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Supporting text 
S1. Three conformations of the coronavirus spike protein in the prefusion state 

The S protein of SARS-CoV-2 forms a stable trimer (Fig. S1). The S protomer in the pre-fusion 
state resembles an open right hand in which the ‘fingers’ correspond to the RBD (Receptor-
Binding-Domain) and the SD1 while the ‘thumb’ corresponds to the NTD of S1 where NTD is the 
N-terminal domain, SD1 and SD2 denote S1 subdomain 1 and 2, respectively (Fig. S1e, S1f). 
Within each S protomer, NTD (N-Terminal Domain) of S1 and RBD are separated by > 30 Å (Fig. 
S1e, S1f). Within the symmetric S trimer, the RBD of one subunit interacts with the NTD of another. 
These interactions are approximately maintained in the asymmetric open-1 and open-2 
conformations, indicating that the motion of the RBD is restrained by its plastic interactions with 
the NTD of its neighbor within the S trimer (Fig. S1). While the NTDs do not interact with each 
other within the S trimer, the RBDs interact with each other in the closed conformation, forming a 
closed central pore with its RBD in a “down” position. In the asymmetric conformations 
corresponding to open-1 and open-2, two RBDs remain in the “down” position, while one RBD 
adopts an “up” configuration with different degrees of pore openness. Since two RBDs are in the 
“down” configuration, they obstruct the central pore for extension of the S2 central stalk. The 
SD1/SD2 form a trimer with an open central pore, and their positions remain largely unchanged 
in all three conformations. 
 The superposition of the open-1 conformation (6vyb) with the closed conformation (6vxx) 
of the SARS-CoV-2 S monomer within the S trimer shows that its RBDs are in different locations 
but the remaining structures are nearly identical (Fig. S1g) (20). The superposition of the open-2 
conformation of SARS-CoV-1 (6crz) with a closed conformation of SARS-CoV-2 (6vxx) shows 
similar results aside from sequence variations between SARS-CoV-1 and SARS-CoV-2 (Fig. S1h) 
(20, 65). Further opening of open-2, relative to open-1, is approximately on the same trajectory. 
The closed-to-open-1 motion involves a 64.5° rotation with a skew translation of ~2 Å, which 
moves mainly downward to the viral membrane, bringing the host cellular membrane closer to the 
viral membrane. The open-1-to-open-2 motion involves rotation by 16.7° with another skew 
translation of ~2 Å, which again moves downward. The first rotation axis is tilted against the 3-
fold axis by 24.1 Å, and the second rotation axis is tilted by 58.2°. The two axes are offset by 
~46.6° and by ~10 Å. As a consequence, the closed-to-open-2 motion involves rotation by 76.8°, 
which is smaller than the expected sum of two individual rotations (82.2°). The second rotation of 
the RBD is accompanied by a small rotation (less than 5°) of the NTD of the neighboring subunit, 
so their interactions are largely maintained within the S trimer. The second rotation axis is located 
inside the NTD of its neighboring subunit, rotating together to some extent. A third open 
conformation and relationship with the two open conformations in SARS-CoV-1 S protein have 
already been described (23).  
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S2. Geometric principles from prefusion to post-fusion states of S trimers 

The overall dimension of the S2 central stalk has been established for both pre-fusion and post-
fusion states of SARS-CoV-2, SARS-CoV-1, MHV, and other related coronaviruses (Fig. S2) (10, 
36, 59, 66). Yet, the structures of three other fusion intermediates remain elusive. For the 
extended intermediate, the length of the S central stalk would be longer than both the collapsed 
and hemi-fusion intermediates, which would be similar to the post-fusion structure. A major 
difference between these elusive fusion intermediate states and the post-fusion state is migration 
of other structural elements surrounding the central stalk, namely FP from one end to the opposite 
end so that two membranes are brought together for merging.  
 We initially compared the pre-fusion and post-fusion structures of the MHV S trimer (Fig. 
S2), and our results have now been fully confirmed in the cryo-EM structures of SARS-CoV-2 S2 
trimers (22, 36, 59). This provides general valuable information about elusive fusion intermediates. 
The structural quality of both MHV and SARS-CoV-2 S2 trimers remains limited and many 
important residues in this structure remain unresolved. Both structures displayed strong streaky 
ESP features perpendicular to the 3-fold axis. The central stalk of MHV S protein (3b3o) consists 
of an elongated continuous three-helix bundle, one helix from each monomer, with an overall 
length of the central stalk plus the base of 190 Å (Fig. S2b) (40). At the tip of the extended central 
helices, the FPs are located for insertion into the host membrane. In the pre-fusion cryo-EM 
structure (3jcl), the helix is broken at the middle into two helices, folded back to resemble a ‘loaded 
spring’ with an overall stalk length	of 85 Å (Fig. S2a) (59). In the pre-fusion state, the FPs are 
located away from the host membrane (Fig. S2a). Therefore, the length of fusion-active 
intermediate(s) is at least twice that in the pre-fusion state, which should be sufficient to place the 
FPs of the S protein near the host cellular membrane. 
 In order to understand the conversion mechanism from the pre-fusion to the post-fusion 
state, we are trying to find common structural features between them to identify the moving parts. 
Since few common features were identified, the conversion must transit through other elusive 
fusion active intermediates. All fusion-active intermediates share the same extended continuous 
helices at the 3-fold axis, although they differ greatly in the structures surrounding the central stalk. 
For example, the extended intermediate has the two membrane-binding motifs of the FP (Fusion 
Peptide) and TMD (Trans-Membrane Domain) located on the opposite ends of these helices, 
while in the post-fusion state the two motifs are next to one another after merging the viral and 
host cellular membranes. The total mass remains unchanged between these structures before no 
additional proteolysis occurs (Fig. S2). The base of the central stalk in the post-fusion state is 
much smaller than in the pre-fusion state since residues of the base move to the extended stalk 
in the post-fusion state (Fig. S2a). The additional C-terminal domain, including the TMD inside 
the viral membrane, also moves to the tip of the central stalk in the post-fusion state, so that the 
viral and host membranes are next to one another for eventual merging into a single membrane 
(Fig. S2b).  
 The pre-fusion and post-fusion structures both maintain the 3-fold symmetry although they 
do not share any common 3-fold interactions. At the monomer level there is a superimposable 
part of a small b-meander of 3 short b-strands plus part of two surrounding helices (Fig. S2i, S2k). 
However, the orientation of this part of the subunit differs between the two structures relative to 
the 3-fold axis, which makes alignment of the two structures difficult because each structure can 
freely slide along the 3-fold axis. For facilitating the comparison, we fixed the Ca of Y1108 to have 
the same z coordinate along the 3-fold axis in the two structures (Fig. S2i). 

 An estimated length of the EMD-9597 cryo-EM is about 250 Å at a low-contour level of 
+4s, and about 220 Å at a high-contour level of +8s (Fig. S3a) (59). Regardless of the orientation 
of this structural feature, we can dock the open-2 conformation of the S trimer (6crz) assuming a 
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similar	structure for the base of the S central stalk, which has been conformed (Fig. S3h) (22, 25). 
The shape of the extended structural feature fits the central cavity of the S1 trimer (Fig. S3h). 
Using the common feature of RBD present in both the symmetrized open-2 conformation of the 
spike trimer and the ACE-2 complex, we docked three ACE-2 dimers onto this structure with the 
tip of the central stalk located at the middle plane of the host membrane in the super-complex 
(Fig. 4). The structure has the FPs located at the tip of the central stalk, representing the fusion-
active extended intermediate with the FPs ready for insertion into the host membrane. 
 
S3. Productive viral membrane fusion at the cellular level 

A productive viral membrane fusion event requires multiple copies of super-complexes of both 
types. The shortest distance between the membranes of the virus and the host cell occurs when 
the S trimer binds three ACE-2 dimers at the 3-fold axis of the S trimer at the midpoint of the 
super-complexes (Fig. 4). Having three ACE-2 dimers per spike trimer holding the host membrane 
in a tripodal configuration, ensures that the extended S2 central stalk inserts its FP into the host 
membrane. If the S2 central stalk is extended without tripodal support, such as binding one ACE-
2 dimer to a single RBD of the S trimer, there is no guarantee that the FP of the extended S2 
central stalk will be inserted into the host cellular membrane. In fact, when the PD (Peptidase 
Domain) of the ACE-2 dimer adopts an open conformation, the viral membrane and the host 
cellular membrane are in an angle of 17° and the shortest distance is no longer at the 3-fold axis 
of the S trimer at the midpoint of the super-complexes (Fig. 3). The distance between the two 
membranes is gradually shortened and becomes the shortest in the fully closed conformation of 
the ACE-2 dimers when the PD of ACE-2 dimer undergoes an open-to-closed transition. 
Therefore, the fusion-active trimeric spike protein requires not only that it binds three ACE-2 
dimers, but also that ACE-2 is in an inactive closed conformation.  
 Given the orientation of the S2 central stalk in a hemi-fusion state is parallel to the both 
viral and host cellular membranes (29, 30), the formation of three spike trimers in the hemi-fusion 
state can create a triangle-like pore connecting the two membrane with an edge length of ~ 190 
Å, a pore large enough for the genetic materials of SARS-CoV-2 to enter the host cell. When the 
number of spike trimers is fewer than three copies, such a pore would be difficult to create or to 
maintain. Therefore, the productive membrane fusion may require at least three spike trimers plus 
six to nine ACE-2 dimers for their cooperativity. When a host cell does not have a sufficient 
number of ACE-2 dimers, the tethered SARS-CoV-2 to the cell remains non-invasive with no 
membrane fusion. In misfiring of unproductive conversion of the S2 trimer from the pre-fusion to 
post-fusion states without being near the host cellular membrane, both FP and TMD are next to 
each other inside the own viral membrane as observed in situ imaging (16, 17, 67). This post-
fusion S2 trimer is incapable for the productive viral membrane fusion reaction.  
 A recent study based on single-molecule fluorescence spectroscopy has determined the 
stoichiometry of receptor to spike trimer for the fusion-active complex of HIV-1 gp120 trimer to 
solubilized T-cell CD4 receptor (68). In HIV-1, the S trimer is similar to the gp160 trimer, which is 
cleaved by furin to result in gp120 and gp41 trimers, equivalent to S1 and S2 trimers of SARS-
CoV-2, respectively. An initial binding involves one receptor per gp120 trimer. One often sees a 
significant fraction of the three receptors per gp120 trimer with an increasing ratio of receptor to 
the gp120 trimer to a sufficiently high value. Only a small fraction of an intermediate state 
containing two receptors per gp120 trimer due to a very strong negative cooperativity for binding 
the second receptor but a strong positive cooperativity for the third receptor (68). The presence 
of three CD4 receptor per gp120 has been independently confirmed by another study (69). This 
cooperativity	likely prevents spike trimers from misfiring the ‘loaded spring’ when fewer than three 
receptors are bound. Similarly, the productive pre-fusion to post-fusion conversion of 
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hemagglutinin (spike) trimer of H. influenza virus is also known to require the binding of three 
receptors per hemagglutinin trimer (70).  
 Our computational modeling provides a new direction in understanding the viral 
membrane fusion process. Recently, Kwong and colleagues examined cryo-EM structures, 
thermodynamic properties, and the protonation state of D614 side chain and its variance D614G 
at pH 7.4 and pH 4.0 combined with molecular dynamic simulations of trimeric spike protein (71). 
Their results provide an explanation why this mutant is more infectious than the wildtype D614 
version (72). This mutation may have altered the dynamic properties of trimeric spike protein by 
stabilizing its open conformation in binding ACE-2 dimers during the viral membrane fusion 
process (73).  
 

S4. Inactivation of peptidase activity of ACE-2 upon binding S trimers of SARS-CoV-2 

An initial clinical study reported that about 15% of COVID-19 patients suffered from hypertension 
although the actual percentage has been disputed (74-78). In other studies, the percentage of 
COVID-19 patients with hypertension was lower than other patients infected with different viruses 
or the general population (75-78). We show that the initial binding of SARS-CoV-2 may lead to 
inactivation of ACE-2 enzymatic activity due to geometric constraints at the cellular level, 
establishing a relationship between SARS-CoV-2 and ACE-2 inactivation. Binding SARS-CoV-2 
to ACE-2 could inactivate the ACE-2 function, essentially resulting in a loss-of-function phenotype 
of ACE-2. This explains how SARS-CoV-2 infection would predominately perturb the renin-
angiotensin (ACE/ACE-2) system and energy metabolism (79). As a consequence, the death of 
COVID-19 patients is often associated with multiple organ failure. In general, elderly men suffering 
from diabetes or high blood pressure are often very susceptible to SARS-CoV-2 infection and 
have a high mortality rate. Their morbidity and mortality are correlated with an increased overall 
cellular level of ACE-2 in vital organs whereas children and women are often resistant to the virus 
and have a much higher recovery rate (60, 80-82). SARS-CoV-2 infection is limited to the mucous 
membrane of the respiratory tract of children and women, but not in vital organs where the overall 
cellular ACE-2 levels are often very low. These locally infected viruses are eventually cleared 
from the respiratory tract and the patients recover. Given the important role of human ACE-2 in 
the production of the vasodilator 7-residue peptide hormone angiotensin (residues 1-7) for 
vascular remodeling (83, 84), ACE-2 and angiotensin (residues 1-7) are essential for protection 
of many vital organs (85-88). In the case of insufficient cellular ACE-2, the recombinant human 
ACE-2 can be used as a supplement for organ protection	(85-88).  
 It has been proposed that the recombinant human extracellular ACE-2 (rhACE-2) domains 
in its soluble form	could be used as treatment for COVID-19 patients (63, 64). Binding rhACE-2 
to SARS-CoV-2 not only can prevent attachment to the host cellular membrane, but also may 
prematurely trigger the large conformational changes of the S2 central stalk, causing misfiring of 
the one-time-only S2 fusion capacity. Treatment of a cohort of COVID-19 patients with the rhACE-
2 is currently underway in China (63, 64). We propose that it might be more beneficial to use the 
peptidase domain-only of the recombinant human ACE-2 for treatment of COVID-19 patients. 
This domain may remain active for processing angiotensin-2 to angiotensin (residues 1-7) even 
after it binds the S protein of SARS-CoV-2.  
 
Video titles 
Video 1A. View of closed spike trimer with all three RBDs in the "down" position. 
Video 1B. Comparison of the spike trimers between three "down" RBDs and one two "down"/one 
"up" RBDs. 
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Video 1C. Symmetrized opening and closing of the central pore of the spike trimer with "up" and 
"down" motions of the RBDs. 
 
Video 2A. The opening and closing motion of the ACE2 active site cleft with and within an inhibitor 
in complex with the RBDs. 
Video 2B. The same as video 2A but with the two spiker trimers. 
 
Video 3A. Motions of the RBDs from open1 to open2 positions in complex with three ACE2 dimers.  
Video 3B. View of a super-complex of four spike trimers with three ACE2 dimers 
Video 3C. View of a super-complex of one spike trimer in the post-fusion state with three ACE2 
dimers.   
 
Supporting Figures 

 
Fig. S1. Trimeric spike structure in a pre-fusion state. (a) One monomer is colored in blue-to-red 
rainbow from the N-to-C sequence, and two other monomers in grey and silver surfaces. Viral 
membrane is located at the bottom, and host membrane is located at the top. (b) Viewed from 
viral membrane end. (c) Viewed from host membrane end. (d) The S1 fragment (after cleavage 
S1/S2 sites at R685/Y595) are in transparency mode, and the three S2 fragments form the trimer 
core, which we chose the G700/A701 as a junction, instead of the canonic S2 cleavage site at 
Y595 because structurally the remaining 100 residues of S2 are more tightly associated with the 
S1 fragment, which is considered part of S1 and is not involved in the S2 refolding during viral 
membrane fusion. (e, f) Two orthogonal views of monomer architecture: NTD (blue), SD1/SD2 
(salmon), RBD (forest green), unnamed S2 fragment core (red), FP (cyan), HR1 (yellow), CH 
(brown), and CD (magenta), and the S1/S2, and S2’ site (black). R815 at the S2’ site and residues 
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near R685 at the S1 site (missing in the model) and at Y695 are also in black. FP is in cyan stick 
model. (g) Superposition of the closed 6vxx conformation (multicolor) with the 6vyb open-1 
conformation (grey). (h Superposition of the closed 6vxx, 6vyb open-1, and 6crz open-2 (salmon) 
conformations  
 

 
Fig. S2. The refolding of the central stalk of S2 subunit. (a) The pre-fusion state (3jcl) of MHV S2 
with helices folded back as in a loaded spring, having an approximate stalk length	of about 85 Å. 
One monomer is rainbow colored from N-to-C termini, and the other two are in grey and silver. 
(b) The post-fusion (6b3o) of MHV S2 with central helices extended in a released spring, having 
an approximate length of about 190 Å. (c, d) Two orthogonal views of superposition of the pre-
fusion (grey) and post-fusion (salmon) states by aligning the Y1108 Ca with the position projected 
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on the 3-fold axis. Aside from the 2-fold symmetry, there is no common point for aligning the two 
trimers. In monomer, a small b-meander of three short b-strands plus part of one helix have the 
same folding in the two structures, but the relationship to the 3-fold axis between the two 
structures is unrelated. (e, f) S2 monomer in the pre-fusion state with the residues in grey that are 
present in the protein but disordered in this structure. (g, h) S2 monomer in the post-fusion state 
in rainbow with the residues in black that are not present in the 3jcl construct but are ordered in 
this structure (3b3o). (i-k) Three views of superposition of these two structures using b-meander 
with part of a-helix. (i) Standard view. Double-headed arrow indicates the parts that are 
superimposable. (j) Close-up view down the b-meander. (k) Close-up view of the stalk base with 
superimposable parts indicated with double-headed arrow in (i).  
 

 
Fig. S3. A piecewise assembly of fusion-active extended intermediate of the S2 central stalk. (a) 
EMD-9597 map contoured at +4s (light green) and +8s (dark green) with estimated length of the 
SARS-CoV S2 stalk of 220 Å and 250 Å at these two contouring levels, respectively. (b) A 
reference EMD-7040 map for the post-fusion structure of the MHV S3 stalk in one interpretation 
n which over one-third of the stalk length and over one-third to half of the volumetric data remain 
unexplained. (c) New orientation of the stalk. (D-G) Fitting of the 3b3o model derived from EMD-
7040 into the EMD-9597 map. (d) Initial fitting as a single rigid body. (e) Fitting of the stalk base 
as a single rigid body. (f) Fitting of three central helices of the stalk as a single rigid body. (g) Sum 
view of the two-body rigid-body fitted structures. (h) Docking S1 trimer in open2-conformation 
(6crz) using the common feature of the stalk base structure.  
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