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Abstract

Quantum systems in excited states are attracting significant interest with the advent

of noisy intermediate scale quantum (NISQ) devices. While ground states of small

molecular systems are typically explored using hybrid variational algorithms like the

variational quantum eigensolver (VQE), the study of excited states has received much

less attention, partly due to the absence of efficient algorithms. In this work, we

introduce the subspace search quantum imaginary time evolution (SSQITE) method,

which calculates excited states using quantum devices by integrating key elements of the

subspace search variational quantum eigensolver (SSVQE) and the quantum imaginary

time evolution (QITE) method. The effectiveness of SSQITE is demonstrated through

calculations of low-lying excited states of benchmark model systems, including H2

and LiH molecules. With its robustness in avoiding local minima, SSQITE shows

promise for advancing quantum computations of excited states across a wide range of

applications.
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1 Introduction

Computational and theoretical studies of excited states are essential for understanding the

photophysics of molecules, particularly in UV-vis and X-ray absorption spectroscopy of

photochemical reactions.1,2 With the advent of quantum computing, new methodologies

promise to significantly enhance these studies, potentially offering a quantum advantage in

chemistry.3,4 Traditional computational methods, despite their powerful capabilities, face

limitations in modeling complex excited-state phenomena due to the exponential scaling of

resources required. Quantum computing, however, opens new frontiers for exploring a wide

range of problems,5,6 including the crucial excited states in the photochemistry of organic

molecules.7

In the near-term intermediate scale quantum (NISQ) era, quantum advantage of some

specialized applications have already been put forward,8,9 such as the calculation of ground-

state energy in quantum chemistry.10–12 Popular approaches for calculating ground-state

energies in quantum computers include the hybrid variational quantum eigensolver (VQE)

algorithm10,12,13 and the quantum imaginary time evolution (QITE) method.13,14 Beyond

ground-state energies, excited states are equally important for numerous applications,15–17

such as charge and energy transfer in photovoltaic materials, photodissociation,18 lumines-

cence,7 intermediate states in chemical reactions,19 and mechanistic studies of catalytic sys-

tems.20 This has driven significant interest in generalizing VQE and QITE to excited states of

quantum systems. Notable algorithms designed for this purpose include the subspace-search

variational quantum eigensolver (SSVQE)21 and the variational quantum deflation (VQD)18

algorithm. The VQD approach18 has been applied to calculations at Frank–Condon and the

conical intersection geometries,22 and has been adapted to QITE23,24 for determining excited

states.

In this paper, we introduce a novel algorithm called subspace search quantum imaginary

time evolution (SSQITE). The SSQITE algorithm augments QITE with subspace search

to computing excited states to enable the simultaneous calculation of ground and multiple
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excited states. Its efficiency is successfully demonstrated with the calculation of the low-lying

states of H2 and LiH molecules. The paper is organized as follows. First, we introduce the

SSVQE and QITE methods in Secs. 2 and 3, respectively. Then, we describe the SSQITE

algorithm in Sec. 4 and illustrate its application to calculations of excited states of H2 and

LiH in Sec. 5. Conclusions are presented in Sec. 6.

2 Subspace-Search Variational Quantum Eigensolver

The subspace-search variational quantum eigensolver (SSVQE) algorithm extends the vari-

ational quantum eigensolver (VQE) hybrid method.10,12 The VQE is a hybrid quantum-

classical algorithm designed to find the ground state of a quantum system described by

the 2n × 2n Hamiltonian, H, expressed as a sum of tensor products of Pauli matrices

σ
(j)
k = {X, Y, Z, I},

H =
∑
j

cj

n⊗
k=1

σ
(j)
k , (1)

where cj = 2−n Tr[H×
⊗n

k=1 σ
(j)
k ]. VQE generates a trial state |ψ(⃗θ)⟩ = U (⃗θ)|ψ0⟩ by applying

a quantum circuit U (⃗θ) with variational parameters θ⃗ to an initial vacuum state |ψ0⟩. These

parameters are adjusted by a classical computer to minimize the expectation value of the

Hamiltonian, E (⃗θ) = ⟨ψ(⃗θ)|Ĥ|ψ(⃗θ)⟩. This expectation value is computed by summing the

expectation values of the tensor products of Pauli matrices, ⟨ψ(⃗θ)|
⊗n

k=1 σ
(j)
k |ψ(⃗θ)⟩, measured

on the quantum computer. The process iteratively refines θ⃗ to minimize E (⃗θ), thereby

approximating the lowest eigenvalue of H.

SSVQE extends the VQE algorithm to simultaneously find the k lower eigenstates of H.21

First, k orthogonal states |ϕj⟩ are initialized with ⟨ϕk |ϕj⟩ = δkj and then they are evolved

using the same circuit U (⃗θ) with variational parameters θ⃗. Orthogonality is thus preserved

among the evolved states since U (⃗θ)†U (⃗θ) = I, so ⟨ϕk|U (⃗θ)†U (⃗θ) |ϕj⟩ = δkj. The parameters

θ⃗ are optimized by minimizing the sum of the expectation values using the following loss
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function:

Lω (⃗θ) =
k∑

j=0

ωj ⟨ϕj|U †(⃗θ)HU (⃗θ) |ϕj⟩ . (2)

Therefore, SSVQE finds the k orthogonal minimum energy states simultaneously. The co-

efficients ωi, introduced by Eq. (2), with ωi > ωj for i < j, are used to weight each energy

level, effectively arranging the energy expectation values of all orthogonal states in ascending

order.

In this paper, we introduce the subspace search quantum imaginary time evolution

(SSQITE) algorithm by integrating this SSVQE methodology of orthogonal states with the

QITE algorithm.13,14 The resulting SSQITE method thus enables the simultaneous calcula-

tion of multiple excited states by applying the same imaginary time evolution to an initial

set of orthogonal states.

3 Quantum Imaginary Time Evolution

The quantum imaginary time evolution (QITE) algorithm is a hybrid quantum-classical

method used to determine the ground-state energy of a quantum system by propagating

an initial state |ψ(0)⟩ in imaginary time toward |ψ(τ)⟩, where τ = it/ℏ is the imaginary

time.13,14 This technique effectively implements the Wick-rotated Schrödinger equation,

d

dτ
|ψ(τ)⟩ = −(H− Eτ ) |ψ(τ)⟩ , (3)

with Eτ = ⟨ψ(τ)|H |ψ(τ)⟩. Propagating that initial state for a sufficiently long imaginary

time, we obtain the ground-state |E0⟩, provided that ⟨E0 |ψ(0)⟩ ≠ 0. This is expressed, as

follows:

lim
τ→∞

A(τ)e−Hτ |ψ(0)⟩ = |E0⟩ , (4)

where A(τ) = ⟨ψ(0)| e−2Hτ |ψ(0)⟩−1/2 is the normalization factor obtained after imaginary-

time propagation. To apply this procedure to a given parameterized ansatz |ψ(τ)⟩ =
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U(θ(τ)) |0⟩, McLachlan’s variational principle can be leveraged, which states:

δ

∣∣∣∣∣∣∣∣( d

dτ
+H− Eτ

)
|ψ(τ)⟩

∣∣∣∣∣∣∣∣ = 0. (5)

Applying this principle to the optimization of the variational parameters θ⃗ that define

U (⃗θ(τ)) results in the following linear system of ordinary differential equations:13,14

∑
j

Aij θ̇j = Ci, (6)

where

Aij = ℜ

(
∂ ⟨ϕ(⃗θ(τ))|

∂θi

∂ |ϕ(⃗θ(τ))⟩
∂θj

)
, (7)

and

Ci = −ℜ

(
⟨∂ϕ(⃗θ(τ))

∂θi
|H |ϕ(⃗θ(τ))⟩

)
. (8)

The values of Aij and Ci are obtained using the Hadamard test on a quantum circuit by

simply averaging the measurements on the ancilla qubit .13

Having obtained Aij and Ci by measurements of the ancilla in the quantum circuit, the

values of θ⃗ are updated in a classical computer by integrating the Euler equation introduced

by Eq. (6) using the 4th-order Runge-Kutta method.25 The process is iterated until the values

of θ⃗ converge to optimum values, as determined by the McLachlan’s variational principle

introduced by Eq. 5.

4 Subspace-Search Quantum Imaginary Time Evolu-

tion

The subspace-search quantum imaginary time evolution (SSQITE) method, proposed in this

paper, combines subspace search optimization with quantum imaginary time evolution to

maintain orthogonality among states evolving in imaginary time. This approach allows for
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the simultaneous variational computation of both ground and excited energy states using

quantum imaginary time evolution.

The main difficulty in combining the subspace search optimization with quantum imagi-

nary time evolution is that the imaginary time propagation only implicitly optimizes the loss

function defined by the McLachlan’s variational principle in Eq. (5). Instead of defining a

joint loss function, as in SSVQE, the SSQITE algorithm tunes the step size dτj of each level

j individually, such that lower energy states have larger integration time steps (pseudo-code,

Algorithm 1). Intuitively, this allows for lower energy states to overpower the higher energy

states, ordering the output energy spectrum. The tuning of time-steps plays a similar role as

the tuning of the weights ωi in the SSVQE algorithm. In this way, after a sufficient number

of iterations, the SSQITE algorithm returns the k-lowest-energy eigenstates.

Algorithm 1 Pseudo-code for the SSQITE Algorithm

Require: ψ = ψi, with 0 ≤ i < k.
Ensure: ⟨ψi |ψj⟩ = δij
while not all converged(θ̇) do

dτi ← { 1
2i
|0 ≤ i < k} ▷ Initialize Step Sizes

Aijl ← Measure A(U (⃗θ)ψl)

Cil ← Measure C(U (⃗θ)ψl)
θ̇jl ← A−1

ijlCil ▷ Calculate θ̇
for l = 0, l < k, l ++ do

if converged(θ̇l) then
for i = l, i < k, i++ do

dτi ← 2 ∗ dτi ▷ Avoid Exponential Scaling with k
end for

end if
end for
for j = 0, j < num params, j ++ do

for l = 0, l < k, l ++ do
θjl ← θjl + dτl ∗ θ̇jl ▷ Update Theta

end for
end for

end while
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The integration time steps are defined as follows:

dτi =
b

2i
. (9)

with b a tunable parameter. This choice of integration time steps prevents higher energy

levels from overpowering lower energy eigenstates, since

1

2i
≥

k∑
j=i+1

1

2j
. (10)

However, this approach requires a number of steps that scales exponentially as O(2k), where

k is the size of the subspace. This exponential scaling can be overcome by leveraging the

convergence of lower energy levels. The integration time steps used for obtaining higher

energy levels can be increased upon convergence of lower energy states since all remaining

states must be orthogonal to the manifold of lower energy states ⟨Ej |ψi⟩ ≈ δji for i > j.

Therefore, the imaginary time evolution of higher excited states is restricted to an orthogonal

subspace.

Due to the time evolution of excited states being restricted, the integration time step of

these states can be doubled, mitigating the exponential scaling without significantly affecting

the lower energy states. However, the imaginary time evolution of the ground state makes

the overlap with excited states exponentially small, although not exactly zero ⟨E0 |ψi⟩ ≈ e−τ .

Therefore, in practice, some excited states can still evolve into the ground state if they are

not fully orthogonalized. So, it is always necessary to confirm orthogonality with lower

energy states during each round of SSQITE.

5 Results: Ground and Excited states of H2 and LiH

Figure 1 illustrates the energy expectation values for the three lowest energy states of H2

during joint SSQITE optimization (with a fixed H-H bond-length of 0.95Å). The imaginary
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Figure 1: Simultaneous evolution of the energy expectation values for the three lower energy
states of H2 (with fixed bond-length R = 0.95Å) during the first 70 integration steps of
SSQITE optimization. Final energy values are highlighted on the right, and corresponding
statistical errors are of the order 10−4 eV.

time propagation causes these states to interfere through their contributions to ⃗̇θ. As shown

in Fig. 1, the evolution of the ground state for τ ∈ [0, 20] leads to an increase in the energy

of the first excited state, as it is forced into a subspace orthogonal to the ground state. This

effect is also reciprocal, since the evolution of the first excited state likely slows the evolution

of the ground state, as evidenced by the linear slope of the ground state from τ = 0 to

τ = 15.

Figures 2(a),(c) show the three lowest energy eigenvalues of H2 determined through

SSQITE optimization. These calculations use a general two-qubit ansatz depicted in Fig-

ure 3, as a function of the interatomic H-H distance.26 These results demonstrate excellent

agreement with exact results on both noiseless (Figure 2(a)) and noisy (Figure 2(c)) quan-

tum simulators. In fact, the comparison to numerically exact calculations shown in Fig-

ures 2(a),(c) demonstrates the accuracy and capabilities of the SSQITE algorithm over the

entire range of bond-lengths.

Figure 2(b) [Figure 2(d)] shows the errors of the noiseless [noisy] SSQITE calculations
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(a) (b)

(c) (d)

Figure 2: Comparison of the three lowest energy eigenvalues of H2 determined through
(a)-(b) noiseless and (c)-(d) noisy SSQITE optimization to numerically exact calculations
(dashed lines) as a function of the interatomic HH distance. Boxed values correspond to the
final values shown highlighted in Fig. 1. Deviations of (b) noiseless and (d) noisy SSQITE
calculations from the ground truth energy levels of the H2 molecule. All noisy simulations
are performed using the qiskit FakeSherbrooke backend.

|0⟩ RX(θ1) RY (θ3) • RX(θ5) RY (θ7) • RX(θ9) RY (θ11) • RX(θ13) RY (θ15)

|0⟩ RX(θ2) RY (θ4) RX(θ6) RY (θ8) RX(θ10) RY (θ12) RX(θ14) RY (θ16)

Figure 3: Variational quantum circuit ansatz with two qubits used for the SSQITE H2

calculations shown in Fig. 2. The TwoLocal ansatz involves one layer of parameterized RX
and RY gates, followed by a CNOT gate. This ansatz is general, in the sense that it can
realize any two-qubit operation.

for the H2 molecule, which remain within 5.5×10−5Ha (1.3×10−4Ha), i.e., within chemical

accuracy of 1.6× 10−3Ha.18

For comparison, we also apply the SSQITE algorithm to the LiH molecule,27 using a
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custom excitation preserving ansatz with 16 adjustable parameters shown in Figure 4.

|0⟩
Eθ1,θ2 Eθ5,θ6 Eθ9,θ10 Eθ13,θ14

|1⟩
Eθ3,θ4 Eθ7,θ8 Eθ11,θ12 Eθ15,θ16

|0⟩

Eθ1,θ2
=

•
√
X • RZ(θ1) •

√
X •

• RZ(θ2) •

Figure 4: Top: Variational quantum circuit ansatz with three qubits used for the SSQITE
LiH calculations shown in Fig. 5 based on a custom excitation preserving ansatz. Bottom:
Excitation preserving subcircuit with two tunable parameters.

Figure 5: Comparison of the three lowest energy eigenvalues of LiH determined through
(a)-(b) noiseless and (c)-(d) noisy simulation of SSQITE optimization to numerically exact
calculations (dashed lines). Deviations of the (b) noiseless and (d) noisy SSQITE calculations
from the ground truth energy levels of the LiH molecule. All noisy simulations are performed
using the qiskit FakeSherbrooke backend.

10



Figures 5(a),(c) show the three lowest energy eigenvalues of LiH as a function of the

interatomic Li-H distance for the noiseless [Figure 5(a)] and noisy [Figure 5(c)] SSQITE

optimization. The results show excellent agreement with benchmark calculations of the

entire range of interatomic distances.

Figures 5(b),(d) shows the errors of SSQITE calculations for the LiH molecule, which

remain within chemical accuracy. Similarly to the performance for the H2 molecule, SSQITE

performs well in calculations of ground and excited state energies of LiH. In fact, as shown

in Fig. 5, the noiseless (noisy) algorithm exhibits a maximum deviation of 3.3 × 10−4Ha

(3.7× 10−4Ha), below the benchmark of 1.6× 10−3Ha.

6 Conclusions

We have introduced the SSQITE method for computations of excited states using quantum

devices. This method combines key aspects of the SSVQE and QITE methodologies. We

demonstrated the capabilities of SSQITE by calculating the low-lying excited states of H2

and LiH molecules. The results showed robustness in avoiding local minima and excellent

agreement with numerically exact calculations. Additionally, SSQITE is not sensitive to

degenerate states, unlike folded-spectrum VQE or folded-spectrum QITE, which calculate

excited states by altering the Hamiltonian to (H−E)2,24,28 where E is the energy of interest.

We have shown that using QITE as a foundation for excited state algorithms offers

potential benefits relative to VQE, since some local minima typically found during VQE

gradient descent are absent in QITE.13 Additionally, we anticipate that the subspace-search

methodology implemented in SSQITE could also be applied to exploit the advantages of

the QIPA algorithm, which was shown to require fewer iterations than QITE for quantum

optimization of ground states.14 This suggests that the combination of subspace-search and

imaginary time quantum evolution methodologies could outperform other currently available

algorithms for computations of excited states.
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