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ABSTRACT: A general coherent control scenario to suppress or accelerate
tunneling of quantum states decaying into a continuum is investigated. The
method is based on deterministic, or stochastic, sequences of unitary pulses
that affect the underlying interference phenomena responsible for quantum
dynamics, without inducing decoherence, or collapsing the coherent evolution
of the system. The influence of control sequences on the ensuing quantum
dynamics is analyzed by using perturbation theory to first order in the control
pulse fields and compared to dynamical decoupling protocols and to
sequences of pulses that collapse the coherent evolution and induce quantum
Zeno (QZE) or quantum anti-Zeno effects (AZE). The analysis reveals a
subtle interplay between coherent and incoherent phenomena and demon-
strates that dynamics analogous to the evolution due to QZE or AZE can be
generated from stochastic sequences of unitary pulses when averaged over all
possible realizations.

I. INTRODUCTION

Advancing our understanding of coherent control techniques
to accelerate or suppress tunneling of quantum states decaying
into a manifold of continuum states is a problem of great
technological interest.1-3 Tunneling is central to a wide range
of molecular and electronic processes and often determines the
lifetime of metastable states and the timescales of electron and
proton transfer. During the past 30 years, several coherent
control methods have been developed and optimized to manip-
ulate a wide range of quantum processes4-21 including tunneling
dynamics.6-8,13-19 This paper focuses on one of the most
recently proposed methods,15,22-24 based on sequences of
unitary pulses that repetitively change the phases of interfering
states responsible for quantum dynamics without inducing
decoherence or collapsing the coherent evolution of the system.
The method has been numerically demonstrated as applied to
control superexchange electron tunneling dynamics in mono-
layers of adsorbate molecules functionalizing semiconductor
surfaces when using either deterministic or stochastic sequences
of unitary phase-kick pulses.25-30 However, the underlying
control mechanism induced by those sequences of unitary pulses
has been difficult to elucidate from a cursory examination of the
ensuing dynamics.

This paper reports a rigorous theoretical analysis of the origin
of quantum control as resulting from the interplay between
coherent and incoherent phenomena induced by deterministic or
stochastic sequences. Control is analyzed by perturbation theory
to first order in the pulse fields and compared with dynamical
decoupling (DD) protocols31-33 and sequences of pulses that
periodically collapse the coherent evolution34-37 and yield
dynamics modulated by quantum Zeno (QZE) and quantum
anti-Zeno (AZE) effects.15,22,38 The reported results provide

fundamental insights into the origin of suppression of quantum
tunneling by sufficiently frequent perturbation pulses and accel-
eration induced by pulses separated by finite time intervals.

The analytic expressions reported for the description of short-
time dynamics also provide understanding of the effect of
randomization of pulse sequences and clarify how the ensuing
dynamics depends on the average time period between perturba-
tional phase-kick pulses when averaged of all possible realizations
of control sequences. These results are particularly valuable, since
stochastic pulse sequences have already been demonstrated to
achieve control in condensed material systems29,30 or predicted
to outperform deterministic pulsed schemes in control of
quantum coherences.15,22 Considering that current laser tech-
nology can produce a wide range of pulses with ultrashort time
resolution and extremely high-peak power, it is natural to expect
that the quantum control techniques explored in this paper
should raise significant experimental interest.34,39

The paper is organized as follows. Section II introduces the
model system and the description of spontaneous decay due to
tunneling into a continuum. Section III introduces coherent
control based on equally time-spaced phase-kick pulses, as
applied to the acceleration or suppression of tunneling into a
continuum. Section IV analyzes a generalization of the method to
sequences of randomly time-spaced pulses. Section V explores
stochastic sequences, averaged over all possible realizations, as
compared with DD protocols and quantum Zeno effects. Con-
cluding remarks and future directions are presented in SectionVI.
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II. TUNNELING INTO A CONTINUUM

We consider the system depicted in Figure 1, initially prepared
in a bound metastable state |sæ coupled to a continuum, as
described by the following Hamiltonian:39,40

Ĥ ¼ ωsjsæ Æsj þ
X
k

ωkjkæ Ækj þ
X
k

ðVksjkæ Æsj þ Vskjsæ ÆkjÞ

ð1Þ
where |sæ and |kæ are stationary eigenstates of Ĥ, when Vks = 0,
with energies ωs and ωk, respectively. For simplicity, notation is
kept in atomic units (with p =1). When Vks 6¼ 0, state |sæ is
nonstationary. Therefore, a system initially prepared in state |sæ
spontaneously decays by tunneling into the continuum. In the
absence of external perturbations, the time-evolution is described
by the time-dependent wave function,

ΨðtÞ ¼ RsðtÞ e-iωstjsæþ
X
k

βkðtÞ e-iωktjkæ ð2Þ

with Rs(0) = 1, and βk(0) = 0 for all |kæ. The equations of motion
of the time-dependent expansion coefficients, introduced by
eq 2, are obtained by solving the time-dependent Schr€odinger
equation, as follows:

_Rs ¼ - i
X
k

Vske
iðωs - ωkÞtβk ð3Þ

_βk ¼ - iVkse
iðωk - ωsÞtRs ð4Þ

Integrating eq 4 from time tb to time t yields

βkðtÞ- βkðtbÞ ¼ - i
Z

t

tb

Vkse
iðωk - ωsÞt0 Rsðt0Þ dt0 ð5Þ

and substituting eq 5 into eq 3 gives

_Rs ¼ -
X
k

Z
t

tb

jVksj2eiðωk - ωsÞðt0 - tÞ Rsðt0Þ dt0

- i
X
k

Vske
iðωs - ωkÞt βkðtbÞ ð6Þ

Equation 6 can be solved exactly by using standard Laplace
transform techniques;34,41 however, for sufficiently short time
intervals, one can approximate Rs(t0) ≈ Rs(tb) as shown in

Appendix A and obtain the following solution of eq 6:41,42

RsðtÞ � RsðtbÞ 1-
X
k

jVksj2
Z t

tb

ðt - t0ÞeiΩksðt0 - tbÞ dt0
 !

- i
X
k

Vsk

Z t

tb

eiΩskt0 βkðtbÞ dt0 ð7Þ

where we introduced Ωsk = ωs - ωk. Similarly, the expansion
coefficients for states |kæ are obtained from eq 5, as follows:

βkðtÞ � βkðtbÞ- iRsðtbÞ Vks

Z t

tb
eiΩskt0 dt0 ð8Þ

It is important to note that the above approximation holds only in
the limit of short time intervals for which t - tb < 2π/Ωks.

Equation 7 yields the standard expression for the spontaneous
population decay of state |sæ due to coupling to the manifold of
continuum states |kæ, as follows:15,22,43

PsðtÞ ¼ jRsðtÞj2 ¼ 1-
X
k

jVksj2
Ωsk

2

� �2 sin
2 Ωsk

t
2

� �
ð9Þ

and is valid up to second order in perturbation theory, since it
neglects terms of O(|Vks|

3) and higher.
Sections III-V show that the spontaneous decay described by

eq 9 can be suppressed or accelerated by perturbing the system
with a train of unitary pulses (Figure 1) that change the phase of
the wave function component along state |sæ relative to the other
terms in the coherent state expansion of eq 2. Section V also
shows that eq 9 is recovered in the limit where the pulses have a
low probability of inducing changes of phase.

III. PERIODIC PULSING

Consider the evolution of the system, introduced in SectionII,
as perturbed by two consecutive instantaneous pulses, Q̂, spaced
by a time interval Δt as follows:
1 Evolve the system for a short time period, Δt, using eqs 7
and 8.

2 Apply an instantaneous pulse, Q̂.
3 Continue the evolution, from t =Δt to t = 2Δt, according to
eqs 7 and 8.

4 Apply another pulse, Q̂.

Figure 1. (a) Unstable quantum state |sæ tunneling into a manifold of continuum states |k1æ|knæ with couplings Vks. The initial metastable state Æx|sæ =
Φ0(x) is defined as the ground state of an electron in the quadratic approximation to the quartic potential V(x) = -Rx2 þ βx4 with R = 1/2 and
β = 0.0461. (b) Time-dependent population Ps(t) = Æjt|1- h(x̂)|jtæ due to evolution on V(x), with V(x) = V(xe) for x < xe = 2.33 au, as modulated by
instantaneous 2π pulses applied at time intervals Δt. Here, h(x) = 1 for x < 0 and h(x) = 0, otherwise.22.
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Repeating steps 1-4 n times, evolves the system to time t =
2nΔt, yielding the expansion coefficientsRs(2nΔt) and βk(2nΔt)
for states |sæ and |kæ, respectively.

For simplicity, we consider the specific case of sequences of 2π
pulses, for which each pulse, Q̂, changes the sign of the projection of
the time-evolved wave function along the direction of |sæ as follows:

Q̂ jψæ ¼ jψæ- 2jsæ Æsjψæ ¼
X
k

jkæ Ækjψæ- jsæ Æsjψæ ð10Þ

leaving unaffected the projection of |ψæ along themanifold of states
|kæ in the continuum. Therefore, 2π pulses can be represented as
Qs = 1 - |sæÆs|, yielding the following evolution for the expansion
coefficients:

βkðΔtÞ ¼ βkð0Þ- iVks
eiΩksΔt - 1

iΩks

 !
Rsð0Þ

RsðΔtÞ ¼ Rsð0Þ 1-
R Δt
0

ðΔt - t0Þ Kðt0Þ dt0
� �

- i
X
k

Vsk

Z Δt

0
eiΩskt βkð0Þ dtR

0
sðΔtÞ ¼ -RsðΔtÞ

βkð2ΔtÞ ¼ βkðΔtÞ- iVks
ei2ΩkSΔt - eiΩksΔt

iΩks

 !
R

0
sðΔtÞ

R
0
sð2ΔtÞ ¼ R

0
sðΔtÞ 1-

Z 2Δt

Δt
ð2Δt - t0Þ Kðt0 -ΔtÞ dt0

 !

- i
X
k

Vsk

Z 2Δt

Δt
eiΩskt βkðΔtÞ dt

Rsð2ΔtÞ ¼ -R
0
sð2ΔtÞ ð11Þ

whereK(t) =
P

k|Vks|
2eiΩskt. Collecting the expressions, introduced

by eq 11, with Rs(0) = 1 and βk(0) = 0, we obtain

where terms of O(|Vks|
3) have been neglected. Terms II and III

have opposite signs and, therefore, introduce the couplings to the
continuum with interference effects.

Repeating the process described above n times, we obtain
Rs(2nΔt). The contributions to Rs(2nΔt) from term I are

Terms from I ¼ P
k
jVksj2

R Δt
0

ðΔt - t0ÞeiΩskt0 dt0 þ :::

þ
X
k

jVksj2
Z jΔt

ðj - 1ÞΔt
ðjΔt - t0ÞeiΩskðt0 - ½j - 1�ΔtÞ dt0 þ :::

þ
X
k

jVksj2
Z
ð2n - 1ÞΔt

2nΔt ð2nΔt - t0ÞeiΩskðt0 - ½2n - 1�ΔtÞ dt0 ð13Þ

and changing the limits of integration in eq 13, we obtain

Terms from I ¼ 2nΔt
X
k

jVksj2
Z Δt

0
1-

t0

Δt

� �
eiΩskt0 dt0 ð14Þ

Similarly, contributions from terms II and III are obtained, as follows:

TermsfromIIandIII ¼
X
k

X2n - 1

j¼ 1

ð-1Þj
Z fj þ 1gΔt

jΔt
Vske

iΩskt0 βkðjΔtÞ dt0

ð15Þ
where the summation over j starts at j = 1 because βk(0) = 0.
Substituting 14 and 15 into 12, we obtain

Rsð2nΔtÞ ¼ 1- 2nΔt
RΔt
0 1-

t0

Δt

� �
Kðt0Þ dt0

- i
X
k

X2n - 1

j¼ 1

ð-1Þj
Z fj þ 1gΔt

jΔt
Vske

iΩskt0 βkðjΔtÞ dt0

¼ 1- 2nΔt
Z Δt

0
1-

t0

Δt

� �
Kðt0Þ dt0

- i
X
k

X2n - 1

j¼ 1

ð-1Þj Vsk
eiΩskt0 - 1
iΩsk

 !
βkðjΔtÞ ð16Þ

Appendix B shows that one can introduce the substitution,

βkðjΔtÞ ¼ Vks

Ωks

eΩksΔt - 1
eΩksΔt þ 1

" #
fð- 1ÞjeiΩksjΔt - 1g ð17Þ

into eq 16 to obtain

Rsð2nΔtÞ ¼ 1- 2nΔt
Z Δt

0
1-

t0

Δt

� �
Kðt0Þ dt0

-
X
k

eiΩskΔt jVksj2
Ωks

2

ðeiΩksΔt - 1Þ2
eiΩksΔt þ 1

X2n - 1

j¼ 1

f1- ð-1ÞjeiΩskjΔtg

ð18Þ

The summation over j in eq 18, as detailed in Appendix D,
leads to the central result of this paper:
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Equation 19 is an important result, since it provides an explicit
description of the state amplitude, Rs(2nΔt), as a function of the
time intervalΔt between phase-kick pulses, yielding fundamental
insight into the origin of interference phenomena introduced by
the various terms. In addition, eq 19 allows for calculations of the
survival probability of state |sæ:

with

A ¼ 2Re
P
k
jVksj2

RΔt
0

1-
t0

Δt

� �
eiΩskt0 dt0

¼ Δt
X
k

jVksj2
sin2

ΩskΔt
2

� �
ΩskΔt
2

� �2

B ¼ 2Re
X
k

F1k ¼
X
k

jVksj2
Ωsk

2

� �2 tan
2 Ωsk

Δt
2

� �
sin2 Ωsk

2nΔt
2

� �

C ¼ 2Re
X
k

F2k ¼ - 2n
X
k

jVksj2
sin2 Ωsk

Δt
2

Ωsk

2

� �2 ð21Þ

Note that terms A and C in eq 20 cancel each other, and term B
determines the time-dependent survival probability, as follows:

jRsð2nΔtÞj2 ¼ 1- 2Re
X
k

F1k

¼ 1-
X
k

jVksj2
Ωsk

2

� �2 tan
2 Ωsk

Δt
2

� �
sin2 Ωsk

2nΔt
2

� �

ð22Þ

Equation 22 gives the survival probability, Ps(t) = |Rs(t)|
2, as a

function of the time interval Δt between pulses. Note that when
the time interval between pulses is large, eq 22 is identical to eq 9
describing the spontaneous decay in the absence of pulses.
However, due to the modulatory factor tan2(ωs-ωk)Δt/2 in
eq 22, decay is suppressed when the time interval between pulses
is sufficiently short, Δt f 0 (with t = 2nΔt), and accelerated
relative to spontaneous decay when tan2(ΩskΔt/2) = tan

2((ωs-
ωk)Δt/2) > 1. Maximum acceleration is achieved when Δt =
π/(ωs-ωk). Equation 22 agrees with previous work,

23,24 includ-
ing the study of decay into a continuum,27,29,44 and the decay of
coherences in a system of spin 1/2 qubits in contact with a bosonic
bath when periodically pulsed by dynamical decoupling seque-
nces.29 The derivation presented in this section, however, is novel,
since contrary to earlier studies, it is derived from eq 19, providing
an explicit description of the evolution of the expansion coefficient,
Rs(t), as a function of the time interval Δt between pulses.

IV. STOCHASTIC PULSING

This section analyzes stochastic sequences of 2π pulses, using
the perturbational treatment introduced in Section III. Rather
than pulsing the system deterministically, as in Section III,
stochastic sequences pulse the system at time intervals Δt, but
only with 50% probability.

To obtain the survival probability Ps(t) = |Rs(t)|
2 at time t =

2nΔt, we analyze first the state of the system at time t = 2Δt,
obtained by propagating the expansion coefficients for states |sæ
and |kæ, as follows:

βkðΔtÞ ¼ βkð0Þ- iVks
eiΩskΔt - 1

iΩsk

 !
Rsð0Þ

RsðΔtÞ ¼ Rsð0Þ 1-
Z Δt

0
ðΔt - t0Þ Kðt0Þ dt0

 !

- i
X
k

Vsk

Z Δt

0
eiΩskt βkð0Þ dt

R
0
sðΔtÞ ¼ ξ1 RsðΔtÞ

βkð2ΔtÞ ¼ βkðΔtÞ- iVks
eiΩsk2Δt - eiΩskΔt

iΩsk

 !
R

0
sðΔtÞ

R
0
sð2ΔtÞ ¼ R

0
sðΔtÞ 1-

Z 2Δt

Δt
ð2Δt - t0Þ Kðt0 -ΔtÞ dt0

 !

- i
X
k

Vsk

Z 2Δt

Δt
eiΩskt βkðΔtÞ dt

R
0
sð2ΔtÞ ¼ ξ2 R

0
sð2ΔtÞ ð23Þ

where ξj are stochastic variables that take on values of (1 with
equal probability and correspond to the system being perturbed
(i.e., ξj =-1) by a 2π pulse (i.e., Q̂ = 1- |sæÆs|) at time tj = jΔt, or
not (i.e., ξj = 1).46 The expansion coefficients for the continuum
states are obtained as follows:

βkðlΔtÞ ¼ - iVks
eiðωk - ωsÞΔt - 1
iðωk -ωsÞ

 !
1þ

Xl - 1

j¼ 1

ξje
iðωk - ωsÞjΔt

0
@

1
A

ð24Þ
and the time evolution of the initially populated state |sæ is

Note that in the limit when ξj = 1 (i.e., pulses with 0%
efficiency), eq 25 yields

jRð2nΔtÞj2 ¼ 1-
X
k

jVksj2
Ωsk

2

� �2 sin
2 Ωsk

2nΔt
2

� �
ð26Þ
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which is the expression for spontaneous decay, introduced by
eq 9.34 More generally, the survival probability of the system
evolving under the effect of pulses with ξj 6¼ 1 is

jRð2nΔtÞj2 ¼ jGj2 - 2ReðF�GÞ þ jFj2

jGj2 ¼ 1- 2Re 2nΔt
Z Δt

0
1-

t0

Δt

� �
Kðt0Þ dt0

 !

F�G ¼
Y2n
j¼ 1

ξj
X
k

X2n - 1

l¼ 1

Y2n
a¼ l

ξa
e-iΩks½l þ 1�Δt - e-iΩkslΔt

iΩsk

 !

� jVksj2
ðΩksÞ2

ðeiΩksΔt - 1Þ 1þ
Xl - 1

b¼ 1

ξbe
iΩksbΔt

 !
ð27Þ

where |F|2 is neglected, since it involves terms of O(|Vks|
4).

Equation 27 shows that coherent control can be achieved with
stochastic sequences of phase-kick pulses. Note that the popula-
tion decay is suppressed (i.e., |R(2nΔt)|2f 1) whenΔtf 0. In
addition, decay can be accelerated relative to the spontaneous
behavior described by eq 9 for larger values of Δt.

To analyze the effect of averaging over all possible stochastic
sequences, we consider independent random variables with
Æξjæ = 0, for which,

Æξ1ξ2:::ξnæ ¼ Æξ1æ Æξ2æ Æξ3æ:::Æξnæ ¼ 0 ð28Þ

Therefore, ÆF*Gæ = 0, and the average short-time population
decay at t = 2nΔt is

ÆjRð2nΔtÞj2æ ¼ jGj2

jGj2 ¼ 1- 2nΔt 2Re
Z Δt

0
1-

t0

Δt

� �
Kðt0Þ dt0

 !( )

¼ 1- γavg2nΔt

γavg ¼ 2Re
Z Δt

0
1-

t0

Δt

� �
Kðt0Þ dt0

 !

¼ Δt
X
k

jVksj2
sin2 Ωks

Δt
2

� �

Ωks
Δt
2

� �2 ð29Þ

Interestingly, γavg is exactly the decay rate derived by Kofman
and Kurizki in the context of QZE,34-36 in which, contrary to
unitary phase-kick pulses, the pulses collapse the coherent evolu-
tion, as due to a measurement, by projecting the time-evolved
state into a state (e.g., |sæ). For comparison, Section V derives the
QZE and AZE dynamics by using the perturbational treatment
implemented in this section in conjunction with pulses that
collapse the coherent evolution into state |sæ. The observed
correspondence in the decay rates suggests that the dynamical
effect of repetitive collapses is equivalent to the destructive
interference induced by stochastic sequences of unitary pulses
when averaged over all possible realizations.

V. QUANTUM ZENO AND ANTI-ZENO EFFECT

QZE and AZE occur when the coherent evolution is
repetitively interrupted by collapsing the system onto state |
sæ, as in a measurement process described by P̂ = |sæÆs|.32
Sufficiently frequent pulses freeze decay dynamics (zeno
effect),31 whereas sequences with longer time intervals be-
tween pulses accelerate the decay (anti-zeno effect).34 In their
landmark work on the topic, Kofman and Kurizki elucidated
the mechanism via which both of these effects set in, hinting at
the relation between the density of states of the continuum
and the time interval between measurements. We refer the
reader to the original work of Kofman and Kurizki34 for the
relevant details of the processes. In this section, we compare
the resulting dynamics to coherent control schemes, described
in Sections III and IV.

We consider the Hamiltonian, introduced by eq 1, with Û
denoting the short-time evolution as described by eqs 7 and 8.
P̂ = |sæÆs|. represents the measurement process, collapsing the
system onto state |sæ at time Δt, yielding a state with

RsðΔtÞ ¼ ÆsjP̂Ûjψæ ð30Þ
and devoid of any population in states |kæ (i.e., βk(0) = 0). Now, if
the time evolution proceeds in sufficiently small time steps of
order Δt, then the population of states |sæ will remain negligible
for later times. Using eq 7 for computing the survival probability
in state |sæ, we obtain

jRsðΔtÞj2 ¼ jRsð0Þj2 1- 2Re
X
k

jVksj2
Z Δt

0
ðΔt - t0ÞeiΩskt0 dt0

( ) !

ð31Þ

Repeating the evolution and measurement steps, 2n times, we
obtain the survival probability at time t = 2nΔt.�����Rsð2nΔtÞ

�����
2

¼
�����Rsð½2n- 1�ΔtÞ

�����
2

1- 2Re
X
k

jVksj2
( 

Z Δt

0
ðΔt - t0ÞeiΩskt0 dt0

)!
ð32Þ

Substituting eq 31 into eq 32 recursively, we obtain the
survival probability at t = 2nΔt,

�����Rsð2nΔtÞ
�����
2

¼
�����Rsð0Þ

�����
2

1- 2Re
X
k

jVksj2
( 

Z Δt

0
ðΔt - t0ÞeiΩskt0 dt0

)!2n

�
�����Rsð0Þ

�����
2

1- 2Re
X
k

jVksj22nΔt
( 

Z Δt

0
1-

t0

Δt

� �
eiΩskt0 dt0

)!
ð33Þ
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where we have neglected terms of O(|Vks|
3) and higher, as

appropriate in the weak coupling limit. After the final integration,
the above expression takes the form

where the rate γZENO is identical to term A in the expression of the
survival probability for the system under the pulsed coherent
evolution (see eq 29). Such a term A, therefore, leads to the
effective emergence of QZE and AZE when terms B and C cancel.

VI. CONCLUSIONS

In this paper, we have shown that quantum tunneling can be
suppressed or accelerated by using deterministic, or stochastic,
sequences of unitary pulses that affect the underlying interference
phenomena responsible for quantum dynamics, without inducing
decoherence or collapsing the coherent evolution of the system. A
rigorous theoretical analysis based on perturbation theory to first
order in the control pulse fields showed that sufficiently frequent
perturbation pulses suppress quantum tunneling whereas trains of
pulses separated by finite time intervals accelerate tunneling relative
to spontaneous decay. The reported expressions also provided
understanding of the role of randomization and the emergence of
dynamics analogous to the evolution due toQZEorAZE, generated
by stochastic sequences of unitary pulses when averaged over all
possible realizations. The comparison to DD protocols and to
control schemes based on pulses that collapse the coherent evolu-
tion reveals a subtle interplaybetween coherent and incoherent pheno-
menawhen stochastic sequences of unitary pulses are averaged over
all possible realizations. We emphasize, however, that the resulting
coherent control induced by sequences of unitary pulses is due to
interference effects, with destructive interference averaged over
stochastic sequences yielding dynamics analogous to the behavior
of the system in the presence of repetitive collapsing pulses.

Our theoretical procedure showed how to analyze coherent con-
trol techniques on the basis of sequences of unitary pulses, QZE,
AZE, and DD techniques on an equal mathematical footing. The
calculations essentially unify the treatments due to Kofman and
Kurizki34 and Agarwal et al.23,24,29,44 and in the process go beyond
their treatments to reveal the inherent intricacies of dynamics,
showing that the decay pattern for deterministic decoupling is, in
essence, universal rather than restricted to a particular system (e.g., a
system of spin 1/2 qubits).27 This assertion is supported by the
analysis of a common system, tunneling to a continuum, as affected
by the various control techniques.Our theoretical analysis has shown
that common terms affect the evolution as modulated by both
coherent and incoherent control schemes, with the manifestation of
QZE emerging from averaging out some of the contributing terms.
The emergence of such behavior upon random pulsing is due to the
stochastic phase thatwashes out the coherent interference effects and
brings forward the otherwise suppressed incoherent effects.

Considering the simplicity of sequences based on phase-kick
pulses, the similarity to pulsed NMR techniques, and the fact that
other pulse sequences have already been demonstrated to achieve
control in condensedmaterial systems,we anticipate that the control
techniques analyzed in this paper should raise significant experi-
mental interest.

’APPENDIX A

This section derives the short-time approximation, introduced
by eq 7. For a sufficiently short time-interval,(t- tb), we assume
Rs(t0) ≈ Rs(tb) in eq 6,

_RsðtÞ � -RsðtbÞ
Z t

tb

X
k

jVksj2eiΩskðt - t0Þ dt0 - i
X
k
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X
k

jVksj21- eiΩskðt - tbÞ

iΩsk

- i
X
k

Vske
iΩskt βkðtbÞ ðA1Þ

where we use the definition Ωsk = ωs - ωk. Now, integrating
eq A1A1 by parts, we obtain

RsðtÞ-RsðtbÞ ¼ RsðtbÞ
X
k
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�����
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Z
t
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’APPENDIX B

Using eq 5 and the scheme defined in eq 11, the evolution of
the continuum states in steps Δt is obtained as follows:

βkðΔtÞ ¼ βkð0Þ- iVks
eiΩksΔt - 1
iðΩksÞ

 !
Rsð0Þ
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whereRs
00(lΔt0) =-Rs(lΔt) accounts for the phase flip due to the

action of a 2π pulse. To obtain an expression of βk(2nΔt) of
O(|Vks|

2) we keep only the zero-th order term in the expansions
of Rs(lΔt) in powers of Vks and we obtain the compact expres-
sions for the continuum state amplitudes, as follows:
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Note that the continuum-state amplitude at any particular
time step accounts for all the continuum state amplitudes at prior
time steps. Moreover, contributions from even and odd time
steps occur with alternating signs. This is a direct consequence of
the phase flip of the system state as a result of the pulsing, which
affects the above evolution equations in the form of Rs(0). An
interesting analogy emerges if one interprets the sign change as a
time reversal of continuum dynamics under successive pulse
applications.45 In the context of NMR, this amounts to spin
echoes29 initiated with the purpose of negating the continuum-
induced decoherence in spin-spin correlations. In the event of
no pulses, the above expression becomes a telescoping sum,
which eventually leads to the spontaneous decay behavior.

’APPENDIX C

This section compares the coherent control scenario based on
random variables ξn = (1, introduced in Section IV, to the
dynamical decoupling scheme based on random variables,
χn= {(-1)n, n∈N}, considered by Santos andViola formanipulat-
ing coherence in spin 1/2 qubits.29 We modify the scheme defined
in eq 23 as follows:
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where K(t) =
P

k|Vks|
2 eiΩskt and λj = (-1)j for a deterministic

pulsing scheme. If we collect the expressions from eq C1, we obtain
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and

βkðlΔtÞ ¼ - iVks
eiΩksΔt - 1

iΩks

 ! Xl - 1

j¼ 0

λje
iΩks jΔt

0
@

1
A ðC3Þ

It can be verified that using the above definition for continuum
states and substituting it back into eq C1, one obtains exactly
the expression derived in eq 24. We see from eq C3 that the
continuum state amplitude is a combination of terms that
alternate in sign as in eq B2B2 of Appendix B. Going back
to our analogy of pulse applications and spin echoes (see
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Appendix B), the application of periodic 2π pulses is equivalent
to the initiation of successive π phase shifts in the continuum
state amplitude. This is accomplished in this case by allowing the
variables to be λj = (-1)j. Using these definitions, the expression
for the survival amplitude becomes

Rð2nΔtÞ ¼ 1- 2nΔt
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Consequently, the resulting survival amplitude is
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where |F|2 has been neglected, since it is O(|Vks|

4). Assuming
that λj = (-1)j,
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Substituting eq C6 back into eq C5, one obtains exactly the
result derived in eq 27, within the context of deterministic pulses.

When the variables are allowed to be stochastic, the expression
for the survival probability, eq C5, resembles the one obtained for
qubit coherence under similar conditions.22

’APPENDIX D

Equation 18 gives
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The summation over j is completed using
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Using the definition k(t) = Σk|Vks|e
iΩskt in eq D2, we retrieve eq .
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