Supporting Online Material for

Theoretical EXAFS studies of a model of the oxygenevolving complex of photosystem II obtained with the quantum cluster approach.

Xichen Li^{1,2,*}, Eduardo M Sproviero⁴, Ulf Ryde³, Victor S Batista⁴, Guangju Chen¹.

 College of Chemistry, Beijing Normal University, 100875, Beijing, China. 2. Department of Physics, ALBA NOVA, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden. 3. Department of Theoretical Chemistry, Lund University, Chemical Center, P.O. Box 124, S-221 00 Lund, Sweden. 4. Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA.

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

Corresponding author:

*To whom correspondence should be addressed. E-mail: xli@fysik.su.se.

This file includes the following parts:

Cartesian coordinates of the refined cluster model

Figures S1-S8.

- Calculated polarized EXAFS spectra in *k*-space.
- Comparison of the experimental and the calculated polarized EXAFS spectra with certain atoms removed.
- Comparison of calculated isotropic EXAFS spectrum.
- Individual atomic contributions to whole isotropic spectrum.
- Scatter contributions to the isotropic EXAFS spectrum of Mn1 based on path analysis.
- Scatter contributions to the isotropic EXAFS spectrum of Mn2 based on path analysis.
- Scatter contributions to the isotropic EXAFS spectrum of Mn3 based on path analysis.
- Scatter contributions to the isotropic EXAFS spectrum of Mn4 based on path analysis.

References

Mn	29.6201456	38.2278094	66.4149376
Mn	26.5717874	40.1116494	69.3324181
Mn	28.8366467	38.0116989	68.9520148
Mn	28.5872679	39.7084067	71.0818856
0	28.5516491	39.2752043	67.7191088
0	29.8323303	39.1703234	69.9200289
Õ	28.0225735	41.0745615	69.9802001
Õ	27.4367903	38.6398682	70.1038117
Ca	29.9276503	41.2324733	68.4401020
C	33 3151681	40 0124718	64 0344725
Н	34 0154229	39 2058538	64 1938794
Н	33 5463982	40 6512998	63 1949290
Н	32 3692763	39 5250805	63 7724428
C	33 0943499	40 8240235	65 3252551
н	32 5650837	41 7796784	65 0988/86
н	34.0687456	<i>A</i> 1 131381 <i>A</i>	65 8013652
C	32 2261130	40 10/6266	66 3767952
$\hat{\mathbf{O}}$	31 0666070	40.7423817	67 4565768
0	31.7718300	38 0586604	66 0880067
C	2/ 3031826	16 2802876	68 4847244
с u	24.3931820	40.2892870	67 7263122
н Ц	23.0334789	40.0724808	68 5471610
п	24.7089301	47.3202042	60.4465201
П	23.9123224	40.0397218	69.4403201
	23.3012600	45.2974088	60.0028954
П	20.3188700	43.4200408	09.0938834
П	20.0927331	43.4383220	07.3284237
	23.0213282	43.840/831	08.2919383
п	24.2370049	43.7202022	07.4947327
П	24.3172098	43.0023379	09.2437373
C	20.1039313	42.7009002	08.0380330
0	27.1580880	43.0415275	67.4550921
0 C	25./005003	41.3033088	08.4490889
C II	21.8812079	30.4390735	00.3011212
H	20.8572268	30.1433838	00.0349134
П	22.4224421	30.3932889	03.3033137
C	22.5206516	35.2815780	6/.0//8314
0	22.1952067	35.0346075	68.2648142
C	21.7620443	37.7353123	67.1505187
H	20.9731701	37.6001924	67.9141414
H	21.4577860	38.5/54060	66.4948/38
C	23.0503171	38.1114461	67.8501516
N	23.6120570	37.2337475	68.7655719
H	23.1624631	36.3273557	68.9834998
C	23.9450124	39.16/3/55	67.7681376
H	23.8981414	40.1014561	67.1814487
C	24.7816908	37.6918072	69.1613036
H	25.505/977	37.1820212	69.8055211
Ν	25.0269552	38.8950926	68.5933119

Ν	23.5080093	34.5926781	66.4252174
Η	23.6277688	34.8403663	65.3983448
С	24.4187735	33.7086757	67.0891161
Н	24.7464842	32.9816221	66.3359148
Н	23.8955380	33.1669524	67.8820200
С	25.6381012	34.4376590	67.7004080
Н	26.2789201	33.7010611	68.2404710
Н	25.2745917	35.1540617	68.4681305
C	26.4530789	35.1648744	66.6252054
Ĥ	25.7700779	35.6418024	65.8830650
Н	27.0433788	34.4330675	66.0320024
C	27 4207527	36 2724565	67 0138291
Õ	28 0375179	36 7996320	66 0398946
õ	27 5655028	36 6450432	68 2398002
Č	26.0923255	41 0622870	74 8555534
Н	26 5886664	40 1056425	75 0461360
Н	25 4262936	41 2628038	75 7063588
C	25.1202530	40 9676037	73 5733911
н	23.2353510	41 9616622	73 3313779
Н	24 4248042	40 2556960	73 7100879
C	26.0304138	40 5276519	72 3274427
$\tilde{0}$	27 2758737	40 1787460	72.327 1127
0	25 4169450	40 5020506	71 2329277
C	27 1338200	42 1203149	74 7847152
$\tilde{0}$	27.0276262	43 1565656	74 0164145
N	28 1430400	42.0831810	75 6901340
Н	28 2813060	41 2032848	76 1916891
C	29.1931998	43.0890631	75.8013125
Н	29,5009403	43.1718207	76.8467589
Н	28.7580066	44.0353158	75.4724771
C	30.4490040	42.7458957	74.9759873
Õ	31,4575136	42.2740800	75.5021990
Ň	30.3069085	42.9806893	73.6408070
Н	29.4109791	43.2880288	73.2472122
C	31.2989135	42.5465511	72.6883091
Н	31.7617097	43.3943647	72.1379632
Н	32.0937745	42.0171943	73.2524134
C	30.6831943	41.6057650	71.6484458
0	31.1082232	41.6608993	70.4664416
Õ	29.7699113	40.8040234	72.0848211
Ċ	31 6073128	34 8395030	73 9938031
Н	31.1227211	34.2178310	74.7321087
Н	32,5557924	35.2392131	74.3209398
Н	31 8223576	34 1919768	73 1325066
C	30.8273883	36.0704069	73.4996661
H	31.5293749	36.6605756	72.8604863
Н	30,5670282	36.7494821	74.3496643
C	29.5553145	35,7676309	72.6824810
H	28.7025652	35.6034304	73.3740105
Н	29.6815388	34.8339830	72.0896201
C	29.2169554	36.9057889	71.7133013

0	29.2079561	36.6237902	70.4685945
Ο	28.9750943	38.0405402	72.2334025
С	37.9196244	35.9678988	72.8110976
Η	37.2804789	35.3360318	73.4099607
Η	38.5611340	36.5836131	73.4240927
Η	38.5906915	35.2706860	72.2897911
С	37.1828978	36.7817400	71.7350010
Н	36.4497263	36.1199072	71.2105705
Н	37.9288977	37.0822292	70.9551404
C	36.4717557	38.0729031	72.2302917
Ĥ	37.2237247	38.6836100	72.7991205
Н	35.6487738	37.8276793	72,9336783
C	35 9432877	38 9398969	71 0862159
Н	36 7641086	39 1173035	70 3418813
Н	35 6443760	39 9420453	71 4986617
N	34 7813988	38 3878567	70 4275824
н	34 7681739	37 3871957	70.2726666
C	33 5692985	39 0422912	70 3341380
N	33 6041508	40 3920093	70.3341500
н	32 6932263	40.9162417	70.3049999
н	34 4072957	40.9102417	70.011/833
N	32 / 330//2	38 3835777	70.2196733
ц	32.4550442	37 3775345	70.0387346
и П	31 5150160	38 8578177	70.0381/01
Γ	25 6607630	33 65001/3	70.0301491
с ц	25.0007039	33.0309143	73 6315154
п п	25.0914074	33.0700281	75.0313134
п п	25.5094545	33.0090100	75.5655446
Γ	20.0341080	34.0337042	74.7007099
С Ц	24.3763461	34.7337391	74.4030408
п Ц	24.4403342	33.1970369	73.4029299
П	23.3973076	34.2020740	74.2207373
	24.0139372	35.8905204	72 2102266
IN C	25.0/10539	30.8700432	75.5195500
С Ц	25.9452627	30.1329791	72.7307319
Γ	20.8742902	33.3920933	72.3694239
	24.4210131	37.7291924	72.4099691
п N	25.9349423	38.0303830	72.0308047
	25.0882009	37.3303907	72.1003990
П	20.3330326	37.6329043	/1.4/02400 66 5252076
	22 0576466	31.7074711	65 5265206
п	32.0370400	31.3699402	67 2202162
п	32.3011300	31.2110433	66 56 52 0 20
П	32.3349202	32.7463703	66 6202260
	30.3410071	32.0020309	66 2227827
п	27.1031082	21.2104309	00.333/82/
П	30.0031/93	32.3283913	65 7040205
	29.9791137	24 2207012	65 0157720
0	30.7012130	34.337/213	65 0092004
C	20.9310409	33.2302001	50 6262500
с ц	21.0400009	32.033020/	58 7701021
11	ZI.JUIZU4J	52.2100472	JU.1104234

Η	21.0470910	33.7534480	59.5585403
Η	21.2688134	32.3162585	60.5086620
С	23.1380821	33.1994170	59.8727360
Η	23.6559371	33.4255519	58.9008203
Η	23.1953764	34.1356864	60.4806612
С	23.8941960	32.0875616	60.6183686
Η	23.5518364	32.0712666	61.6775480
Η	23.5993482	31.1012092	60.1904648
С	25.4349096	32.1477413	60.5743473
Η	25.8416934	31.2184021	61.0562964
Η	25.7617467	32.0989684	59.5043167
С	26.1712970	33.3544763	61.1742535
Н	27.2579722	33.2552033	60.9711623
Н	25.8681487	34.3252786	60.7501115
Ν	26.0050728	33.4709142	62.6540436
Η	26.6745017	34.2847849	63.0099264
Н	25.0515595	33.8622137	62.9080838
Н	26.2929388	32.6375499	63.2261720
Cl	23.5850868	35.2174329	63.3347755
0	29.1301964	39.3923223	65.0295008
Η	29.6657364	39.1749026	64.2314144
0	30.2067964	37.3000103	67.9379074
0	31.8006579	35.8523081	69.4327024
Η	30.9971772	35.6858898	69.9816944
Н	31.3502125	36.2726203	68.6263163
0	29.2617436	41.7446815	66.2076638
Η	29.1894594	40.8777610	65.6575448
Н	28.3394395	42.0948040	66.3492063
0	29.4044611	43.6215004	68.8275273
H	29.0732873	43.7910290	69.7539083
Н	28.5679184	43.6745785	68.2523838
0	28.2180841	43.4065384	71.3904562
H	28.0273901	42.4892574	70.9950089
Η	27.5577409	43.5137909	72.1215992
0	30.6272340	36.8291240	65.0697297
H	31.5597936	37.1296141	65.2328301
Н	30,5802450	35.8318505	65.3652692
0	27.8964579	35.2765989	63.6288034
Ĥ	28.4800428	34.5611420	64.0569834
Н	27.8221664	35.9592501	64.3642730
0	26.0939728	36.4898483	61.6120870
Ĥ	26.8724014	36.2741118	62.1835720
Н	25.3044930	36.3135783	62.2037757
0	27.0353273	31.5682686	64.3805175
H	27.8656199	32.1088888	64.6675105
Н	26.5081852	31.4394246	65.1981159

Figure S1. Calculated polarized EXAFS spectra in k-space for the refined cluster model structure. Unfortunately, we cannot compare to the experimental spectrum in k space, because it has not been published.

Figure S2. Comparison of the experimental (red) and the calculated polarized EXAFS spectra of the refined cluster model (blue) with certain atoms removed. Upper panel: only Mn_4CaO_5 was retained. Bottom panel: Mn_4CaO_5 and the first-sphere ligating atoms were retained. It can be noted that the general features of the spectra are reproduced already with Mn_4CaO_5 , but the finer details require inclusion also of the first-sphere ligating atoms.

Figure S3. Comparison of calculated isotropic EXAFS spectrum for the refined cluster model (blue) and one set of experimental data¹ (red) (first converted from *k*-space into *R*-space).

Figure S4. Individual contributions from the four Mn ions to the calculated isotropic EXAFS spectrum.

Figure S5. Path analysis of the Mn1 contribution to the isotropic EXAFS spectrum of the cluster model. The black curve is the total contribution, shown in Figure S4a, whereas the colored curves show the contributions from paths involving certain atoms. The first peak (around R = 1.4 Å) is caused by paths involving Mn1 and its first-sphere ligating oxygen atoms (red). The second peak (around R = 2.3 Å) is mainly due to paths involving Mn1 and the other Mn ions (blue). The third peak (around R = 3.1 Å) is mainly due to paths involving Mn1 and Ca, whereas the contribution from C and other O atoms is minor.

Figure S6. Path analysis of the Mn2 contribution to the isotropic EXAFS spectrum of the cluster model. The first peak is caused by paths involving Mn2 and its first-sphere ligating oxygen and nitrogen atoms (red). The second peak is mainly due to paths involving Mn2 and the Mn3 or Mn4 ions (blue). The third peak is mainly due to paths involving Mn2 and Ca, C, and the other oxygen atoms.

Figure S7. Path analysis of the Mn3 contribution to the isotropic EXAFS spectrum of the cluster model. The first peaks (R < 1.5 Å) are caused mainly by paths involving Mn3 and its first-sphere ligating oxygen atoms (red). The second peak is mainly due to paths involving Mn3 and the other Mn ions (blue). The third peak is mainly due to paths involving Mn3 and Ca, C, and the other oxygen atoms.

Figure S8. Path analysis of the Mn4 contribution to the isotropic EXAFS spectrum of the cluster model. The first peak is caused by paths involving Mn4 and its first-sphere ligating oxygen atoms (red). The second peak is mainly due to paths involving Mn4 and the Mn2 or Mn3 ions (blue). The third peak is mainly due to the paths involving Mn4 and Ca,C, and the other oxygen atoms.

1. Haumann, M.; Müller, C.; Liebisch, P.; Iuzzolino, L.; Dittmer, J.; Grabolle, M.; Neisius, T.; Meyer-Klaucke, W.; Dau, H., Structural and Oxidation State Changes of the Photosystem II Manganese Complex in Four Transitions of the Water Oxidation Cycle ($S0 \rightarrow S1, S1 \rightarrow S2, S2 \rightarrow S3$, and $S3, 4 \rightarrow S0$) Characterized by X-ray Absorption Spectroscopy at 20 K and Room Temperature[†]. *Biochemistry* **2005**, *44* (6), 1894-1908.