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ABSTRACT: We introduce a quantum optimal control algorithm for
energy minimization that combines the diffeomorphic modulation under
observable response preserving homotopy (D-MORPH) gradient and the
Broyden Fletcher Goldfarb Shanno (BFGS) iterative scheme for nonlinear
optimization. An extended set of controls defining the time-dependent
mass, dipole moment, and external perturbational field are optimized to find
an effective Hamiltonian that steers the dynamics of the system into the
global minimum without getting trapped into local minima. The algorithm
is illustrated as applied to energy minimization on rugged surfaces and golf
potentials comparable to those previously explored for testing quantum
annealing methodologies.

1. INTRODUCTION

The development of optimization methods for energy
minimization continues to be a challenge at the forefront of
computational scientific research. Over the years, many classical
methods have been established and are routinely applied for
studies of geometry optimization, protein folding, drug docking,
and electronic structure calculations, including approaches
based on classical mechanics with gradients,1 molecular
dynamics,2−4 direct search algorithms,5−7 and simulated
annealing.8−10 One of the usual challenges faced by
optimization on rugged potential energy surfaces, however, is
trapping at local minima. Other challenges of classical methods
include the search of narrow minima on flat potential energy
surfaces, as in the so-called “golf problem”.11 Nonclassical
optimization methods offer several alternatives, including
branch-and-bound methods,12,13 clustering techniques,14,15

tabu search,16,17 hybrid methods,18 and algorithms inspired by
nature such as Evolutionary Algorithms (Genetic Algo-
rithms,19,20 Evolutionary Programming,21 and Genetic Pro-
gramming22,23), the Ant System,24 and Particle Swarm
Optimization.25 However, every optimization method has
limitations in terms of accuracy or computational efficiency.
Therefore, the development and implementation of novel
algorithms remains a topic of great interest. This paper is
focused on a quantum optimal control algorithm with an
extended set of controls that allows for global optimization
without trapping into local minima.
Potential smoothing techniques have been developed over

the past 20 years to reduce the number of local traps and
facilitate global optimization.11,26−29 Some of these methods
include quantum annealing,11,26−30 packet annealing,31 Gaus-
sian density annealing (GDA),32 the diffusion equation method
(DEM),33,34 the ant-lion method,35 and the potential shift
method.36 Several of these algorithms use quantum dynamics to
take advantage of tunneling and the delocalized nature of the

quantum state probing the potential surface.37,38 Quantum
annealing methods have been shown to be more effective than
classical annealing for the Ising spin glass,39 Lennard-Jones
clusters,26,29 the traveling salesman problem,40 the graph
coloring problem,41 and protein folding,42,43 although signifi-
cantly less successful than classical annealing for the more
difficult random Boolean satisfiability problem.44 Despite the
advancements of potential smoothing methods, however, global
optimization of the “golf problem” (i.e., a shallow parabola with
a distant narrow hole) remains particularly challenging and a
benchmark problem for directed optimization algo-
rithms.11,42,45−51

This paper introduces the Quantum Optimal Control
Optimization (QuOCO) algorithm for numerically solving
the general problem of finding the value of x that minimizes
V0(x). As an example, we consider a particle with coordinates x
on a potential energy surface V0(x). Building upon optimal
control techniques,52−60 QuOCO couples the particle to an
external field that steers it to the global minimum of V0(x). At
the end of the propagation, the particle position serves as a
pointer to the coordinates of the minimum. The minimization
problem is thus reduced to the task of adjusting the parameters
of the field (as well as the parameters that define the mass and
dipole of the particle) to ensure that the system is found at the
global minimum after a finite propagation time T = tf − t0.
Therefore, instead of minimizing V0(x) with respect to x,
QuOCO maps the optimization problem into a higher
dimensional space: the space of control parameters that define
the external field, mass, and dipole. The advantage of QuOCO,
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when compared to minimization of V0(x) with respect to x, is
that the algorithm can avoid trapping at local minima of V0(x)
by systematically increasing the dimensionality of the
optimization problem (i.e., adding controls to the field, mass,
and dipole).
Initially, QuOCO exploits quantum effects to explore

classically forbidden regions on the potential energy surface.
The resulting dynamics in turn provide feedback for
optimization of the control parameters defining the perturba-
tional field and the system time-dependent mass and dipole
moment. Upon optimization of the controls, however, the
system typically “flies” over all obstacles like a “quantum drone”
and lands as a localized state at the global minimum after
propagation for time T. Optimization of the controls with
respect to ⟨V̂(T)⟩ could in principle be based on traditional
approaches. For computational efficiency, however, QuOCO
implements the D-MORPH gradient in conjunction with the
BFGS optimization method. An advantage of the D-MORPH
gradient when compared to traditional methods is that it allows
for evaluation of the gradients for all N control variables with
only four propagations of the quantum state.60 In contrast,
traditional methods based on calculations of the control
gradients by finite differences require at least N + 1 evaluations
of ⟨V̂(T)⟩, making the overall computational effort daunting
when each evaluation requires propagation of the wave packet
for time T. Another distinct aspect of QuOCO is the
implementation of the D-MORPH gradient with BFGS
optimization, which is much more efficient than integration
of the controls by Runge−Kutta,60 and the optimization of
controls beyond those of the perturbational field, including
parameters for the time-dependent dipole and effective mass.
The extended set of controls allows for global optimization,
without trapping into local minima, as illustrated in section 3
for several challenging potentials, including minimization on
the golf potential previously explored for testing quantum
annealing methodologies as well as more challenging potential
energy surfaces with multiple minima.

2. METHOD
2.1. Optimization. To find the global minimum of a given

function V0(x), QuOCO simulates the evolution of a particle of
mass m on that potential energy surface V0(x) and under the
influence of a perturbational field E(t,β), as described by the
time-dependent Hamiltonian:
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where V̂(x,t,β) = V0(x) − μ(x,t,β)·E(t,β), with μ(x,t,β) the
time-dependent dipole moment and β = (β1, ..., βN) the
adjustable control parameters. The mass of the system m(t,β) is
also assumed to be time-dependent and determined by the
controls. For simplicity, we consider notation in atomic units,
so ℏ = 1, the electron mass me = 1 au, the electron charge qe = 1
au, and the permittivity of a vacuum 4πε0 = 1 au.
The aim is to find parameters β so that the initial state ψi =

ψ(t0) can evolve into a final state ψf(β) = U(tf,t0;β)ψ(t0), at
time T = tf − t0, that minimizes the expectation value of the
potential energy:
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Here, V̂0(T,x;β) = U†(tf,t0;β)V0(x)U(tf,t0;β) with the time-
evolution operator,
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t
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To minimize ⟨V̂0(T;β)⟩, the parameters β can be optimized
by following a path in control space, parametrized by a scalar s,
as follows:
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with gradients defined in terms of the gradients of V̂0(T;β) with
respect to the controls, as in the D-MORPH method:
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to ensure that ⟨V̂0(T,x;β)⟩ would decrease monotonically along
that path, as follows:
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Equation 4, with gradients defined according to eq 5, can be
integrated numerically by using the fourth-order variable step-
size Runge−Kutta (RK) solver,61,62 obtaining the optimal
controls. However, such a method is computationally
demanding since the gradients need to be evaluated several
times per integration step. Nevertheless, it provides detailed
information on the control lanscape and has been previously
implemented to find controls that maintain an observable
expectation value.60 Here, the QuOCO algorithm implements
it to find the set of controls that optimize the expectation value
of the observable ⟨V̂0(T;β)⟩.
A more efficient approach is to use the Broyden−Fletcher−

Goldfarb−Shanno (BFGS)63−69 and limited memory Broy-
den−Fletcher−Goldfarb−Shanno with boundaries (L-BFGS-
B)70−72 optimization methods to minimize ⟨V̂0(T;β)⟩ with
respect to the controls β without integrating eq 4. These
methods perform far fewer evaluations of the landscape
gradient (each requiring four propagations) and where possible
use line minimizations (each requiring one propagation)
instead. A comparison of performance of BFGS and L-BFGS-
B versus fourth-order Runge−Kutta is presented in section
3.1.3, showing that BFGS, specifically L-BFGS-B, is the most
effective optimizer for QuOCO.
Both Runge−Kutta solution of eq 4 and BFGS optimizations

require computations of the gradients of ⟨V̂0(T;β)⟩ with respect
to the controls β, which are obtained by using the D-MORPH
gradients (Appendix 1):54−60
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where Hβj = (∂Ĥ)/(∂βj). Here, |ψC(t)⟩ = U(t,0;β)|ψi⟩ is
obtained by forward propagation of the initial state |ψi⟩. The
state |ψB(t)⟩ = U(t,0;β)|ψA⟩ is obtained by forward propagation
of the state |ψA⟩ = U†(T,0;β)V0(x)U(T,0;β)|ψi⟩ previously
prepared by forward and backward propagation. Compared to a
naiv̈e finite-differencing approach, if the gradient of the
Hamiltonian is known, the D-MORPH gradient is analytically
exact as well as computationally more efficient. Instead of N + 1
propagations for finite differencing, four propagations are
sufficient to evaluate the D-MORPH gradient: two propaga-
tions for time T for the calculation of ψA and two forward
propagations for time T for the simultaneous forward
propagation of ψB and ψC. Considering that QuOCO involves
increasing the number N of control parameters βj until a trap-
free landscape is obtained, the constant scaling of the D-
MORPH gradient is vital to the success of QuOCO.
2.2. Propagation. Wavepackets are propagated according

to the split operator Fourier transform (SOFT) method.73−75

The time-evolving state ψ(t) is expanded in the basis set of n
equidistant delta functions δ(x − xk), distributed in the range of
coordinates xmin − xmax, with xk = xmin + (xmax − xmin)(k − 1)/
(n − 1), where k = 1 − n. Propagation for a short time τ is
accomplished by applying the time-evolution operator, as
defined by the Trotter expansion:
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where V̂ ≈ V̂(x,t,β) and m ≈ m(t,β) during the propagation
time increment τ.
In this study we focus on one-dimensional model systems.

However, applications to higher dimensional problems could be
performed analogously by using other wavepacket propagation
schemes such as the MP/SOFT method.76−83 Other method-
ologies for quantum propagation on higher dimensional
potentials include Coupled Coherent States (CCS)84,85 and
Multi-Configurational Ehrenfest (MCE) dynamics,86−88 the
Multiple Spawning (MS) methods Full Multiple Spawning
(FMS)89,90 and ab initio Multiple Spawning (AIMS),91,92 the
Herman-Kluk semiclassical (HKSC) approximation,93,94 the
time-dependent Gauss-Hermite (TDGH) method,95−97 and
the Gaussian Multiconfigurational Time-Dependent Hartree
(G-MCTDH)98,99 and variational Multiconfigurational Gaus-
sians (vMCG) methods.100,101

2.3. Control Parameters. 2.3.1. Perturbational Field.
Control parameters ci and si determine the perturbational field,
as follows:

∑ ω ω= +
=
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i
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According to eq 10, the partial derivatives of the Hamiltonian
with respect to ci and si are

μ ω= −H x t t( , ) sin( )s ii (11)

μ ω= −H x t t( , ) cos( )c ii (12)

We note that the expression of E(t), introduced by eq 10, is not
necessarily representative of a realistic perturbational field with

a finite temporal profile. In our initial attempts, a physically
realistic field envelope with a sin2 shape for the temporal profile
was employed with much less success than when using eq 10.
The results reported in section 3 were obtained by

optimization of the controls after initializing the field
coefficients as si = 0.003 and ci = 0.008. These values were
deliberately chosen to demonstrate the capabilities of the
optimization procedure by ensuring that the initial perturba-
tional field would not induce localization of the wave function
in the global minimum. The lowest six frequencies from the
reciprocal space of the corresponding temporal grid,

ω π= · =
T

j j N
2

, 0, ...,j c/2 (13)

were used for eq 10, unless otherwise indicated. The number of
frequencies was chosen to balance the computational effort and
freedom in control space, as discussed in section 3.1.2.

2.3.2. Dipole Moment. Control parameters γsjn and γcjn
define the time-dependent dipole moment, as follows:
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for a given set of constants kj and ln. The partial derivatives of
the Hamiltonian with respect to these control parameters are
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The optimized shape of the dipole moment is critical since it
determines the probe-field interaction according to the
following force:

= −∇F x V x( ) ( ) (17)

μ= −∇ + ∇ ·F x t V x x t E t( , ) ( ) ( , ) ( )0 (18)

The nonuniform force, given by eq 18, ensures a finite gradient
throughout space that is critical for inducing localization of the
wavepacket at the global minimum in spite of the intrinsic
delocalization induced by propagation.
Initially, various functional forms for time-independent

dipole moments were tested, including ex, arctan(x), erf(x),
tan(x), and ex sin((π(x − xmin))/((xmax − xmin))), although
with only moderate success. From these forms, ex was the most
advantageous, although not always successful due to numerical
problems and the limited success of exponential dipoles in
mediating the coupling with the field E(t). The main limitation
was that they provided a single set of gradients at each position.
Results, reported in Sec. 3, were obtained by initializing the
dipole controls to unity (i.e., γsj = γcj = 1.0). Such initialization
ensured that the system did not localize at the global minimum
during the initial propagation for time T and that, only after
optimization of the controls, localization at the minimum was
achieved despite the deliberately chosen adverse starting
conditions.

2.3.3. Mass. The complete set of controls also includes
parameters ϑj, defining the time-dependent mass, as follows:
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∑ δ= ϑ −
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where tj = jτ, with τ the propagation time increment,
introduced in section 2.2. The window functions δ are defined
as δ(t − tj) = 1 for |t − tj| < τ/2 and δ(t − tj) = 0 otherwise.
From eq 19, we obtain the derivative of the Hamiltonian with
respect to the controls ϑj, as follows:
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t j
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In initial attempts, a particle with a constant mass was used.
Due to only partial success, a time-dependent mass of the form
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( ) ( )
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was subsequently introduced, where m0 and mf were the initial
and final values of the mass, and P was the power of the mass
change rate. The motivation was to start with a low value for
the mass that would facilitate ballistic motion and then increase
the value to facilitate localization at the global minimum.
However, best performance was achieved when the mass value
was optimized at each time during the propagation. This was
accomplished by using the summation of delta functions, given
by eq 19, and the L-BFGS-B constrained BFGS optimization
algorithm to ensure that the mass had physically realistic values
during the optimization.
2.4. Temporal Grid. The total propagation time T = tf − t0

and the integration time step increment τ must be tuned
according to the problem of interest to ensure convergence of
the results with respect to both of these parameters. Increasing
T allows the wave function to probe a more extended region of
the potential energy surface and gives more time to the
perturbational field to steer the evolution of the wavepacket
into the global minimum. Concurrently, an increase in the total
number of time steps incurs greater computational cost.
Therefore, the temporal grid parameters must be chosen to
balance the benefits of flexibility and control, as mentioned
below, with the greater cost of an increased number of time
steps. Section 3 shows that a very modest number of
propagation time steps (14−50) is often sufficient for
successful optimization.
The temporal grid determines the range of perturbational

field frequencies available for optimization. The frequencies
that define the perturbational field according to eq 10 should be
represented on the corresponding reciprocal temporal grid.
Each frequency must be in the range (2π)/T < ω ≤ π/τ, where
adjacent frequencies are separated by (2π)/T. Thus, increasing
T decreases the minimum value of the frequency and increases
the total number of possible frequencies. Decreasing the time
step τ increases the maximum value of the frequency.
A greater frequency range gives more flexibility to the field to

steer the wave function from its initial position to the global
minimum. As two perturbational field controls are used for each
frequency (si and ci) in eq 10, a greater number of frequencies
also allows for more field controls. A greater number of field
controls in turn allows for more freedom in control space to aid
global optimization. Moreover, changes in the temporal grid
affect the dipole temporal constants ln in eq 14 as well as the
perturbational field frequencies.
The number of mass controls introduced by eq 19 is also

determined by the temporal grid. Increasing the number of

time steps by increasing the propagation time T or decreasing
the time step τ increases the total number of mass controls and
allows the mass to change more often over the propagation
time, as each time step has one control ϑj. In addition, a smaller
time step τ reduces the minimum possible mass by reducing the
minimum momentum that can be represented on the
corresponding temporal grid.

2.5. Position Grid. When implementing the quantum
propagation, as described in section 2.2, with the time-
dependent wave function represented on a grid of n equidistant
delta functions δ(x − xk) with xk = xmin + (xmax − xmin)(k − 1)/
(n − 1), where k = 1 − n, it is important to include an extended
range of coordinates (x = xmin − xmax) consistent with the initial
conditions and the total propagation time T. The position grid
must also provide a sufficient number of dipole control
parameters. In the same way that the choice of the temporal
grid (discussed in section 2.4) determines the available
perturbational field frequencies in eq 10 and dipole temporal
constants ln in eq 14, the position grid determines the available
dipole position constants kj in eq 14. The dipole position
constants must be represented on the position grid, such that
each dipole position constant is in the range (2π)/(xmax − xmin)
< kj ≤ π/(Δx) with adjacent constants separated by (2π)/(xmax
− xmin). The position range gives the lowest available constant
and the separation between adjacent constants, while the
distance between neighboring position grid points gives the
highest available constant. This is critical for optimization of the
dipole and ultimately successful optimization.
The results discussed in section 3 are based on grids with n =

210 grid points in the x = [−10,10] au range. The initial state of
the system was chosen as a Gaussian

ψ α
π

α= − − + −⎜ ⎟
⎛
⎝

⎞
⎠x x x p x x( ) exp

2
( ) i ( )i k k k

2
4
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where α = 1 is a constant, x is the position, xk is the initial
position, and pk = 0 au is the initial momentum. In the study, xk
was varied to demonstrate the ability of QuOCO to locate the
global minimum in high-energy and low-energy cases despite
unhelpful positioning of the initial state. In general purpose
applications, the initial state could be chosen according to what
is known about the surface to be analyzed and simulations
based on various different initial conditions could be compared.

3. RESULTS AND DISCUSSION

The presentation of results is organized as follows. Section 3.1
illustrates the QuOCO methodology as applied to asymmetric
double wells with various levels of complexity as determined by
the size of the barrier, the asymmetry of the wells, and the
initial conditions, and includes an extended discussion of the
optimization procedure and the parameters involved. Then,
section 3.2 demonstrates the algorithm as applied to more
challenging benchmark model potentials, including multiwell
potentials and the golf problem.

3.1. Benchmark Double Well Potentials. We have
implemented the DMORPH gradient and applied it with an
RK solver and BFGS optimizers to the search of global minima
in benchmark potential energy surfaces, defined as follows:

ω
σ

= − − −
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⎝
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Figure 1 and Table 1 show that the QuOCO methodology is
successful for both the RK solver and the BFGS optimizer but

that BFGS delivers superior efficiency, employing between 80
and 95% fewer propagation runs.
The complexity of the surface is modulated by changing the

various parameters, including ω that defines the curvature (i.e.,
shallowness of the surface), D is the depth of the global
minimum, σ is the width of the global minimum basin, and xl
and xg are the positions of local and global minima, respectively.
Note that m0 is the particle mass at the initial time only, so
interpreting ω as frequency is incorrect at later times, when the
mass is adapted.
The analysis of convergence, relative to the total propagation

time T, shows that a very modest number (14−47) of time
steps are necessary for global minimization on these potential
energy surfaces. Benchmark calculations for surfaces 1−3
required a final propagation time shorter than T = 20τ (with

τ = 0.2 au). Localization of the final wave function in a narrow
minimum, as in surface 4, typically requires longer propagation
times (e.g., 50τ) because of the lower number of bound states
and greater zero point energy.

3.1.1. Steered Quantum Dynamics. The optimized controls
determined by QuOCO minimization of ⟨V̂(T)⟩ define the
time-dependent perturbational field, dipole, and mass to be
used to obtain a final state with minimum potential energy at
time T. The expectation value of the position ⟨x ̂(T)⟩ then
pinpoints the location of the global minimum on the surface.
Therefore, the resulting optimization determines the coor-
dinates of the global minimum and the values of the controls
necessary to steer the dynamics of the system to the global
minimum of the potential energy surface.
Figure 2 shows the final states (red lines) obtained for

potential energy surfaces (1) and (4) of the form given by eq
23 and intermediate results obtained during optimization of the
controls after 0 (solid blue), 30 (dashed blue), 45 (dotted
blue), and 72 (solid red) optimization iterations (left panel).
These results show how successive iterations lead to a state

that pinpoints the global minimum. The initial state position
was defined for xk = 0.0 au and the propagation time was T =
50τ, with τ = 0.1 au. Here, we used 50 mass controls with initial
guess values m(t) = 1 au + (7 au)(t/T)2, 12 field controls for
the lowest six frequencies on the reciprocal temporal grid, and
10 dipole controls with initial guess values γxj = 1.0 for dipole
constants consisting of all possible combinations of kj = (2πj)/
(xmax − xmin), ln = (πn)/(Δx), where j = 0, ..., 5, l = 0, ..., (Nγ)/
(10) − 1 in a dipole of the form of eq 14. For L-BFGS-B
optimization, M = 5 correction pairs, a function tolerance Ftol =
1012 (where (Fk − Fk+1)/(max{|Fk|,Fk+1|,1}) ≤ Ftol·εmachine), with

Figure 1. Final states localized at the global minima (red lines) obtained by QuOCO steered quantum dynamics of the initial states (orange lines) on
asymmetric double-wells (gray lines) parametrized according to Table 1 (from left to right: surfaces 1−4). The initial states (orange lines) are
defined according to eq 22, with xk = −2.0, pk = 0, and α = 1. Base lines of quantum densities indicate total energy.

Table 1. Parameters (in au) for Model Hamiltonians of
Benchmark Systems with Double-Well Potential Energy
Surfaces, Defined by Eq 23, with Mass m(t) Defined by Eq
21, where m0 = 1 au and P = 2a

surface ω σ D T mf BFGS RK

1 1 1 8 16τ 2m0 591 7347
2 2 1 32 14τ 2m0 240 4396
3 2 0.5 40 19τ 4m0 752 9821
4 0.2 0.25 12 47τ 4m0 397 1958

aThe number of propagation runs required for optimization of the
controls by using BFGS optimization and RK solver methods are
reported in the columns marked BFGS and RK, respectively.

Figure 2. Left: Final state obtained through iterative optimization of the controls by wavepacket propagation of an initial guess (dotted orange) after
0 (solid blue), 30 (dashed blue), 45 (dotted blue), and 72 (solid red) iterations, showing how the initial state (dotted orange) is driven by the
external field into an optimized final state (solid red) localized at the global minimum of the potential energy surface (solid gray). Right: Analogous
results for a shallow surface with a distant narrow minimum after 0, 6, 31, and 59 iterations. Base lines of quantum densities indicate total energy.
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Fk the function value for the kth iteration and εmachine the
machine precision), and a projected gradient tolerance Gtol =
10−5 (where Gtol = max{|Gi|i=1,...,N} and Gi is the projected
gradient in the direction of control i) were used to balance the
accuracy of high M and Ftol and low Gtol values with the
computational efficiency of low M and Ftol and high Gtol.
Figure 3 (left) shows how the initial states (red) are driven

from the initial state (0 time steps) to the final state (after 50
time steps) according to steered quantum dynamics based on
optimized controls.
In addition, Figure 3 shows the optimized time-dependent

mass and perturbational field (center and right panels,
respectively). Initially, the system has low mass and is therefore
influenced by the perturbational field. In both examples, the
system gains energy from the field (time steps 1−16) until it is
well over the energy barrier separating the local and global
minima. Then, it is pulled toward the global minimum. The
strength of the perturbational field diminishes as the wave
function reaches the global minimum well. Simultaneously, the
mass increases to aid localization of the particle in the global
minimum (time step 50).
3.1.2. Control Space Dimensionality. Theoretically, for a

sufficiently large number of controls βj, the minimization
becomes free of suboptimal traps.54−56 The premise of such a
theorem is that the Hamiltonian can be written as a matrix
made up of elements that can be individually varied by the
controls β. In an infinite-dimensional space, this assumption
can be reached only asymptotically. Nevertheless, we can add
control variables systematically through a delta function
expansion of the mass dependence and the Fourier expansions
of the field and dipole. We can also add time steps by either
increasing the total time or decreasing the time step. In fact, we
can asymptotically approach a scenario in which vectors in
control space individually vary each of the Hamiltonian’s
elements in the matrix representation of the eigenstates
populated during the propagation. For our processes, it is
evident that the target can be reached via a finite energy path
involving only finitely many low-energy eigenstates of the
system, so that a finite Hamiltonian matrix results that can be

fully controlled with finitely many control variables βj. Since we
have a systematic way of adding control variables, we can reach
any number of controls that may be required to take advantage
of this aspect of the D-MORPH gradient.
The QuOCO methodology should always find the global

minimum, given enough controls and sufficiently long
propagation time T. As discussed in section 2.1, increasing
the number of controls does not increase the number of
wavepacket propagations, although the computational effort
may increase with the number of controls since more
optimization iterations may be needed for the search in a
higher-dimensional space. Therefore, it is important to tune the
number of controls to optimize the underlying computational
cost while keeping the dimensionality of the control space
sufficiently large. In practice, the current implementation
requires a sufficient number Nc of perturbational field controls
and Nγ dipole controls to allow the dipole-field interaction to
direct the initial wave function into the global minimum. The
number of mass controls Nϑ must allow the mass to begin low
enough for the particle to be moved to the global minimum
well and sample a large enough area of the potential surface
through quantum dispersion and tunneling. It must also be able
to become high enough for the system to sufficiently localize in
the global minimum well at the end of the propagation.
The number of controls of each type can be chosen to

balance the ability of the optimizer to maneuver in control
space with high computational efficiency. To explore this
balance, the computational time necessary to locate the global
minimum of surface 1 was compared for various combinations
of controls. Increasing Nγ and Nϑ was shown to increase the
computational run time linearly with the number of controls.
As each mass control ϑj is associated with a single time step in
the propagation via eq 19, increasing the number of mass
controls Nϑ linearly increases computational effort. However,
the impact of Nγ and Nc is dominated by their impact on the
size of the search space for the optimizer.
In contrast, a subconstant scaling with respect to Nc was

observed. This is likely due to the fact that more control
parameters may open up shortcuts in control space for trap-free

Figure 3. Evolution of wave packets (red lines) in the potential surface (orange line) based on steered quantum dynamics with fully optimized
controls, as they propagate from the initial state (0 time steps) to the final state (after 50 time steps). Fully optimized mass and perturbational field
time-dependence are shown in the center and right panels, respectively.
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global minimization, as discussed in section 2.1.54−56 In fact, we
find that increasing the number of field controls Nc, given a
suitable number of dipole controls Nγ and mass controls Nϑ,
serves to decrease linearly the computational time necessary for
location of global minima, providing an efficient path to the
global minimum.
3.1.3. Potential Energy Optimization. The D-MORPH

gradient offers significant advantages over finite differencing
methods for calculations of the gradients of the expectation
value ⟨Ô(T)⟩ with respect to the controls. While only four
propagations are required according to eq 7, regardless of the
number N of controls βj, analogous calculations based on
second order differencing require N + 1 propagations. Updating
the controls according to eq 4 via solution of eq 5, however, is
usually computationally demanding and requires intensive
integration methods, such as fourth-order Runge−Kutta (RK)
integration.60 Here, we show that BFGS and L-BFGS-B
nonlinear optimizers allow for significant gains in computa-
tional efficiency, typically converging 1 or 2 orders of
magnitude faster than RK integration (Table 1 and Figure 4).

Figure 4 shows the expectation value of the potential energy
⟨V̂(T)⟩ for two representative examples (labeled as surfaces 1
and 2, for propagation time T = 16τ, Figure 4) to illustrate the

relative performance of D-MORPH/RK and D-MORPH/
BFGS. Both methods evolve the controls to an optimized set
that localizes the wave function at the global minimum.
However, D-MORPH/BFGS (specifically, D-MORPH/L-
BFGS-B) minimization is significantly more efficient, requiring
only 3−6% of the computational effort required by D-
MORPH/RK with comparable tolerance.
Note that ⟨V̂(T)⟩ decreases sharply to the global minimum

for surfaces 1 and 2 after 150 and 125 propagations for L-
BFGS-B optimization, after 100 and 380 propagations for RK
solution, and after 430 and 760 propagations for BFGS
optimization, respectively. The L-BFGS-B optimization toler-
ances were as detailed in section 3.1.1. A variable step size for
the Runge−Kutta solution of eq 5 was used with a minimum
step size of εh = 10−12 au and abort condition with εn = 10−6 au
as the norm of the gradient. The abort condition was satisfied
when the observable difference between consecutive iterations
dropped below a set abort tolerance. Here, the observable is the
potential expectation value at the final time of each propagation
under controls β given by the iteration in control space. The
abort tolerance is set so that the RK solver finds the global
minimum and the BFGS optimizer performance is compared at
the same tolerance.
An initial Runge−Kutta step size Δs = 1 au was used to

maximize the length of each Runge−Kutta step. The BFGS
optimization tolerances were manipulated to reproduce the
results of QuOCO with Runge−Kutta. Fletcher values εF =
10−4 for potential (3) and εF = 10−3 for other surfaces were the
maximum possible values that reproduced the expectation value
of the potential energy ⟨V̂(T)⟩ results from the Runge−Kutta
solution of eq 5 for the potentials under study. The functional
tolerance εm = 10−4 accounted for the numerical error and was
decreased to the minimum at which BFGS minimization was
successful.
At comparable tolerances, both the RK solver and BFGS

optimization methods resulted in a wave function localized in
the global minimum after several hundred propagations of the
wavepacket, at which point the rate of reduction of ⟨V̂(T)⟩
decreased significantly but did not completely plateau. For
example, for surface 2 with BFGS optimization, the global
minimum well was clearly located by 251 propagations, even
though 914 propagations were necessary for complete
minimization. The minimization can be even more efficient if
a BFGS optimization method is applied only until reaching the
global minimum basin and then minimization is completed in a
few optimizer iterations by a gradient-driven optimization.

3.1.4. Comparison to Potential Smoothing and Quantum
Annealing. The energy contribution from the dipolar

Figure 4. Expectation value of the potential energy ⟨V̂(T)⟩ for two
representative examples (labeled as surfaces 1 and 2, propagation time
T = 16τ) as a function of the number of propagation runs employed
during optimization. Color key: L-BFGS-B optimizer (solid lines), red
(surface 1) and gray (surface 2); RK solver (dashed lines), light blue
(1) and dark blue (2); BFGS optimizer (dotted lines), orange (1) and
blue (2). Magnification of the first 1000 steps in inset. The L-BFGS-B
optimizer iterates not strictly monotonically but converges to the
optimized result much more rapidly than the BFGS optimizer and RK
solver.

Figure 5. Effective potential V(x) − μ(x,t)E(t) steering dynamics toward minimum, at t = 0 (red), 8 (orange), and 16 τ (blue), with τ = 0.2 au, for
surface 1 (eq 23, Table 1), and perturbational field parametrized as E = 0 (left), with coefficients si = ci = 0.68 (center), and optimal controls (right)
as obtained by QuOCO.

The Journal of Physical Chemistry B Article

dx.doi.org/10.1021/jp5046723 | J. Phys. Chem. B 2015, 119, 715−727721



interaction −μ(x,t)E(t) could overtly serve to remove the
potential barrier separating the local and global minima as in
potential smoothing methodologies. Therefore, it is important
to analyze the net potential V(x) − μ(x,t)E(t) after
optimization of the control parameters by QuOCO and assess
whether optimization is in fact achieved by potential smoothing
or steered quantum dynamics (Figure 5).
Figure 5 (center panel) shows that the dipolar interaction

with fixed controls si = ci = 0.68 reduces the barrier between the
local and global minima, illustrating how an applied field may
be used for potential smoothing. However, Figure 5 (right
panel) shows that QuOCO optimization does not evolve the
controls to smooth the effective potential but rather adapts the
shape of the effective potential to steer the dynamics into the
global minimum. While the effective potential might become
barrierless during the propagation, at subsequent stages the
barriers are re-established and serve to localize the system at the
global minimum. Note, for example, that at the time 8τ, the
original barrier has disappeared while a global minimum
appears near the position of the original barrier. At time 16τ,
however, a larger barrier appears at the location of the original
barrier. In contrast, the effective potentials typically used by
smoothing techniques are barrierless and remain static during
the optimization.33,102,103

The QuOCO method can also be compared to quantum
annealing, which involves potential smoothing in conjunction
with quantum propagation.26,27 A variable value of ℏ is typically
decreased toward convergence to reduce the zero-point energy
of the system at the minimum. In contrast, QuOCO keeps ℏ
constant and localizes the state by increasing the mass. The

increased mass serves to decrease the zero-point energy. While
physically distinct, the QuOCO Hamiltonian with variable mass
can also be interpreted as a Hamiltonian with time-dependent
ℏ and constant mass, so QuOCO could be thought of as a
generalized version of quantum annealing that includes D-
MORPH/BFGS optimization of the time-dependent ℏ as well
as optimization of the time-dependent dipolar interaction with
the perturbational field.
QuOCO and quantum annealing have common features as

well as significant differences. Both methods are based on
quantum propagation, exploit quantum effects (e.g., tunneling
and interference) for exploration of the potential energy
surface, and localize the state at the minimum by decreasing the
zero-point energy. Whereas quantum annealing methods
require stochastic sampling and repeated trials, QuOCO
makes use of steered dynamics to reach the global minimum.
In addition, QuOCO optimizes the parameters that define the
mass, dipole, and perturbational field by using nonlinear D-
MORPH/BFGS optimization and finds the controls that guide
the initial state to the global minimum. Another difference is
given by the requirements of the initial state. For quantum
annealing to succeed, the initial state has to have some
significant amplitude at the global minimum.26 In contrast,
QuOCO can be successful even if the initial state does not
fulfill the requirements of quantum annealing, so long as the
propagated state has some finite amplitude at the global
minimum. Due to these features, QuOCO compares quite well
in terms of performance, as shown in section 3.2, even for
potentials more challenging than the most difficult golf
potentials solved by potential smoothing techniques.11

Figure 6. Final states (red line) after propagation of the initial state (orange line) with optimized controls found by QuOCO for six different triple-
well potentials (gray line) from left to right (A)−(C), top row; (D)−(F), center row; and golf potential (G), bottom row.
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3.2. Multiple-Well and Golf Potentials. 3.2.1. Multiple-
Well Potentials. Figure 6 shows the capabilities of the QuOCO
algorithm as applied to the search for global minima in
benchmark potential energy surfaces with multiple wells of the
form:

σ σ
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where D, σ, and x0 define the depth, width, and position of a
deep well, respectively, while D′, σ′, and x0′ define the
corresponding parameters for another narrow well, according
to the various sets of parameters listed in Table 2. The initial

guess values for the time-dependent mass were defined as m0(t)
= 1 au + (7 au)(t/T)2, and the propagation time T = 80τ with τ
= 0.1 au. The initial state was defined according to eq 22, with
xk = 0.0 au for (A)−(F) and xk = −8.0 au for (G). The initial
guess dipole coefficients were defined as γxj = 1.0 and the dipole
constants included all possible combinations of kj = (2πj)/(xmax
− xmin),lj = j for j = 1, ... ,(Nγ)/2 in a dipole of the form given by
eq 14. The 30 lowest possible frequencies on the reciprocal
temporal grid were used for perturbational field controls for all
potentials except (D) and (G), for which all 40 possible
frequencies were used. The numbers of dipole controls Nγ are
listed in Table 3.

Figure 6 shows the final states (red line) obtained by
propagation of the initial state (orange line), with optimized
controls obtained by QuOCO. These results show that the
algorithm is able to find the global minima for all six triple-well
potentials (A)−(F) and the golf potential (G). Case (A),
shown in the top-left panel of Figure 6, involves a state initially
localized in a shallow local minimum next to a deep well
separated from the global minimum by a large barrier. As
shown by the position of the localized final state, QuOCO
successfully finds the global minimum in several hundred

iterations. Case (B), shown in the top-center panel of Figure 6,
is more challenging since it involves an initial state that is
separated from a wide global minimum by a barrier that is both
high and wide. Case (C) is even more demanding since it
involves a narrower global minimum separated by a large
barrier. Case (D) is even more difficult and requires a larger
number of field controls, including all frequencies on the
reciprocal temporal grid, since it involves a narrow global
minimum separated by a higher barrier. Cases (E) and (F)
show successful performance even for bifurcated dynamics of a
state initially located in a shallow valley, showing that the
optimization procedure is successful irrespective of the location
of the global minimum well relative to the initial state. Finally,
case (G) shows successful global minimization even when the
potential is not bounded by a parabolic component.
In summary, benchmark calculations for the model systems

shown in Figure 6 show that QuOCO exhibits successful
performance despite the intrinsic challenges of high barriers,
distant global minima, narrow wells, shallow initial valleys, fine
separation between local and global minima, and bifurcation.
Overall, QuOCO is a successful global minimization technique
that avoids trapping into local minima, given a sufficient
number of controls and sufficient propagation time.

3.2.2. Golf Potentials. For direct comparison with potential
smoothing algorithms, QuOCO was evaluated as applied to
“golf potentials” of the general form:11

∑= − − −
=

V x x D S x x( ) exp( ( ) )
i

i i i
2

1

3
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2
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where Di, Si, and x0,i are the depth, width, and position,
respectively, for the ith well of the potential energy surface in a
harmonic valley. Figure 7 shows the results of optimizations for
four different golf potentials, parametrized as described in Table
4. The results of the optimizations are summarized in Table 5.
Figure 7 (left panel) shows that QuOCO is able to locate the

global minimum of the golf potential (i), previously used as a
benchmark model for testing quantum annealing methods.11 In
addition, Figure 7 shows the capabilities of QuOCO to solve
even more difficult potentials of the same form, including
potentials (ii)−(iv). Successful optimization required Nc = 100,
Nγ = 400, and Nϑ = 100. The initial guess for the time-
dependent mass was m(t) = (99 au) (t/T)2 for model (i), m(t)
= 1 au(149 au) (t/T)2 for models (ii) and (iv), and m(t) = 1
au(199 au) (t/T)2 for model (iii). The propagation time was T
= 100τ, with τ = 0.1 au. The initial positions xk = 0.0 au and xk
= 3.5 au were used for (i) and (ii)−(iv), respectively. All
possible frequencies on the reciprocal time grid were used. For
the dipole, an initial coefficient guess γxj = 1.0 and dipole
constants with all possible combinations of kj = ((2πj)/(xmax −
xmin)),ln = (πn)/(Δx) were used, with j = 0, ..., 5, l = 0, ..., (Nγ)/
(100) − 1 in a dipole of the form of eq 14.
In summary, Figure 7 shows that the QuOCO methodology

can successfully locate global minima in rather challenging
potentials with difficult obstacles. The optimizations for
benchmark potentials (ii)−(iv) illustrate the capabilities of
QuOCO as applied to minimization problems more challenging
than model (i), including the search for more distant global
minima (ii), narrower minima (iii), and the differentiation
between global and local minima of similar depths (iv). While
these model problems are typically difficult for a variety of
alternative methods, we find that QuOCO is capable of solving
such problems effectively due to the flexibility offered by an

Table 2. Parameters (in au) of Triple-Well Potentials and
Golf Potential Defined by Eq 24

case ω x0 D σ x0′ D′ σ′
(A) 1.0 3.0 10 0.7 7.0 30 1.5
(B) 1.0 2.0 10 0.25 7.0 35 1.5
(C) 1.0 3.0 20 0.7 6.0 50 0.5
(D) 1.0 2.0 20 0.5 6.0 50 0.5
(E) 1.0 −6.0 20 0.7 6.0 50 0.5
(F) 1.0 6.0 20 0.7 −6.0 50 0.5
(G) 0.0 4.0 20 0.25 8.0 30 0.5

Table 3. Number of Dipole Controls Nγ, Expectation Value
of the Potential Energy ⟨V̂(T)⟩, Position ⟨x(̂T)⟩, Position
Standard Deviation (SD), and Number of Propagation Runs
(# runs) for Model Potentials (A)−(G), shown in Figure 6

case Nγ ⟨V̂(T)⟩ ⟨x̂(T)⟩ SD # runs

(A) 12 −7.1 6.4 0.45 215
(B) 12 −12 6.4 0.85 235
(C) 14 −29 5.7 2.4 530
(D) 16 −25 4.9 5.0 400
(E) 6 −31 5.8 0.82 545
(F) 8 −28 −5.8 1.2 585
(G) 10 −29 7.8 1.9 460
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extended set of controls that allow the system to gain energy
from the field and surmount extended barriers separating local
and global minima.

4. CONCLUSIONS
We have introduced the QuOCO methodology to perform
steered quantum dynamics for energy minimization. The
method combines the D-MORPH gradient and nonlinear
optimization (most efficiently L-BFGS-B) based on an
extended set of controls that define the time-dependent mass,
dipole moment, and perturbational field. We have illustrated
the resulting algorithm as applied to the search for global
minima in potential energy surfaces with multiple wells,
including the prototypical golf problem previously explored
for testing quantum annealing methodologies, as well as more
challenging minimization problems on rugged surfaces. When
compared to naıv̈e computation of gradients in N-dimensional
control space via finite differencing (requires N + 1
propagations), the D-MORPH gradient is highly accurately
evaluated in only four wavepacket propagations, independent of
the number of controls, allowing for the addition of controls at
little cost dominated by optimization in a larger space. The
QuOCO method prescribes addition of control variables in a
systematic fashion via series expansion of the controlled
quantities so that the number of controls can always be
converged to the point where the global minimum is found
successfully. As currently formulated, the method requires
wavepacket propagation, which is computationally demanding,
although a variety of performant methods for wave packet
propagation are available.76,77,84−101 Work in progress involves
the implementation of QuOCO within the framework of

semiclassical dynamics for global minimization in high-dimen-
sional potential energy surfaces.

5. APPENDIX 1
The gradients of the potential energy with respect to the
control parameters,
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can be computed according to eq 7 since
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where subscript βj denotes the partial derivative with respect to
βj.
To derive eq 27, we consider that
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where the propagator, introduced by eq 3, satisfies the time-
dependent Schrödinger equation,
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Its partial derivative with respect to βj, Uβj, satisfies the
following equation:
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Therefore, according to eqs 31 and 30, we obtain
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Integration with respect to time and multiplication by the
forward propagator yields

Figure 7. Golf potentials (i)−(iv) (gray line), parametrized according to Table 4, and final states (red line) after propagation of the initial state
(orange line) with optimized controls found by QuOCO.

Table 4. Parameters (in au) of Golf Potentials Shown in
Figure 7, Defined According to Eq 24, Including x0,i, Di, and
Si, with i = 1−3

case x0,1 D1 S1 x0,2 D2 S2 x0,3 D3 S3

(i) −2.0 15 10 2.0 10 3.0 3.0 15 3.0
(ii) −3.0 20 10 2.0 10 3.0 3.0 15 3.0
(iii) −2.0 15 12 2.0 10 3.0 3.0 15 3.0
(iv) −2.0 13 10 2.0 10 3.0 3.0 15 3.0

Table 5. Expectation Values (in au) of the Potential ⟨V̂(T)⟩
and Position ⟨x(̂T)⟩ as Follows, Standard Deviation (SD),
and Number of Propagation Runs for Golf Potentials (i)−
(iv)

case ⟨V̂(T)⟩ ⟨x ̂(T)⟩ SD # runs

(i) −9.2 −1.7 1.1 520
(ii) −8.9 −2.8 0.40 395
(iii) −9.8 −1.9 0.34 160
(iv) −5.7 −1.6 1.2 450
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and the conjugate of eq 33 gives
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Substituting eqs 33 and 34 into eq 28 gives eq 27.
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