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Real time path integrals using the Herman—Kluk propagator
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It is shown that the accuracy of quantum dynamics calculations obtained according to the Herman—
Kluk (HK) semiclassical initial value representati@C-IVR) is significantly improved when the

time evolution operator is computed by concatenating finite time propagators. This approach results
in an approximate calculation of a real-time path-integral in a discrete coherent-state representation,
which becomes exact in the limit of sufficiently short time-slice intervals. The efficiency of the
computational method is optimized by devising a compact coherent-state basis set that obviates the
need for calculating the inverse overlap matrix. Quantitative agreement with full quantum
mechanical results is verified in the description of tunneling between disjoint classically allowed
regions in one- and two-dimensional systems, in the treatment of long-time dynamics, and in
nonadiabatic dynamics in a model system with two coupled one-dimensional potential energy
surfaces. ©2002 American Institute of PhysicDOI: 10.1063/1.1436306

I. INTRODUCTION wavelengtht’ SC-IVR techniques have been applied to
simulations of realistic two-color pump—probe experiments
Understanding quantum mechanical effects in the evoluof femtosecond photoelectron spectroscBpsimulations of
tion of chemical reactions is a fundamental problem of muchultrafast photoinduced proton transfer reactibh® and
current research interest in chemical dynamics. This requiresjmulations of coherent-contré}:2?
at the most fundamental level of theory, solving the time-  Unfortunately, however, all SC-IVR methods are slowly
dependent Schdinger equation. Not surprisingly, much ef- convergent in the treatment of long time dynamics and en-
fort has been devoted to the development of rigorous comeounter serious difficulties in the description of tunneling
putational methods for directly solving this equation. Exactbetween disjoint classically allowed regiofie., deep tun-
quantum mechanical calculations usually require storage afeling. These methods usually require an enormous number
multidimensional wave functions and computational effortof trajectories to achieve accurate results at long times, since
that grows exponentially with the number of coupled degreeshe integral over the initial phase space results in poor Monte
of freedom. These methods are therefore feasible for systen@arlo (MC) statistics. The integrand usually becomes highly
with only a few degrees of freedom and they are likely tooscillatory at long times and gives rise to phase cancellation
remain of limited applicability, even with projected advancesproblems similar to those encountered in full quantum path
in computer technology. It is, therefore, essential to develofntegral techniques. This problem, which is already present
approximate computational methods of useful reliability forfor one-dimensional systems, usually becomes far more se-
describing the most basic forms of quantum phenomensgous in multidimensional systems with chaotic classical dy-
(e.g., interference and tunnelingn this paper we develop namics. Several techniques have been proposed to overcome
one such method by implementing the Herman—K(HK)  the numerical difficulties, including methods that simply dis-
semiclassical initial value representatidi$C-IVR) accord-  card trajectories when they become problem@tiggorous
ing to a time-slicing technique. filtering techniques based on stationary phase MC integral
SC-IVR methods originated more than 30 years?a® conditioning method$1%1/24=30 |inearized  approxi-
a practical way of incorporating quantum effects into classi-mations>1~3* forward—backward techniqué$>2¢ and the
cal molecular dynamics simulations. In recent years, theréime-integrated form’ Unfortunately, however, this problem
has been considerable interest in the development of nestill constitutes a serious obstacle for general purpose appli-
SC-IVR implementation methods. The ultimate goal hascations. Furthermore, SC-IVR methods encounter serious
been to establish truly convenient alternatives to full-difficulties in the treatment of deep tunnelfdg®*’even at
quantum mechanical techniqué§he new implementation fairly short propagation times. This is one of the most basic
methodologies have been successfully implemented not onlffprms of quantum phenomena and is vital in the description
in a number of model test systertis? but also in simula-  of chemical reactions and molecular spectrosc¢ops’
tions of realistic reactions that allowed for direct compari- Since SC-IVR methods have been extremely successful
sons with experimental dat4-*’ Some of the applications to for describing quantum effects in the short time dynamics of
real photodissociation reactions provided an intuitive underpolyatomic systems without deep tunneling, it is natural to
standing of the most fundamental dynamical features intry to extend such approaches and develop methods that
volved in electronic nonadiabatic processes of interconverbuild upon the SC-IVR while offering improved accuracy.
sion, as well as first principle interpretations of the totalThe goal of this paper is to develop an implementation of the
photoabsorption cross section as a function of the photolysislK SC-IVR that is free of convergence problems in the
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treatment of long time dynamics and is of useful reliability where|p.q,) are the minimum uncertainty wave packets, or
for the description of deep tunneling. The resulting compu-coherent state€C9),

tational approach bridges the gap between semiclassical and 0.\ DA

full quantum dy_ngmlgs b)_/ implementing the_semlclassm_al <X|quT>:(_7’) ext — y(x—q,)2+ip.(x—q.)/%].
propagator for finite time intervals along the lines of previ- ™

ous proposal$>*®*’The algorithm becomes an exact path (5

integral calculation in a coherent-state representation whefyo onstant parameterintroduced by Eq(5) is the width
the finite time intervals become infinitesimally short. of the coherent state. The integration variablpg,@,) in
The approach implemented in this paper is computationg (4) are the initial conditions for classical trajectories of
ally more efficient than a standard Feynman path integral,e time-evolved coordinates and momentta= g.(Po , do)
calculation?® The method avoids the exponential prolifera- andp,=p,(po.do), obtained by integrating the usual classi-

t!O!’l of trajecto_ries py computing individual t.ra.j(.ecftolries for g equations of motionS,(pq,q,) is the classical action
f|n|_te pf‘?Paga“O” _t|mes anq subsequently mmahzmg neWalong this trajectory, obtained by integrating the equation
trajectories according to the time evolved wave function. The
semiclassical propagafdt®*°allows for time slices that are S=p;- &= H(p;, ), (6)
longer than the infinitesimal time slices required by the free
particle propagator. In the past, numerical problems assocfor time 7. Finally, the pre-exponential factdZ (po,do) in
ated with the proliferation of trajectories have limited EQ. (4) involves the monodromy matrix elements that are
the applicability of the Feynman path integral approach toPropagated according to the equations for the stability
one-dimensional model systems, despite extensive workRnatrix."
dedicated to overcome the underlying numerical Details of the standard implementation of the HK propa-
difficulties 24:51:52 gator are readily available in the literati@>3and will

The paper is organized as follows: Section Il describeg0t be discussed here. The time-slicing procedure, described
the methodology. Section IIl details the application of thein this paper, improves upon that standard implementation
method to one- and two-dimensional double-well tunnelingand approaches the full quantum propagator in the0
problems and discusses the improvement relative to the staimit.>* This limit has been previously considered within the
dard HK SC-IVR method. Section IV discusses how thiscontext of the SC-IVR>* This paper shows for the first
formalism can be implemented for simulating quantum dy-time that it can actually be reached in practice.
namics on coupled potential energy surfaces and illustrates For 7=0, Eq.(4) gives an exact representation of unity
the approach for a simple curve-crossing model system. Seé the nonorthogonal CS basi,
tion V discusses our results and the possible extension to

larger systems. Finally, Sec. VI summarizes and concludes. i:(zwﬁ)*DJ f dpoddol Poo){Podol - 7)
ll. FORMULATION OF THE TIME-SLICED Formally, the continuous phase space integrals introduced by
PROPAGATOR

Eqg. (7) include the coherent states that are centered at all

Matrix elements of the quantum mechanical propagator{Po.do) CR*® (this infinitely dense set of coherent states is
labeled herein byD). Numerical calculations, however, must

K(Xn ,talXo, to) = (Xn|& ™t 10"%|xg) (1) evaluate such integrals by implementing MC or quadrature
can be time-slicedTS) by repeatedly inserting the resolution (-6, discretizationtechniques. In this paper we explore the
of identity, implementation of an efficient discretization method.

The identity operator in a generic discrete nonorthogonal

i:J dx|x)(X (2  basis se{|i)} has the form,
yielding izZ 2 liY(S bl (8)

<Xn|e—iﬁ(tn—to>/ﬁ|xo> ' '
where S is the overlap matrix. Unfortunately, however, the

B it—t n_umer_ical implementa’gion of Eq@8) is quite_: demanding_

= | dXpo1er | dxg(xg[e ntn-Vlx, ) since it requires inverting the overlap matrix, an operation
. with cost cubic in basis size. Therefore, in order to develop a

se(xq| e (MR~ to) | ) (3)  numerically efficient discretization method we seek a subset

wheret <t,<---<t,_1<t,. For sufficiently short time pe- of functions|i) that satisfy the relation,

riods, =t,—t,_4, each propagator introduced by E®) R
can be well approximated by the semiclassical propagator i 1=M 1>} [i)il, 9
its coherent-state representation, '

whereM >0 is a normalization factor. Clearly, the operator

e*<i/ﬁ>HT~(27Tﬁ)*Df dpof ddo|p-9,) (9) would be preferred over Ed8), as its application to a
_ single function scales linearly with the size of the basis. In
X C(Poo) €SP0, qq, (4)  the algorithm we detail below, we apply this operator to a
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superposition of~N CS functions, yielding~N? scaling, procedure introduced by E@3). The procedure for propa-
still substantially more favorable than tHé® scaling of gating the wave function can be described by the following
Eq. (8). steps:

L) LSS0 1L iy v i) (-0 ) v
such sets forms an active area of research in mathematics. It Keeping all CSpjq;) of F for which the expansion co-

is important to notice that according to E@) the continuum efficient |<pj ajl ()=, thereby defining a truncation
set D forms a tight frame. This fact is used implictly in of the infinite set’ to a finite subset?”(t). Here, we
constructing the usual form of the HK propagator without the ~ @ssume that the resulting truncated basis set gives a suf-
inverse overlap matrix by using a MC selection of the subset  ficiently good representation of unity as defined by Eq.

li). Unfortunately, however, there is no discretizationZof (9). Note that although¥ is defined according to regu-

that formally yields a tight frame. If a particular set of func-  larly spaced basis functions, the truncation condition
tions that do not form a tight frame is uséice., any discrete avoids the need for propagating the complete grid of
set of CSy the operatorn8) must in theory be used. It is coherent states by keeping only those basis functions

nonetheless possible to find discretizations that do satisfy Eq. that significantly overlap withy(t)).

(9) well enough for numerical calculations, and we presen{2) Propagate the CS i’ (t) for a short timer using the

one here. usual classical equations of motion. The CS will undergo
In order to describe discretizations that are both accurate classical flow in phase space to define the wave function

and efficient we first consider the completeness of discrete |y (t+ 7)) via expansion in a newirregularly spacepset

CS basis sets. It has been shdfvthat the so-called von F(t+7),

Neumann sét defined by the spacings
Aq—a/\/f |¢(t+7—)>:ffdptdqt|pt+7qt+7>c(ptqt!T)
Ap=27rh/a\/f (10) XeiS(ptqt’T>/h<ptqt|w(t»- (12)

with L=1 anda an arbitrary constant, is the sparsest distri-(3) Go to step(1), replacing|#(t)) with |¢(t+ 7)).

bution of CS that forms a complete representation. The von  The parameterg and 7 are determined by the accuracy
Neumann set does not form a tight fgg"g}‘e-’ Eq.(9) isnot  gesired: decreasing the cutdffand the time-slicing interval
satisfied, as noted by other authot§™*®'Making L suffi-  _jncreases the accuracy of the algorithm. &s-0 and 7

ciently large, however, generates a discrete set that is nu-, g e procedure is formally and numerically equivalent to
merically equivalent to a tight-frame since it approaches th% full quantum propagation scheme

setD. . . . N
. . . . L Typically, updating the representation by projecting the
In this paper we implement instead a discretization of, ypically, updating pres ! y projecting

the basis defined by the spacinas time evolved wave function ontoF is the most time-
y P gs, consuming part of the procedure outlined above. We have

Ag= Ly 12 developed an iterative method for efficiently performing the
(11) projection and outline the steps in Appendix B. The trunca-
Ap<hy'?2, tion F— F'(t) results in a basis set size that fluctuates in

Wi thi . b it defi to doubl time according to the phase-space localization of the system
Ve “use this spacing because It denines, 10 doubleyt fimet. This gives us the minimal possible representation
precision accuracy, a tight franjee., it satisfies Eq(9) to

o o . . inth ri i [l times. We also n h f
double-precision accuragyA dilation of this spacing would the CS grid basis at all times. We also note that, because o

) Lo - the redundancy in the sef and the smoothness of the CS
reduce the accuracy of this approximation. A justification for . ) . .

. A : . . functions, this representation actually achieves an accuracy
this claim is given in Appendix A. Notice that here we have. . .
separate requirements ap andAq (in contrast to the von in the wave function several orders of magnitude better
Neumann set which stipulates a requirement on the produépan 4 . . )
ApAq=2mt). The maximum spacings fakq and Ap are There are three caveats worth mentioning. First, since
equal to the uncertainty widths\{x)2—(x? and the HK propagator c_ioes not conserve the norm, t_he result of

(p)2—(p?) taken over the CS introduced by EG), and the .TSHI-< propagation may need to be rgnormallzed at any
the normalization constaril =ApAgq/(2#). The set of desired t!me. All of .the results presented in this paper were
functions defined by such grid spacing is labeledEyln ~ renormalized to unity. Second, one cannot 4et when
higher dimensions, the analogous set is defined by a dire#Sing an initial basis set’ and achieve the same numerical
product of the spacings given in E@.1). We emphasize that result as the usual HK procedure using a dense MC-sampled
using the spacings given in E(L1) eliminates the need to initial basis set. To achieve convergence with the HK propa-
calculate the inverse overlap matrix in the discrete represergator at long times it is necessary to use a very dense initial
tation of the identity operator. This is the primary reason forphase space sampling. Third, because the time-slicing proce-
the relative efficiency of the approach implemented in thisdure requires coupling of information among trajectories,
paper. parallel implementation of the TSHK algorithm is more com-

Using this particular set of functions we are ready toplicated that for the simple independent trajectories of the
embark on a practical implementation of the time-slicingusual HK method.
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FIG. 1. The one-dimensional double-well modéBolid) The potential FIG. 2. Results of the one-dimensional double-well tests. The fraction of the

given by Eq.(13). (Dotted |i|? for the initial wave function given by Eq. total probability on the right half of the potential shown in Fig. 1. The solid
(14). line is the QM result. The failure of the HK method for this case is obvious

from the dotted line. For clarity, only short-time HK results are given. The
HK result is difficult to converge for long time. The TSHK results agree
with the QM results for all times.

I1l. ONE- AND TWO-DIMENSIONAL DOUBLE-WELL

MODELS

This section tests the capabilities of the time—sliced.Flg' 1 for only moderate times. The HK results are increas-

Herman—KIuk(TSHK) methodology, described in Sec. I, as ingly difficult to converge for times longer than 100 a.u. The

applied to the description of tunneling dynamics in one- anc{exact QM results were generated by implementing a Fourier

two-dimensional double-wells. These model systems are es[ansform grid-based methGd.
| y The comparison presented in Fig. 1 shows that the

pecially challenging since they have so far defied even tha:SHK results agree quantitatively with the full QM results.

most accurate SC-IVR techniques, including the standar . .
. . hese results are converged with respect to reduction of the
implementation of the HK SC-IVR method. . S
cutoff parametel. The time-slicing interval ofr=0.25 a.u.
A. One-dimensional double-well was necessary to achieve agreement over the whole range of

In this section we examine the one-dimensional double:[Ime shown in Fig. 2. However, for moderate times., up

well model system described by the following Hamiltonian: {©© @Pout 100 a..it would have been sufficient to use a
X time-slicing intervalr~1 a.u.
1 1

— p_ A T y2
H(x,p)=5 -+ 1677x 5% (13
wherem=1 a.d., andy = 1'3544 a.u. . The two-dimensional model system explored in this sec-
We examine the dynamics of the system by propagating;,, js gescribed by the following Hamiltonian:
a wavepacket 4(x) that is initially centered atxg ,
=-25au., 1 1
H(x,p)=2p—m+ in_ §x§+ §x§+ Sg¥axe. (16
do() =7 Yexp(— 3[x—xo?). (14 7
, , o wherem=1 a.u., andp=1.3544 a.u. This system has been
The system is schematically shown in Fig. 1. constructed by bilinearly coupling the one-dimensional
The time dependent probabilit(t) of being on the
right of the dividing surface located at=0 is

B. Two-dimensional double-well

double-well model system, described in Sec. IlIA, to a
single harmonic oscillator.
P(t)={(|h| ), (15 The initial state is defined according to

where the step functiom=1 for x>0, and 0 otherwise. ¢//O(x)=q-r*1/2exp(— 1[x1—Xo)?— %xg), (17)
Figure 2 shows the evolution & (t) as a function of time.

The final time =240 a.u.) represents about 60 vibrational WNeréXo=—2.5 a.u. _ _
periods for a state that oscillates in the bottom of one of the N this example, we calculate the correlation functihs,

wells. The TSHK results were generated using a cutoff pa-  C_(t)=(¢,|#(1)), (18)
rameter,=10* and a CS widthy= 1.0, resulting in a basis
set of about 52550 coherent states. It is important to note  Cr(D=(#rl#(1), (19

that the size of the basis set fluctuates in time but its meahere ¢, = 4, and ¢ is the “mirror image” of ¢, reflected
value remains approximately constant after an initial in-through the origin,

crease. A time-slicing intervat=0.25 a.u. was used for this i ) )

system. For comparison, the time step used to integrate the Pr(X1,X2) =7 "“exf —0.3(x,—2.5)"]exd — 0.5¢].

HK equations of motion between each time-slice was 0.01 (20

a.u. Note that the correlation functio€@g(t) describes qualita-
The results obtained according to the standard impletively the portion of the wavefunction that has tunneled from

mentation of the HK SC-IVR employed 8000 trajectoriesthe left-hand side of the potential barrier to the right-hand

and a CS widthy=0.5. For clarity, HK results are shown in side. The computed correlation functions are shown in Fig. 3.
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Time (au)

FIG. 3. Results of the two-dimensional double-well tesgs: C (t); (b)
Cg(t). The correlation functions are defined in the text, &dt) provides

an indication of the wave packet tunneling into the right-hand well. The
accuracy of the TSHK method is shown by the agreement between the sol
and dashed lines. The HK method, shown by the dotted—dashed line, do
not reproduce QM tunneling accurately.

The results obtained by implementing the TSHK ap-
proach were generated using a cutoff paramefer8
X 1073, a time-slicing interval ofr=0.5 a.u., and a CS

width y=1.0. These parameters yield a basis set size of

roughly 18 00@:- 1000.

The results obtained according to the standard imple-

J. C. Burant and V. S. Batista

|:|1 Vc

\A/c H2

H

(21)

whereH; and H, are the adiabatic Hamiltonians on each
surface andV,. is the coupling between them. The result of
short time propagation of this system can be written as

(4 ) =€ (1) = 2 Vel (D),
_ (22
o 17 A
| ot 7)) =2y 1)) — %Vc|z//1(t)>,

where ¢, and ¢, refer to the wave functions on the two
potential surfaces. We can interpret these equations as having
two steps: an adiabatic propagation on each surfideefirst

term on the right-hand sigléollowed by “spawning” of tra-
jectories in which the coupling between the surface causes
CSs on one surface to create new CSs on the other surface
(the second term When \A/C can be written as a sum of
Gaussians, the CSs spawned by the last term inZE2).are
available analytically.

One time step of our algorithm consists of adiabatically
ropagating each wave function on its diabatic surface using
¢éee HK propagator, adding to it the spawned CSs from the
other surface, and re-expanding the resulting sum using the
grid of CSs as in the single-surface problems. We apply this
algorithm to one of the dual curve crossing models suggested
by Tully®® to test nonadiabatic dynamics. The model is de-
scribed in the diabatic basis by

Vi(9)=0,

V,(q)=—0.1exy—0.2&%) +0.05, (23)

mentation of the HK SC-IVR were generated by propagating

16 000 trajectories, using the first-order Filinov filtering
expressiort/?42963gpecifically, we have implemented Eq.
(13) of Ref. 63, settinge=10"5."® The CS widthy=0.5.
The QM results were obtained by implementing a split-
operator propagation scheffién conjunction with Fourier
derivative techniques.

Figure 3 shows that the standard implementation of th

V.(q)=0.015 exp— 0.063°2).

This model is widely used in tests of nonadiabatic dynamics,
and we refer the reader to Ref. 65 for a depiction of the
system.

The initial wave packets, representing a particle of mass

£000 a.u. begin to the left of the coupling region and propa-

HK SC-IVR approach is able to reproduce exact QM resultdate to the right. The specific initial conditions are identical

but only for fairly short times. In contrast, the TSHK method
is able to reproduce quantitatively full QM result up to mod-

to those of Ref. 65. We have employed a cutoff parameter
(=10"% and a CS widthy=1.0, which typically keep the

erate times, and give a good qualitative description fo'size of the basis well below 1000 basis functions. We used

longer propagation times. Better agreement at longer timeld

could always be obtained simply by further tightening the
parameterg and 7.

IV. PROPAGATION ON COUPLED POTENTIAL
ENERGY SURFACES

me steps ranging from 0.025 a.(nigh initial momentum

to 0.1 a.u.(low initial momentum for propagating the clas-
sical trajectories. By virtue of re-expanding the total wave
function (adiabatic plus nonadiabatically spawned LC&t
each time step, our effective time-slicing interval is equal to
the time step used for integrating the classical equations of
motion. It would be possible to use a higher-order finite dif-
ference formula foidy/dt to give a more accuratéhough

The TSHK method also provides a convenient way tomore complicated expression for the nonadiabatically

perform wave packet calculations on coupled potential en
ergy surfaces(e.g., electronically nonadiabatic dynamics
For the case of two coupled potential energy surfaces, th
total system can be described by the Hamiltonian,
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Log Initial KE and we have found that it works well when implemented
FIG. 4. The results of the nonadiabatic tests. The TSHK and QM results araccording to the TSHK approach. This prefactor requires
give-n f)y the circles and are indistinguishablé on the scale of the graph. Th%eepm_g track of the eV(_)IUtlon of the mStantaneOL_jS eigentre-
lines are drawn to guide the eye. quenciesw(k), but avoids the need of propagating mono-
dromy matrix elements. In contrast, the simple frozen Gauss-
ian technique originally discussed by Helt&rin which the
) _ prefactor remains equal to unity at all times, is not accurate
The performance of our method is measured by examinanoygh to be implemented with the time-slice intervals used
ing the total fraction of the initial wavepacket that is trans-j, this work.
mitted onto the second surface, as shown in Fig. 4. Our re- |t is worthwhile to compare our method to others in the
sults agree quantitatively with the QM results generated byiterature. As was mentioned in the introduction, the time-
traditional metho_dg? _ _ o slicing idea has already been considered within the context
For a scattering system like this one, individual CSs mayot semiclassical techniques. In fact, Heller proposed a similar
be discardgd as they reach. asymptotic regions and cause tﬁﬁproach as early as 19%5though with a different short-
wave function to become diffuse at long times. time propagator and without making reference to the strict
requirements on the basis of coherent states surprisingly,
as the theory of CS frames was not developed until the mid-
V. DISCUSSION 19809. However, there are no numerical examples of this
“wave packet path integral” method in the literature. Con-
The TSHK method is able to reproduce quantitativelycatenation of short-time semiclassical propagators is also
full QM results describing tunneling dynamics in one- andcentral to the so-called hybrid mechanics metfbd. The
two-dimensional double-well systems. This is not a surprisgesolution of identity used in that work, however, involves an
because the method is designed to approach exact QM cahverse overlap matrix calculated by singular value decom-
culations both formally and numerically. Previous real-timeposition, and does not dynamically optimize the basis set as
path-integral simulations have been limited to one-a function of time. Anderssoft,while noting the concept of
dimensional systems, and thus the results of Sec. IlIB aréight frames but not employing them explicitly, has taken the
notable, as they constitute exact path integral results from Rybrid mechanics method one step further by implementing
general two-dimensional potential. The fact that our methodhn iterative calculation of the inverse overlap matrix, which
is derived from repeated applications of a path-integraimay scale as less thax® if sparse matrix techniques are
propagator has the benefit that the system under study coulsmployed. Recently, Grossmann provided an applicatioh
be coupled to a bath of oscillators using an influence funca “time-sliced” HK propagation scheméwith only two
tional formalism%® a technique that is not available for direct time-slice$, to a one-dimensional scattering example. His
grid-based solution of the time-dependent Sdimger equa-  work implemented a MC evaluation of the identity operator,
tion. Such a method would allow us to examine two-introduced by Eq.(7). The results, while an improvement
dimensional systems coupled to a bath, extending the capaver regular HK, did not agree exactly with full quantum
bilities of previous computational studies that were limited tomechanical calculations.
one-dimensional model systef¥s. Clearly, a generalization to higher dimensions would be
The ability of our method to describe two-dimensional a valuable tool, permitting direct path integral simulation of
systems is due to the compact nature of the CS representaore realistic models of chemical systems. Because of the
tion and not restricted to a specific SC-IVR propagééog.,  overall N? scaling of the TSHK method, systems with large
the HK SC-IVR. The only requirement is that the short-time basis sets pose a problem. The use of direct-product CS grids
propagation should map CSs onto functions that can themscales poorly with dimensionality, and would greatly in-
selves be projected analytically onto other CSs. This requireecrease the number of basis functions need for three-
ment thus includes a large class of approximate semiclassicélmensional and larger systems. Such calculations might
and QM methods. In particular, we have tested the WKBtherefore be very computationally challenging. Monte Carlo

approximate prefactd, importance sampling methods are usually the most efficient
computational techniques for calculating high dimensional
C.(po,do) = vdefM,], (24)  integrals. In the context of the TSHK method, the MC tech-
nique would entail construction of a tight frame with ran-
with domly spaced CS basis functions. This work is however the
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subject of current ongoing research in our group. While thevhere the spacings in coordinates and momenta\grand

grid-based approach is simple, accurate, and efficient enougkp, respectively. The goal is to estimate how well such a

for up to two dimensions, there might be more efficient waysrepresentation approximates a tight frame, i.e., how well an

of constructing basis sets in higher dimensionality. arbitrary L? function is approximated by the following ex-
pression:

VI. CONCLUSIONS |f>~|vrlg;] | Pm0n){Pmdn| f)- (A3)

We have shown in this paper how to extend the capabili-
ties of the HK SC-IVR method to describe accurately tun- It is well known that, according to the Klauder identity
neling between disjoint classically allowed regions, as well(7), any such functiorf(x) can be expanded in the continu-
as long-time dynamics. We have shown that this can be amus CS representation,
complished by implementing the HK SC-IVR in conjunction 1
with a time-slicing technique in a discrete coherent state rep- |f)= mf f dp’dg’|p’a’){p’'q’|f). (A4)
resentation. We have demonstrated that the time-sliced HK
propagator accurately describes tunneling dynamics in oneFherefore, as an estimate, we explore how well any arbitrary
and two-dimensional double-well model systems for propabasis function/p’q’) can be represented by the expansion
gation times that correspond to more than 60 vibrational peintroduced by Eq.(A3). In particular, we will explore the
riods at the bottom of one of the wells. We have shown thatliscretization,
the methodology can also be directly implemented to de- qukq/Zy‘l’z,
scribe nonadiabatic dynamics on coupled potential energy _ 12 (A5)
surfaces. Quantitative agreement with full guantum mechani- Ap=Aphy™
cal calculations was achieved for all model systems investiwhere\, and \, are adjustable parameters. Wheg= X\
gated. Furthermore, we have discussed the representation ef1, the spacingdp andAq correspond to the critical grid
the identity operator in a discrete CS basis. We have demorspacings introduced by E¢l1).
strated that such a representation can be sufficiently compact We examine the quantity,
as to avoid the need for calculating the inverse overlap ma-
trix. The insight gained into the discrete CS representation 1=(p'q’|p’q’)=~M "> (p’qQ’|Pmdn){PmdnlP’a’),
suggests that straightforward application of the time slicing mn (A6)
technique to three-dimensional systems might be computa-
tionally quite demanding. Nonetheless, we are optimisticsince the better the grid representation is, the closer the sum
about the utility of the method for describing adiabatic andabove will approximate 1. The summation can be written as
nonadiabatic dynamics in systems that are more complex
than those previously investigated with other path integraM_12 [(PmanlP’a")|?
techniques. ma

=M1 exp[— %(qﬁ nAq—q’)Z}

m,n
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i
exr{g{(p’—po

2

—mAp)+p’'q’—(pot MAP)(go+ nAq)}}

1
xexp{ — W(p(ﬁ mAp— p’)z}
APPENDIX A: DISCRETIZATION SCHEME

1
This Appendix shows how to obtain the discretization =M~ texd — y(qo—q’)z]ex;{ ~772(Po— p’)z}
scheme, introduced by E@ll). We explore a basis set of Y
coherent states, ) -
|- x{ 2 exi —2yn(do—q") Aqlext — yAg®n?]
<x|pmqn>=(;) exi] — y(x—8n) >+ ipm(x—an)],
1
(A1) x[E ex;{—mm(po—p’mp}
for which the basis functions are centered at grid points, m
Pm=Po+MAp, p[ 1o 2“
Xexp — —7zAp m?|;. A7
an="Co+NAQ, (A2) 4yr2°P A7)
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TABLE I. Accuracy of tight frame identity operator.

Aq S(\g)

0.8 2.88(-26)
0.9 1.07(- 20)
1.0 6.66(- 16)
1.1 8.72(- 14)
1.2 1.47¢11)
1.3 7.81(10)
1.4 1.81¢9)
15 2.27¢-7)
1.6 1.78¢-6)
1.7 9.74(6)
1.8 4.02(-5)
1.9 1.33¢4)
2.0 3.67(-4)
2.1 8.74(- 4)
2.2 1.85(-3)
2.3 3.54(3)

The two sums in curly brackets, which are known as the

Jacobi theta functiong;, can both be written in the form,

> ex;{—a

n
Examining the sum oven, for which a=yAqg? and B
=2(90—9q’)/Aq, we find that

ex aB?4]=exd y(do—a')?], (A9)

which exactly cancels the factor gxpy(go—q’)?] in EQq.
(A7). The offset in the exponent become8/2=(q,
—q')/Aq. Because the grid cente can be chosen arbi-
trarily such thatq’ is close toq,, we can restrict 8|<1.
Substitutinga=)\§/4, the product of al-dependent factors
in Eq. (A7) is seen to be

S o (0 2] |

2

rr%? exf aB?/2]. (A8)

(A10)

A
q

_ +_

= 4\

This sum is a regularly spaced quadrature of the Gaussia(ré)

exr[—)\sn2/4], with the quadrature points at some offg#2

from the center of the Gaussian. A continuous integration

over n would yield the number\/41-r/)\q2. The quadrature
result will vary from this answer depending on the offset
BI2. For\q large (a very peaked Gaussiarthe location of

4
the grid points changes the quadrature greatly, but for smafl

\q it is relatively unimportant.
Recall that we are trying to pick grid spacing factars
and\ , such that the arbitrary C9'q’) is well-described by

the CS grid representation. This means that we need to pick

\q such that the surtA10) does not depend significantly on

B. We choose to quantify this dependence by looking at the

difference in the sum for the two casgs-0 (no offsej and
B=1 (maximum offset We define the function
N

)\2
5()\q)=‘2 rexp{— —ex;{ (
(A11)

_a
4
in order to examine the effect of varying,. We have tabu-
lated the values 0b(\) for a range ofA, and present the
results in Table I. The-dependent terms in EA7) can be

2
A
4

1
n+§

The Herman—Kluk propagator 2755
treated in a manner identical to tlgedependent ones.
Examining the data in Table I, we see that choosigg
=\p=1 gives double precision accuracy, and hence this is
the value we use in normal computation. Recall that the tight
frame identity operator, introduced by HE), is used repeat-
edly so that any error in the expansion will compound rap-
idly as the propagation progresses. A slight dilation in the
grid spacing would not yield any significant savings in com-
putational time, and our tests with dilations on the order of
Ng=~2, \p=~2 have given qualitatively incorrect answers.
Finally, carrying through the integration-limit answer for
the sums oven andm in Eq. (A7) implies a normalization,

~ ApAq
- 27wh

as one might expect from a naive discretization of &y.

-1

(A12)

APPENDIX B: IMPLEMENTATION METHOD

This Appendix outlines an efficient method of projecting
a wavefunction composed of a linear combination of arbi-
trary spaced CSs onto a minimal grid of equally spaced CSs
to create the sef’.

We will call the set of arbitrarily spaced C3s

(1) Define the center of the new gridQg,P,) (we use capi-

tal letters to avoid confusion with notation elsewhere in

the paper. We use the arithmetic average of the phase

space centers of all the CSsAn

This defines implicitly all the grid points ;...

=iAQQ1+jAQ,Qu+ -+ ,Py...=kAP,P;

+1AP,P,).

Set iteration counten=0.

Initialize the new set of CS§” as the empty set.

Initialize a set of known negligible CSd as the empty

set. Initiate set§ andK as the empty set.

For each CS i\, add the grid point closest to this CS to

a list of test grid pointsT(®,

Project the CSb) centered at each grid poibtin T

onto the current wave function, definirg=|(b|)|.

If c>¢, add the grid poinb to the set<(".

Otherwise, add the grid poirth to the list of known

negligible grid pointsN.

) Add the grid points in sek(" to the setF’. SortF’ and

N for easy searching in the next step.

Build a new list of test grid pointy("*1) consisting of

all nearest neighbor grid points to those in the K€Y,

eliminating known neglible grid points and those already

in 7.

(6) If the setT("*Y) is not empty, incremem—n+1 and

go to Step 3. OtherwiseX" is complete.

)

)

We use an integer array variablgj( . .. k,I,...) torefer

to each grid point. This enables efficient sorting and search-
ing for duplicate and known negligible grid points. Sorting
and searching is a trivial computational task. The majority of
computer time used is spent in st€}).
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