agreement even for simulations of tunneling dynamics with
strongly correlated reaction coordinates.

Figure 3. Comparison of 2D simulations in a quartic double-well potential (top left, and gray background, black contours). Quantum density
determined with SOFT (blue contours) and TSTG (white contours) show good agreement in the description of tunneling dynamics.
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■ CONCLUSIONS
We have introduced the TSTG propagation method for
accurate simulations of quantum dynamics. The method is
essentially a time-sliced implementation of the semiclassical
thawed Gaussian propagation scheme, with analytic concate-
nation of short-time propagation periods based on the Husimi
transform, implemented in the limit of highly overlapping
Gaussians. An advantage of the TSTG method is that it allows
for full-quantum dynamics propagation without having to
compute numerically any kind of multidimensional integral,
inversion of overlap matrices, or numerical Fourier transforms.
The efficiency of the propagation can be optimized by keeping
only the Gaussians with significant contributions to the
expansion and a linked list of neighboring Gaussians with
significant overlap that is updated after each propagation step.
When the state remains localized, such an approach can avoid
the “curse of dimensionality”, even when the Gaussians are kept
equally spaced in phase-space. As implemented, we have
demonstrated the accuracy of the TSTG method, showing
quantitative agreement with full quantum mechanical SOFT
simulations in the description of tunneling dynamics even in a
two-dimensional model system with strongly correlated
coordinates.

■ APPENDICES

A. Gaussian Expansion
We show that any function Ψ̂(p) can be expanded according to
eq 2, as follows:

∫

∑

∑ δ

Ψ̂ =
∑

Ψ̂

= ′ ′−
′

∑ ′
Ψ̂ ′

p g p
g p

g p
p

g p p p p
g p

g p
p

( ) ( )
( )

( )
( )

( ) d ( )
( )

( )
( )

i
i

i

j j

i
i

i

j j

2

2
(41)

We note that eq 41 is completely general. It is valid not only
for functions gi(p) defined as Gaussians according to eq 4 but
also for any other type of basis functions. Furthermore, the sum
∑i could include any arbitrary set of functions gi(p) that might
be uniformly (or nonuniformly) distributed.
Substituting the delta function by its discrete Fourier

expansion into eq 41, we obtain

∫

∫
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(42)

where ci,k and ϕ̂i,k(p) can be readily identified as follows:

∫ π
= Δ ′

∑ ′
Ψ̂ ′ ′

ι ′

c
x g p

g p
p p

2

( )e

( )
( ) di k

i
p x

j j
, 2

k

(43)

and

ϕ
π

̂ = Δ ι−p
x

g p( )
2

( )ei k i
px

,
k

(44)

which completes the demonstration.
B. Semiclassical Equations of Motion. This section

describes the integration of the time-dependent Schrödinger
equation,

ϕ ϕ ϕ= ℏ ∂
∂

+ ℏ ∂
∂

− =G x
t m x

V x t( ) i
2

( , ) 0
2 2

2 (45)

according to the thawed Gaussian method,26,30,67,68 based on
the Gaussian-beam ansatz,

ϕ π= ℏ γ ι− − − − − ℏ + ℏ − + ℏx t Q( , ) e x q p x q S1/4 1/4 1/2 ( ) /(2 ) i/ ( ) /2

(46)

with γ = PQ−1.
We look for the equations of motion of the parameters that

define ϕ(x) and ensure that G(x) vanishes to second order near
the center of the Gaussian x = q. A Taylor expansion gives

= + ′ − + ″ − +G x G q G q x q G q x q( ) ( ) ( )( )
1
2

( )( ) ...2

(47)

and making G(q) = G′(q) = G″(q) = 0, we obtain a solution to

third-order accuracy (i.e., = | − |G x q( )3 ).
Considering that

ϕ

ϕ

ℏ ∂
∂

= − ̇ − ℏ ̇
− ̇ − ̇ −

+ − ̇ − ̇ − + ̇
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⎛
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i
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(48)

and

ϕ ϕℏ ∂
∂

= ℏ − − ℏ +
ℏ

− ℏ− −
⎛
⎝⎜
⎡
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2 2

2
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2
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(49)

we obtain

Figure 4. Plot of the tunneling population over time in two-
dimensional double well simulations computed with SOFT (light
blue) and TSTG (black).
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Therefore,

ϕ
ϕ

ϕ
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and

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ

ϕ
ϕ
ϕ

ϕ

ϕ

″ = ″ + ′ ′ − ′

+ ′ − ′ ′ + − ̇ − ̇

+ − ″

− −

−

⎡
⎣⎢

⎤
⎦⎥

G x G x G x G x

G x G x PQ PQ Q

m
PQ V x

( ) ( ) ( ) ( )

( )
1

( ) ( i( )

1
[ ] ( ))

2

2

2
1 2

1 2
(52)

Making G(q) = G′(q) = 0, we obtain

ϕ′ = ̇ − ̇ − − ′ =− −⎜ ⎟⎛
⎝

⎞
⎠G q PQ q p

p
m

PQ V q q( ) i i ( ) ( ) 01 1

(53)

This equation must be satisfied even when γ = PQ−1 is real.
Therefore, because the real and imaginary parts of the bracket
must be zero,

̇ =

̇ = − ′

q
p
m

p V q( ) (54)

In addition,
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which must hold true even when γ = PQ−1 is imaginary.
Therefore,

̇ = ̇ − +
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Finally,
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1
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(57)

which is verified when

̇ = ″P V q Qi ( ) (58)

C. Coordinate Transformation for Multi-Dimension
Systems. This section describes an algorithm for diagonalizing
a complex symmetric n × n matrix A with real and imaginary

parts A1 and A2, respectively, so that A = A1 + ιA2. Because A is
symmetric, both A1 and A2 are real symmetric matrices which
can be diagonalized by a unitary matrix. Accordingly, we note
that

=
−

⎛
⎝⎜

⎞
⎠⎟R

A A

A A
1 2

2 1 (59)

is a real symmetric matrix. Denote one of its eigenvectors as
(uv)T where both u and v are vectors of length n. And |(uv)T| =
1. Thus,
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It can be shown that U = u + ιv is an eigenvector of A because
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We note that (v − u) is also an eigenvector of R with
eigenvalue −ϵ. Therefore, the eigenvalues of R appear in pairs
and the eigenvectors with positive eigenvalues form one
orthonormal basis set for A whereas the negative form the
other. The former is used for diagonalization. Applying U to the
original coordinates, we get
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Burghardt, I. Using the MCTDH Wavepacket Propagation Method to
Describe Multimode Non-Adiabatic Dynamics. Int. Rev. Phys. Chem.
2008, 27, 569−606.
(23) Kondov, I.; Thoss, M.; Wang, H. Quantum Dynamics of
Photoinduced Electron Transfer Reactions in Dye-Semiconductor
Systems: Description and Application to Coumarin 343-TiO2. J. Phys.
Chem. C 2007, 111, 11970−11981.
(24) Craig, I. R.; Wang, H.; Thoss, M. Proton Transfer Reactions in
Model Condensed-Phase Environments: Accurate Quantum Dynam-

ics Using the Multilayer Multiconfiguration Time-Dependent Hartree
Approach. J. Chem. Phys. 2007, 127, 144503.
(25) Miller, W. H. Semiclassical Methods in Chemical Physics.
Science 1986, 233, 171−177.
(26) Heller, E. J. Time-Dependent Approach to Semiclassical
Dynamics. J. Chem. Phys. 1975, 62, 1544−1555.
(27) Heller, E. J. Classical Matrix Limit of Wave Packet Dynamics. J.
Chem. Phys. 1976, 65, 4979−4989.
(28) Heller, E. J. Frozen Gaussians: A Very Simple Semiclassical
Approximation. J. Chem. Phys. 1981, 75, 2923−2931.
(29) Huber, D.; Heller, E. J. Generalized Gaussian Wave Packet
Dynamics. J. Chem. Phys. 1987, 87, 5302.
(30) Coalson, R. D.; Karplus, M. Multidimensional Variational
Gaussian Wave Packet Dynamics with Application to Photo-
dissociation Spectroscopy. J. Chem. Phys. 1990, 93, 3919−3930.
(31) Heller, E. J. Cellular Dynamics: A New Semiclassical Approach
to Time-Dependent Quantum Mechanics. J. Chem. Phys. 1991, 94,
2723.
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