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Real time path integrals using the Herman–Kluk propagator
John C. Burant and Victor S. Batista
Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107

~Received 18 October 2001; accepted 27 November 2001!

It is shown that the accuracy of quantum dynamics calculations obtained according to the Herman–
Kluk ~HK! semiclassical initial value representation~SC-IVR! is significantly improved when the
time evolution operator is computed by concatenating finite time propagators. This approach results
in an approximate calculation of a real-time path-integral in a discrete coherent-state representation,
which becomes exact in the limit of sufficiently short time-slice intervals. The efficiency of the
computational method is optimized by devising a compact coherent-state basis set that obviates the
need for calculating the inverse overlap matrix. Quantitative agreement with full quantum
mechanical results is verified in the description of tunneling between disjoint classically allowed
regions in one- and two-dimensional systems, in the treatment of long-time dynamics, and in
nonadiabatic dynamics in a model system with two coupled one-dimensional potential energy
surfaces. ©2002 American Institute of Physics.@DOI: 10.1063/1.1436306#
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I. INTRODUCTION

Understanding quantum mechanical effects in the evo
tion of chemical reactions is a fundamental problem of mu
current research interest in chemical dynamics. This requ
at the most fundamental level of theory, solving the tim
dependent Schro¨dinger equation. Not surprisingly, much e
fort has been devoted to the development of rigorous c
putational methods for directly solving this equation. Exa
quantum mechanical calculations usually require storag
multidimensional wave functions and computational eff
that grows exponentially with the number of coupled degr
of freedom. These methods are therefore feasible for syst
with only a few degrees of freedom and they are likely
remain of limited applicability, even with projected advanc
in computer technology. It is, therefore, essential to deve
approximate computational methods of useful reliability
describing the most basic forms of quantum phenom
~e.g., interference and tunneling!. In this paper we develop
one such method by implementing the Herman–Kluk~HK!
semiclassical initial value representation1 ~SC-IVR! accord-
ing to a time-slicing technique.

SC-IVR methods originated more than 30 years ago2 as
a practical way of incorporating quantum effects into clas
cal molecular dynamics simulations. In recent years, th
has been considerable interest in the development of
SC-IVR implementation methods. The ultimate goal h
been to establish truly convenient alternatives to fu
quantum mechanical techniques.3 The new implementation
methodologies have been successfully implemented not
in a number of model test systems,4–13 but also in simula-
tions of realistic reactions that allowed for direct compa
sons with experimental data.14–17Some of the applications to
real photodissociation reactions provided an intuitive und
standing of the most fundamental dynamical features
volved in electronic nonadiabatic processes of interconv
sion, as well as first principle interpretations of the to
photoabsorption cross section as a function of the photol
2740021-9606/2002/116(7)/2748/9/$19.00
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wavelength.17 SC-IVR techniques have been applied
simulations of realistic two-color pump–probe experime
of femtosecond photoelectron spectroscopy,18 simulations of
ultrafast photoinduced proton transfer reactions,19,20 and
simulations of coherent-control.21,22

Unfortunately, however, all SC-IVR methods are slow
convergent in the treatment of long time dynamics and
counter serious difficulties in the description of tunneli
between disjoint classically allowed regions~i.e., deep tun-
neling!. These methods usually require an enormous num
of trajectories to achieve accurate results at long times, s
the integral over the initial phase space results in poor Mo
Carlo ~MC! statistics. The integrand usually becomes high
oscillatory at long times and gives rise to phase cancella
problems similar to those encountered in full quantum p
integral techniques. This problem, which is already pres
for one-dimensional systems, usually becomes far more
rious in multidimensional systems with chaotic classical d
namics. Several techniques have been proposed to overc
the numerical difficulties, including methods that simply d
card trajectories when they become problematic,23 rigorous
filtering techniques based on stationary phase MC inte
conditioning methods,9,10,17,24–30 linearized approxi-
mations,31–34 forward–backward techniques,18,35,36 and the
time-integrated form.37 Unfortunately, however, this problem
still constitutes a serious obstacle for general purpose ap
cations. Furthermore, SC-IVR methods encounter seri
difficulties in the treatment of deep tunneling12,38–40even at
fairly short propagation times. This is one of the most ba
forms of quantum phenomena and is vital in the descript
of chemical reactions and molecular spectroscopy.41–45

Since SC-IVR methods have been extremely succes
for describing quantum effects in the short time dynamics
polyatomic systems without deep tunneling, it is natural
try to extend such approaches and develop methods
build upon the SC-IVR while offering improved accurac
The goal of this paper is to develop an implementation of
HK SC-IVR that is free of convergence problems in t
8 © 2002 American Institute of Physics
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2749J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 The Herman–Kluk propagator
treatment of long time dynamics and is of useful reliabil
for the description of deep tunneling. The resulting comp
tational approach bridges the gap between semiclassica
full quantum dynamics by implementing the semiclassi
propagator for finite time intervals along the lines of pre
ous proposals.12,46,47 The algorithm becomes an exact pa
integral calculation in a coherent-state representation w
the finite time intervals become infinitesimally short.

The approach implemented in this paper is computati
ally more efficient than a standard Feynman path integ
calculation.48 The method avoids the exponential prolifer
tion of trajectories by computing individual trajectories f
finite propagation times and subsequently initializing n
trajectories according to the time evolved wave function. T
semiclassical propagator2,49,50allows for time slices that are
longer than the infinitesimal time slices required by the f
particle propagator. In the past, numerical problems ass
ated with the proliferation of trajectories have limite
the applicability of the Feynman path integral approach
one-dimensional model systems, despite extensive w
dedicated to overcome the underlying numeri
difficulties.24,51,52

The paper is organized as follows: Section II describ
the methodology. Section III details the application of t
method to one- and two-dimensional double-well tunnel
problems and discusses the improvement relative to the s
dard HK SC-IVR method. Section IV discusses how th
formalism can be implemented for simulating quantum d
namics on coupled potential energy surfaces and illustr
the approach for a simple curve-crossing model system. S
tion V discusses our results and the possible extensio
larger systems. Finally, Sec. VI summarizes and conclud

II. FORMULATION OF THE TIME-SLICED
PROPAGATOR

Matrix elements of the quantum mechanical propaga

K~xn ,tnux0 ,t0!5^xnue2 iĤ ~ tn2t0!/\ux0& ~1!

can be time-sliced~TS! by repeatedly inserting the resolutio
of identity,

1̂5E dxux&^xu ~2!

yielding

^xnue2 iĤ ~ tn2t0!/\ux0&

5E dxn21¯E dx1^xnue2~ i /\!Ĥ~ tn2tn21!uxn21&

¯^x1ue2~ i /\!Ĥ~ t12t0!ux0&, ~3!

wheret0,t1,¯,tn21,tn . For sufficiently short time pe-
riods, t5tk2tk21 , each propagator introduced by Eq.~3!
can be well approximated by the semiclassical propagato
its coherent-state representation,1

e2~ i /\!Ĥt'~2p\!2DE dp0E dq0uptqt&

3Ct~p0q0!eiSt~p0 ,q0!/\^p0 ,q0u, ~4!
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whereuptqt& are the minimum uncertainty wave packets,
coherent states~CS!,

^xuptqt&5S 2g

p D D/4

exp@2g~x2qt!
21 ipt~x2qt!/\#.

~5!

The constant parameterg introduced by Eq.~5! is the width
of the coherent state. The integration variables (p0 ,q0) in
Eq. ~4! are the initial conditions for classical trajectories
the time-evolved coordinates and momentaqt[qt(p0 ,q0)
andpt[pt(p0 ,q0), obtained by integrating the usual class
cal equations of motion.St(p0 ,q0) is the classical action
along this trajectory, obtained by integrating the equation

Ṡt5pt•q̇t2H~pt ,qt!, ~6!

for time t. Finally, the pre-exponential factorCt(p0 ,q0) in
Eq. ~4! involves the monodromy matrix elements that a
propagated according to the equations for the stab
matrix.1

Details of the standard implementation of the HK prop
gator are readily available in the literature1,12,13,53and will
not be discussed here. The time-slicing procedure, descr
in this paper, improves upon that standard implementa
and approaches the full quantum propagator in thet→0
limit.54 This limit has been previously considered within th
context of the SC-IVR.46,55 This paper shows for the firs
time that it can actually be reached in practice.

For t50, Eq. ~4! gives an exact representation of uni
in the nonorthogonal CS basis,56

1̂5~2p\!2DE E dp0dq0up0q0&^p0q0u. ~7!

Formally, the continuous phase space integrals introduce
Eq. ~7! include the coherent states that are centered a
(p0 ,q0),R2D ~this infinitely dense set of coherent states
labeled herein byD!. Numerical calculations, however, mu
evaluate such integrals by implementing MC or quadrat
~i.e., discretization! techniques. In this paper we explore th
implementation of an efficient discretization method.

The identity operator in a generic discrete nonorthogo
basis set$u i &% has the form,

1̂5(
i

(
j

u i &~S21! i j ^ j u, ~8!

whereS is the overlap matrix. Unfortunately, however, th
numerical implementation of Eq.~8! is quite demanding
since it requires inverting the overlap matrix, an operat
with cost cubic in basis size. Therefore, in order to develo
numerically efficient discretization method we seek a sub
of functionsu i & that satisfy the relation,

1̂5M 21(
i

u i &^ i u, ~9!

whereM.0 is a normalization factor. Clearly, the operat
~9! would be preferred over Eq.~8!, as its application to a
single function scales linearly with the size of the basis.
the algorithm we detail below, we apply this operator to
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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superposition of'N CS functions, yielding'N2 scaling,
still substantially more favorable than theN3 scaling of
Eq. ~8!.

Picking a set of functionsu i & that satisfies Eq.~9! is not
trivial. Such a set is called atight frame,57 and the study of
such sets forms an active area of research in mathemati
is important to notice that according to Eq.~7! the continuum
set D forms a tight frame. This fact is used implictly i
constructing the usual form of the HK propagator without t
inverse overlap matrix by using a MC selection of the sub
u i &. Unfortunately, however, there is no discretization ofD
that formally yields a tight frame. If a particular set of fun
tions that do not form a tight frame is used~i.e., anydiscrete
set of CSs!, the operator~8! must in theory be used. It is
nonetheless possible to find discretizations that do satisfy
~9! well enough for numerical calculations, and we pres
one here.

In order to describe discretizations that are both accu
and efficient we first consider the completeness of disc
CS basis sets. It has been shown58 that the so-called von
Neumann set59 defined by the spacings

Dq5a/AL,
~10!

Dp52p\/aAL,

with L51 anda an arbitrary constant, is the sparsest dis
bution of CS that forms a complete representation. The
Neumann set does not form a tight frame@i.e., Eq.~9! is not
satisfied#, as noted by other authors.57,60,61Making L suffi-
ciently large, however, generates a discrete set that is
merically equivalent to a tight-frame since it approaches
setD.

In this paper we implement instead a discretization
the basis defined by the spacings,

Dq< 1
2 g21/2,

~11!
Dp<\g1/2.

We use this spacing because it defines, to dou
precision accuracy, a tight frame@i.e., it satisfies Eq.~9! to
double-precision accuracy#. A dilation of this spacing would
reduce the accuracy of this approximation. A justification
this claim is given in Appendix A. Notice that here we ha
separate requirements onDp andDq ~in contrast to the von
Neumann set which stipulates a requirement on the pro
DpDq52p\!. The maximum spacings forDq and Dp are
equal to the uncertainty widthsA^x&22^x2& and
A^p&22^p2& taken over the CS introduced by Eq.~5!, and
the normalization constantM5DpDq/(2p\). The set of
functions defined by such grid spacing is labeled byF. In
higher dimensions, the analogous set is defined by a d
product of the spacings given in Eq.~11!. We emphasize tha
using the spacings given in Eq.~11! eliminates the need to
calculate the inverse overlap matrix in the discrete repres
tation of the identity operator. This is the primary reason
the relative efficiency of the approach implemented in t
paper.

Using this particular set of functions we are ready
embark on a practical implementation of the time-slici
Downloaded 06 Feb 2002 to 130.132.58.224. Redistribution subject to A
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procedure introduced by Eq.~3!. The procedure for propa
gating the wave function can be described by the follow
steps:

~1! Project the wave functionuc(t)& ~t50 initially! ontoF,
keeping all CSupjqj& of F for which the expansion co
efficient u^pjqj uc(t)&u>z, thereby defining a truncation
of the infinite setF to a finite subsetF8(t). Here, we
assume that the resulting truncated basis set gives a
ficiently good representation of unity as defined by E
~9!. Note that althoughF is defined according to regu
larly spaced basis functions, the truncation conditi
avoids the need for propagating the complete grid
coherent states by keeping only those basis functi
that significantly overlap withuc(t)&.

~2! Propagate the CS inF8(t) for a short timet using the
usual classical equations of motion. The CS will under
classical flow in phase space to define the wave func
uc(t1t)& via expansion in a new~irregularly spaced! set
F8(t1t),

uc~t1t!&5EEdptdqtupt1tqt1t&C~ptqt ,t!

3eiS~ptqt,t!/\^ptqtuc~ t !&. ~12!

~3! Go to step~1!, replacinguc(t)& with uc(t1t)&.

The parametersz andt are determined by the accurac
desired; decreasing the cutoffz and the time-slicing interva
t increases the accuracy of the algorithm. Asz→0 and t
→0, the procedure is formally and numerically equivalent
a full quantum propagation scheme.

Typically, updating the representation by projecting t
time evolved wave function ontoF is the most time-
consuming part of the procedure outlined above. We h
developed an iterative method for efficiently performing t
projection and outline the steps in Appendix B. The trunc
tion F→F8(t) results in a basis set size that fluctuates
time according to the phase-space localization of the sys
at time t. This gives us the minimal possible representat
in the CS grid basis at all times. We also note that, becaus
the redundancy in the setF and the smoothness of the C
functions, this representation actually achieves an accu
in the wave function several orders of magnitude be
thanz.

There are three caveats worth mentioning. First, si
the HK propagator does not conserve the norm, the resu
the TSHK propagation may need to be renormalized at
desired time. All of the results presented in this paper w
renormalized to unity. Second, one cannot lett→` when
using an initial basis setF8 and achieve the same numeric
result as the usual HK procedure using a dense MC-sam
initial basis set. To achieve convergence with the HK pro
gator at long times it is necessary to use a very dense in
phase space sampling. Third, because the time-slicing pr
dure requires coupling of information among trajectorie
parallel implementation of the TSHK algorithm is more com
plicated that for the simple independent trajectories of
usual HK method.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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III. ONE- AND TWO-DIMENSIONAL DOUBLE-WELL
MODELS

This section tests the capabilities of the time-slic
Herman–Kluk~TSHK! methodology, described in Sec. II, a
applied to the description of tunneling dynamics in one- a
two-dimensional double-wells. These model systems are
pecially challenging since they have so far defied even
most accurate SC-IVR techniques, including the stand
implementation of the HK SC-IVR method.

A. One-dimensional double-well

In this section we examine the one-dimensional doub
well model system described by the following Hamiltonia

H~x,p!5
p2

2m
1

1

16h
x42

1

2
x2, ~13!

wherem51 a.u., andh51.3544 a.u.
We examine the dynamics of the system by propaga

a wavepacket c t(x) that is initially centered atx0

522.5 a.u.,

c0~x!5p21/4exp~2 1
2 @x2x0#2!. ~14!

The system is schematically shown in Fig. 1.
The time dependent probabilityP(t) of being on the

right of the dividing surface located atx50 is

P~ t !5^c tuhuc t&, ~15!

where the step functionh51 for x.0, and 0 otherwise
Figure 2 shows the evolution ofP(t) as a function of time.
The final time (t5240 a.u.) represents about 60 vibration
periods for a state that oscillates in the bottom of one of
wells. The TSHK results were generated using a cutoff
rameterz51024 and a CS widthg51.0, resulting in a basis
set of about 525650 coherent states. It is important to no
that the size of the basis set fluctuates in time but its m
value remains approximately constant after an initial
crease. A time-slicing intervalt50.25 a.u. was used for thi
system. For comparison, the time step used to integrate
HK equations of motion between each time-slice was 0
a.u.

The results obtained according to the standard imp
mentation of the HK SC-IVR employed 8000 trajectori
and a CS widthg50.5. For clarity, HK results are shown i

FIG. 1. The one-dimensional double-well model.~Solid! The potential
given by Eq.~13!. ~Dotted! ucu2 for the initial wave function given by Eq.
~14!.
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Fig. 1 for only moderate times. The HK results are incre
ingly difficult to converge for times longer than 100 a.u. T
exact QM results were generated by implementing a Fou
transform grid-based method.62

The comparison presented in Fig. 1 shows that
TSHK results agree quantitatively with the full QM result
These results are converged with respect to reduction of
cutoff parameterz. The time-slicing interval oft50.25 a.u.
was necessary to achieve agreement over the whole ran
time shown in Fig. 2. However, for moderate times~i.e., up
to about 100 a.u.! it would have been sufficient to use
time-slicing intervalt'1 a.u.

B. Two-dimensional double-well

The two-dimensional model system explored in this s
tion is described by the following Hamiltonian:

H~x,p!5
p2

2m
1

1

16h
x1

42
1

2
x1

21
1

2
x2

21
1

20
x1x2 , ~16!

wherem51 a.u., andh51.3544 a.u. This system has bee
constructed by bilinearly coupling the one-dimension
double-well model system, described in Sec. III A, to
single harmonic oscillator.

The initial state is defined according to

c0~x!5p21/2exp~2 1
2 @x12x0#22 1

2 x2
2!, ~17!

wherex0522.5 a.u.
In this example, we calculate the correlation functions74

CL~ t !5^fLuc~ t !&, ~18!

CR~ t !5^fRuc~ t !&, ~19!

wherefL5c0 andfR is the ‘‘mirror image’’ of fL reflected
through the origin,

fR~x1 ,x2!5p21/2exp@20.5~x122.5!2#exp@20.5x2
2#.
~20!

Note that the correlation functionCR(t) describes qualita-
tively the portion of the wavefunction that has tunneled fro
the left-hand side of the potential barrier to the right-ha
side. The computed correlation functions are shown in Fig

FIG. 2. Results of the one-dimensional double-well tests. The fraction of
total probability on the right half of the potential shown in Fig. 1. The so
line is the QM result. The failure of the HK method for this case is obvio
from the dotted line. For clarity, only short-time HK results are given. T
HK result is difficult to converge for long time. The TSHK results agr
with the QM results for all times.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The results obtained by implementing the TSHK a
proach were generated using a cutoff parameterz58
31023, a time-slicing interval oft50.5 a.u., and a CS
width g51.0. These parameters yield a basis set size
roughly 18 00061000.

The results obtained according to the standard imp
mentation of the HK SC-IVR were generated by propagat
16 000 trajectories, using the first-order Filinov filterin
expression.17,24,29,63Specifically, we have implemented E
~13! of Ref. 63, settinge51026.75 The CS widthg50.5.
The QM results were obtained by implementing a sp
operator propagation scheme64 in conjunction with Fourier
derivative techniques.

Figure 3 shows that the standard implementation of
HK SC-IVR approach is able to reproduce exact QM resu
but only for fairly short times. In contrast, the TSHK metho
is able to reproduce quantitatively full QM result up to mo
erate times, and give a good qualitative description
longer propagation times. Better agreement at longer tim
could always be obtained simply by further tightening t
parametersz andt.

IV. PROPAGATION ON COUPLED POTENTIAL
ENERGY SURFACES

The TSHK method also provides a convenient way
perform wave packet calculations on coupled potential
ergy surfaces~e.g., electronically nonadiabatic dynamics!.
For the case of two coupled potential energy surfaces,
total system can be described by the Hamiltonian,

FIG. 3. Results of the two-dimensional double-well tests:~a! CL(t); ~b!
CR(t). The correlation functions are defined in the text, andCR(t) provides
an indication of the wave packet tunneling into the right-hand well. T
accuracy of the TSHK method is shown by the agreement between the
and dashed lines. The HK method, shown by the dotted–dashed line,
not reproduce QM tunneling accurately.
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Ĥ5S Ĥ1 V̂c

V̂c Ĥ2
D , ~21!

where H1 and H2 are the adiabatic Hamiltonians on ea
surface andVc is the coupling between them. The result
short time propagation of this system can be written as

uc1~ t1t!&5eiĤ 1t/\uc1~ t !&2
i t

\
V̂cuc2~ t !&,

~22!

uc2~ t1t!&5eiĤ 2t/\uc2~ t !&2
i t

\
V̂cuc1~ t !&,

where c1 and c2 refer to the wave functions on the tw
potential surfaces. We can interpret these equations as ha
two steps: an adiabatic propagation on each surface~the first
term on the right-hand side! followed by ‘‘spawning’’ of tra-
jectories in which the coupling between the surface cau
CSs on one surface to create new CSs on the other su
~the second term!. When V̂c can be written as a sum o
Gaussians, the CSs spawned by the last term in Eq.~22! are
available analytically.

One time step of our algorithm consists of adiabatica
propagating each wave function on its diabatic surface us
the HK propagator, adding to it the spawned CSs from
other surface, and re-expanding the resulting sum using
grid of CSs as in the single-surface problems. We apply
algorithm to one of the dual curve crossing models sugge
by Tully65 to test nonadiabatic dynamics. The model is d
scribed in the diabatic basis by

V̂1~q!50,

V̂2~q!520.1 exp~20.28q2!10.05, ~23!

V̂c~q!50.015 exp~20.06q2!.

This model is widely used in tests of nonadiabatic dynam
and we refer the reader to Ref. 65 for a depiction of t
system.

The initial wave packets, representing a particle of m
2000 a.u. begin to the left of the coupling region and pro
gate to the right. The specific initial conditions are identic
to those of Ref. 65. We have employed a cutoff parame
z51024 and a CS widthg51.0, which typically keep the
size of the basis well below 1000 basis functions. We u
time steps ranging from 0.025 a.u.~high initial momentum!
to 0.1 a.u.~low initial momentum! for propagating the clas
sical trajectories. By virtue of re-expanding the total wa
function ~adiabatic plus nonadiabatically spawned CSs! at
each time step, our effective time-slicing interval is equal
the time step used for integrating the classical equation
motion. It would be possible to use a higher-order finite d
ference formula fordc/dt to give a more accurate~though
more complicated! expression for the nonadiabatical
spawned CS portion of Eq.~22!. This might enable a longe
time interval between spawning and recombining events t
the time needed to integrate the semiclassical~single-
surface! propagator.
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The performance of our method is measured by exam
ing the total fraction of the initial wavepacket that is tran
mitted onto the second surface, as shown in Fig. 4. Our
sults agree quantitatively with the QM results generated
traditional methods.65

For a scattering system like this one, individual CSs m
be discarded as they reach asymptotic regions and caus
wave function to become diffuse at long times.

V. DISCUSSION

The TSHK method is able to reproduce quantitative
full QM results describing tunneling dynamics in one- a
two-dimensional double-well systems. This is not a surpr
because the method is designed to approach exact QM
culations both formally and numerically. Previous real-tim
path-integral simulations have been limited to on
dimensional systems, and thus the results of Sec. III B
notable, as they constitute exact path integral results fro
general two-dimensional potential. The fact that our meth
is derived from repeated applications of a path-integ
propagator has the benefit that the system under study c
be coupled to a bath of oscillators using an influence fu
tional formalism,66 a technique that is not available for dire
grid-based solution of the time-dependent Schro¨dinger equa-
tion. Such a method would allow us to examine tw
dimensional systems coupled to a bath, extending the c
bilities of previous computational studies that were limited
one-dimensional model systems.67

The ability of our method to describe two-dimension
systems is due to the compact nature of the CS represe
tion and not restricted to a specific SC-IVR propagator~e.g.,
the HK SC-IVR!. The only requirement is that the short-tim
propagation should map CSs onto functions that can th
selves be projected analytically onto other CSs. This requ
ment thus includes a large class of approximate semiclas
and QM methods. In particular, we have tested the W
approximate prefactor,19

Ct~p0 ,q0!5Adet@M t#, ~24!

with

FIG. 4. The results of the nonadiabatic tests. The TSHK and QM results
given by the circles and are indistinguishable on the scale of the graph.
lines are drawn to guide the eye.
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det~M t!5)
k51

N
1

2 SAv0~k!

v t~k!
1Av t~k!

v0~k!

3cosS E
0

t

dt8v t8~k! D D 2
i

2 S 2\g~k!

Av0~k!v t~k!

1
Av0~k!v t~k!

2\g~k! D sinS E
0

t

dt8v t8~k! D , ~25!

and we have found that it works well when implement
according to the TSHK approach. This prefactor requi
keeping track of the evolution of the instantaneous eigen
quenciesv t(k), but avoids the need of propagating mon
dromy matrix elements. In contrast, the simple frozen Gau
ian technique originally discussed by Heller,68 in which the
prefactor remains equal to unity at all times, is not accur
enough to be implemented with the time-slice intervals u
in this work.

It is worthwhile to compare our method to others in t
literature. As was mentioned in the introduction, the tim
slicing idea has already been considered within the con
of semiclassical techniques. In fact, Heller proposed a sim
approach as early as 1975,69 though with a different short-
time propagator and without making reference to the st
requirements on the basis of coherent states~not surprisingly,
as the theory of CS frames was not developed until the m
1980s!. However, there are no numerical examples of t
‘‘wave packet path integral’’ method in the literature. Co
catenation of short-time semiclassical propagators is a
central to the so-called hybrid mechanics method.60,70 The
resolution of identity used in that work, however, involves
inverse overlap matrix calculated by singular value deco
position, and does not dynamically optimize the basis se
a function of time. Andersson,61 while noting the concept of
tight frames but not employing them explicitly, has taken t
hybrid mechanics method one step further by implement
an iterative calculation of the inverse overlap matrix, whi
may scale as less thanN3 if sparse matrix techniques ar
employed. Recently, Grossmann provided an application55 of
a ‘‘time-sliced’’ HK propagation scheme~with only two
time-slices!, to a one-dimensional scattering example. H
work implemented a MC evaluation of the identity operat
introduced by Eq.~7!. The results, while an improvemen
over regular HK, did not agree exactly with full quantu
mechanical calculations.

Clearly, a generalization to higher dimensions would
a valuable tool, permitting direct path integral simulation
more realistic models of chemical systems. Because of
overall N2 scaling of the TSHK method, systems with larg
basis sets pose a problem. The use of direct-product CS g
scales poorly with dimensionality, and would greatly i
crease the number of basis functions need for thr
dimensional and larger systems. Such calculations m
therefore be very computationally challenging. Monte Ca
importance sampling methods are usually the most effic
computational techniques for calculating high dimensio
integrals. In the context of the TSHK method, the MC tec
nique would entail construction of a tight frame with ra
domly spaced CS basis functions. This work is however

re
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subject of current ongoing research in our group. While
grid-based approach is simple, accurate, and efficient eno
for up to two dimensions, there might be more efficient wa
of constructing basis sets in higher dimensionality.

VI. CONCLUSIONS

We have shown in this paper how to extend the capab
ties of the HK SC-IVR method to describe accurately tu
neling between disjoint classically allowed regions, as w
as long-time dynamics. We have shown that this can be
complished by implementing the HK SC-IVR in conjunctio
with a time-slicing technique in a discrete coherent state r
resentation. We have demonstrated that the time-sliced
propagator accurately describes tunneling dynamics in o
and two-dimensional double-well model systems for pro
gation times that correspond to more than 60 vibrational
riods at the bottom of one of the wells. We have shown t
the methodology can also be directly implemented to
scribe nonadiabatic dynamics on coupled potential ene
surfaces. Quantitative agreement with full quantum mech
cal calculations was achieved for all model systems inve
gated. Furthermore, we have discussed the representati
the identity operator in a discrete CS basis. We have dem
strated that such a representation can be sufficiently com
as to avoid the need for calculating the inverse overlap
trix. The insight gained into the discrete CS representa
suggests that straightforward application of the time slic
technique to three-dimensional systems might be comp
tionally quite demanding. Nonetheless, we are optimis
about the utility of the method for describing adiabatic a
nonadiabatic dynamics in systems that are more com
than those previously investigated with other path integ
techniques.
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APPENDIX A: DISCRETIZATION SCHEME

This Appendix shows how to obtain the discretizati
scheme, introduced by Eq.~11!. We explore a basis set o
coherent states,

^xupmqn&5S 2g

p D 21/4

exp@2g~x2qn!21 ipm~x2qn!#,

~A1!

for which the basis functions are centered at grid points,

pm5p01mDp,
~A2!qn5q01nDq,
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where the spacings in coordinates and momenta areDq and
Dp, respectively. The goal is to estimate how well such
representation approximates a tight frame, i.e., how well
arbitrary L2 function is approximated by the following ex
pression:

u f &'M 21(
m,n

upmqn&^pmqnu f &. ~A3!

It is well known that, according to the Klauder identit
~7!, any such functionf (x) can be expanded in the continu
ous CS representation,

u f &5
1

2p\ E E dp8dq8up8q8&^p8q8u f &. ~A4!

Therefore, as an estimate, we explore how well any arbitr
basis functionup8q8& can be represented by the expansi
introduced by Eq.~A3!. In particular, we will explore the
discretization,

Dq5lq/2g21/2,
~A5!Dp5lp\g1/2,

wherelp and lq are adjustable parameters. Whenlp5lq

51, the spacingsDp andDq correspond to the critical grid
spacings introduced by Eq.~11!.

We examine the quantity,

15^p8q8up8q8&'M 21(
m,n

^p8q8upmqn&^pmqnup8q8&,

~A6!

since the better the grid representation is, the closer the
above will approximate 1. The summation can be written

M 21(
m,n

u^pmqnup8q8&u2

5M 21U(
m,n

expF2
g

2
~q01nDq2q8!2G

3expF2
1

8g\2 ~p01mDp2p8!2GexpF i

\
$~p82p0

2mDp!1p8q82~p01mDp!~q01nDq!%GU2

5M 21(
m,n

exp@2g~q01nDq2q8!2#

3expF2
1

4g\2 ~p01mDp2p8!2G
5M 21 exp@2g~q02q8!2#expF2

1

4g\2 ~p02p8!2G
3H(

n
exp@22gn~q02q8!Dq#exp@2gDq2n2#J

3H(
m

expF2
1

2g\2 m~p02p8!DpG
3expF2

1

4g\2 Dp2m2G J . ~A7!
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The two sums in curly brackets, which are known as
Jacobi theta functionsu3 , can both be written in the form,

(
n

expF2aS n1
b

2 D 2Gexp@ab2/2#. ~A8!

Examining the sum overn, for which a5gDq2 and b
52(q02q8)/Dq, we find that

exp@ab2/4#5exp@g~q02q8!2#, ~A9!

which exactly cancels the factor exp@2g(q02q8)2# in Eq.
~A7!. The offset in the exponent becomesb/25(q0

2q8)/Dq. Because the grid centerq0 can be chosen arbi
trarily such thatq8 is close toq0 , we can restrictubu<1.
Substitutinga5lq

2/4, the product of allq-dependent factors
in Eq. ~A7! is seen to be

(
n

expF2
lq

2

4 S n1
b

2 D 2G . ~A10!

This sum is a regularly spaced quadrature of the Gaus
exp@2lq

2n2/4#, with the quadrature points at some offsetb/2
from the center of the Gaussian. A continuous integrat
over n would yield the numberA4p/lq

2. The quadrature
result will vary from this answer depending on the offs
b/2. For lq large ~a very peaked Gaussian!, the location of
the grid points changes the quadrature greatly, but for sm
lq it is relatively unimportant.

Recall that we are trying to pick grid spacing factorslq

andlp such that the arbitrary CSup8q8& is well-described by
the CS grid representation. This means that we need to
lq such that the sum~A10! does not depend significantly o
b. We choose to quantify this dependence by looking at
difference in the sum for the two casesb50 ~no offset! and
b51 ~maximum offset!. We define the function

d~lq!5U(
n

H expF2
lq

2

4
n2G2expF2

lq
2

4 S n1
1

2D 2G J U
~A11!

in order to examine the effect of varyinglq . We have tabu-
lated the values ofd(lq) for a range oflq and present the
results in Table I. Thep-dependent terms in Eq.~A7! can be

TABLE I. Accuracy of tight frame identity operator.

lq d(lq)

0.8 2.88(226)
0.9 1.07(220)
1.0 6.66(216)
1.1 8.72(214)
1.2 1.47(211)
1.3 7.81(210)
1.4 1.81(29)
1.5 2.27(27)
1.6 1.78(26)
1.7 9.74(26)
1.8 4.02(25)
1.9 1.33(24)
2.0 3.67(24)
2.1 8.74(24)
2.2 1.85(23)
2.3 3.54(23)
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treated in a manner identical to theq-dependent ones.
Examining the data in Table I, we see that choosinglq

5lp51 gives double precision accuracy, and hence thi
the value we use in normal computation. Recall that the ti
frame identity operator, introduced by Eq.~9!, is used repeat-
edly so that any error in the expansion will compound ra
idly as the propagation progresses. A slight dilation in t
grid spacing would not yield any significant savings in co
putational time, and our tests with dilations on the order
lq'2, lp'2 have given qualitatively incorrect answers.

Finally, carrying through the integration-limit answer fo
the sums overn andm in Eq. ~A7! implies a normalization,

M 215
DpDq

2p\
~A12!

as one might expect from a naive discretization of Eq.~7!.

APPENDIX B: IMPLEMENTATION METHOD

This Appendix outlines an efficient method of projectin
a wavefunction composed of a linear combination of ar
trary spaced CSs onto a minimal grid of equally spaced C
to create the setF8.

We will call the set of arbitrarily spaced CSsA:

~1! Define the center of the new grid (Q0 ,P0) ~we use capi-
tal letters to avoid confusion with notation elsewhere
the paper!. We use the arithmetic average of the pha
space centers of all the CSs inA.
This defines implicitly all the grid points (Qi j ¯

5 iDQ1Q̂11 j DQ2Q̂21¯ ,Pkl¯5kDP1P̂1

1 lDP2P̂2).
Set iteration countern50.
Initialize the new set of CSsF8 as the empty set.
Initialize a set of known negligible CSsN as the empty
set. Initiate setsT andK as the empty set.

~2! For each CS inA, add the grid point closest to this CS t
a list of test grid pointsT(0).

~3! Project the CSub& centered at each grid pointb in T(n)

onto the current wave function, definingc5u^buc&u.
If c.z, add the grid pointb to the setK (n).
Otherwise, add the grid pointb to the list of known
negligible grid pointsN.

~4! Add the grid points in setK (n) to the setF8. SortF8 and
N for easy searching in the next step.

~5! Build a new list of test grid pointsT(n11) consisting of
all nearest neighbor grid points to those in the setK (n),
eliminating known neglible grid points and those alrea
in F8.

~6! If the setT(n11) is not empty, incrementn→n11 and
go to Step 3. Otherwise,F8 is complete.

We use an integer array variable (i , j , . . . ,k,l , . . . ) to refer
to each grid point. This enables efficient sorting and sear
ing for duplicate and known negligible grid points. Sortin
and searching is a trivial computational task. The majority
computer time used is spent in step~3!.
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