Supplemental Material: Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor

Christopher S. Wang,^{1,2,*} Jacob C. Curtis,^{1,2} Brian J. Lester,^{1,2} Yaxing Zhang,^{1,2}

Yvonne Y. Gao,^{1,2} Jessica Freeze,³ Victor S. Batista,³ Patrick H. Vaccaro,³ Isaac L.

Chuang,⁴ Luigi Frunzio,^{1,2} Liang Jiang,^{1,2,†} S. M. Girvin,^{1,2} and Robert J. Schoelkopf^{1,2,‡}

¹Departments of Physics and Applied Physics, Yale University, New Haven, CT 06511, USA.

 $^2 \ Yale \ Quantum \ Institute, \ Yale \ University, \ New \ Haven, \ CT \ 06520, \ USA.$

³Department of Chemistry, Yale University, New Haven, CT 06511, USA.

⁴Department of Physics, Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

^{*} christopher.wang@yale.edu

[†] current address: Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.

 $^{^\}ddagger$ robert.schoelkopf@yale.edu

I. NUMERICAL FRANCK-CONDON DATA

Additional experimental data is provided in this section. TABLE I provides an overview of the different molecular processes that are simulated and corresponding information regarding post-selection, systematic offsets, and distance metrics.

The data for each molecular process in the following tables is calculated as follows. For the "single-bit extraction" scheme, the probability and standard error for a given joint photon number of interest is:

(

$$q_{n',m'}^{\text{meas}} = \frac{n_{n',m'}^{ee}}{N_{n',m'}^{\text{runs}}}$$
(S33)

$$\tau_{n',m'} = \sqrt{\frac{q_{n',m'}^{\text{meas}}(1-q_{n',m'}^{\text{meas}})}{N_{n',m'}^{\text{runs}}}}$$
(S34)

where $n_{n',m'}^{ee}$ is the number of counts where both ancillas are measured in their excited state, indicating a measure for population in $|n',m'\rangle$ (see Eq. 4 in the main text), and $N_{n',m'}^{\text{runs}}$ is the total number of runs of the experiment for probing $|n',m'\rangle$. The number of runs varies slightly among different final states due to varying post-selection probabilities. The correction protocol outlined in Appendix E of the main text is then applied to $q_{n',m'}^{\text{meas}}$ to retrieve a new probability distribution $p_{n',m'}^{\text{meas}}$. The standard error $\sigma_{n',m'}$ is truncated to one significant digit and $p_{n',m'}^{\text{meas}}$ is then rounded to the precision set by $\sigma_{n',m'}$. The data reported is $p_{n',m'}^{\text{meas}} \pm \sigma_{n',m'}$ only for probabilities with significant support relative to the precision of the experiment $(p_{n',m'}^{\text{ideal}} \gtrsim 10^{-4})$.

The same method (sans the correction protocol) is applied to the data for the "sampling" scheme, except there the probabilities and standard error are given by:

$$q_{n',m'}^{\text{meas}} = \frac{n_{n',m'}}{N_{\text{runs}}} \tag{S35}$$

$$\sigma_{n',m'} = \sqrt{\frac{q_{n',m'}^{\text{meas}}(1 - q_{n',m'}^{\text{meas}})}{N_{\text{runs}}}}$$
(S36)

where $n_{n',m'}$ is the number of times the joint photon number $|n',m'\rangle$ is sampled from the total number of runs of the experiment N_{runs} .

Sometimes, there will be no counts reported for a given $|n', m'\rangle$ (i.e., $n_{n',m'}^{ee}$ or $n_{n',m'} = 0$). In this case, we simply report a probability of zero. Furthermore, sometimes the correction protocol will return negative elements in the probability distribution due to statistical noise; these unphysical cases are also nulled and a zero is reported. All distances $D = \frac{1}{2} \sum_{i=0}^{n_{\max}} \sum_{j=0}^{n_{\max}} |p_{ij}^{\text{meas}} - p_{ij}^{\text{ideal}}|$ are calculated after this correction process, with the corresponding values for n_{\max} specified in TABLE I.

Full time-domain master equation simulations are performed using QuTiP and consider only the Hilbert space of the two cavities with $n_{\text{max}} = 30$. Each Gaussian operation is simulated by evolving the associated Hamiltonian term, while also including the corresponding self-Kerr terms and photon loss for each operation. While squeezing cavity A, for instance, the native self-Kerr and photon loss rates for cavity B are used, assuming that the pumped process for squeezing cavity A does not change the participation of cavity B in any nonlinear lossy modes (and vice-versa). The simulation also takes into account photon loss during the verification measurement, which takes 2.5 μ s. The simulation does not consider imperfect state preparation and systematic errors in calibrations, which we believe to account for the remaining difference between the measured distances for the "single-bit extraction" scheme and predicted distances from the master equation simulations.

	T '4' 1 4 4				Distance	Distance to ideal distribution		
Molecular	Initial state	Percentage of	$n_{\rm max}$		Single-bit	Sampling	Master	Figure
transition	(n,m)	data kept	аата керт		extraction	Samping	Equation	
$H_2O \xrightarrow{h\nu}$	(0, 0)	~ 95%	16	0.937, 0.946	0.049(1)	0.151(9)	0.0123	FIG 7
$H_2O^+(\tilde{B}^2B_2) + e^-$	(0,0)		10	0.005, 0.002	0.045(1)	0.101(0)	0.0125	110.7
	(0, 0)	0.06%	19	0.937, 0.948	0.030(0)	0.075(2)	0.0052	FIC 8
$\Omega_{-}^{-} \xrightarrow{h\nu} \Omega_{2} + e^{-}$	(0,0)	$\sim 90\%$	12	0.005, 0.002	0.039(9)	0.075(2)	0.0052	FIG. 8
	(1,0)	0507		0.937, 0.950	0.057(5)	0.085(5)	0.0121	FIC 0
	(1,0)	/~ 9070	10	0.004, 0.002	0.037(3)	0.000(0)	0.0151	110.5
	(1.2)	0.03%	19	0.938, 0.950	0.105(3)	0.148(4)	0.0217	FIC 10
	(1,2)	/~ 9370	12	0.004, 0.001	0.105(5)	0.140(4) 0.0217	110.10	
	(0, 0)	a. 04%	19	0.935, 0.943	0.034(0)	0.110(0)	0.0331	FIC 11
$\operatorname{NO}_2^- \xrightarrow{h\nu} \operatorname{NO}_2 + \mathrm{e}^-$	(0,0)	/~ 94/0	12	0.005, 0.003	0.034(0)	0.110(9)	0.0551	FIG. 11
	(1,0)	0.02%	14	0.934, 0.951	0.202(2)	0.200(7)	0 1260	FIC 12
	(1,0)	/0 9270	14	0.004, 0.002	0.202(2)	0.203(1)	0.209(7) 0.1209	
	(0, 0)	- 06%	10	0.938, 0.950	0.010(6)	0.005(2)	0.0065	FIC 12
$\operatorname{SO}_2 \xrightarrow{h\nu} \operatorname{SO}_2^+ + \mathrm{e}^-$		$\sim 907_0$	12	0.004, 0.002	0.019(0)	0.039(9)	0.0000	FIG. 13
	(0, 1)	0.407	10	0.931, 0.951	0.062(7)	0.126(6)	0.0919	FIC 14
	(0,1)	~ 9470	12	0.004, 0.001	0.003(7)	0.130(0)	0.0213	г1G. 14

TABLE I. Summary of experimental data. List of molecular processes simulated and corresponding post-selection probabilities, maximum photon number probed with the "single-bit extraction" measurement scheme, and distances. Transmon offsets are independently measured after each dataset is taken.

FIG. 1. Photoionization of neutral water to the $(\tilde{B}^2 B_2)$ excited state of the cation starting in the vibrationless state n = 0, m = 0.

	$H_2O \xrightarrow{h\nu} H_2O^+(\tilde{B}^2B_2) + e^-$ starting in $(n = 0, m = 0)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	7.92E-05	8.26E-05	0	0.006 ± 0.0001	
(0,1)	6.67E-04	7.01E-04	0.0005 ± 0.0002	0.00396 ± 0.0001	
(0,2)	2.80E-03	2.94E-03	0.0024 ± 0.0003	0.0084 ± 0.0001	
(0,3)	7.76E-03	8.15E-03	0.0077 ± 0.0005	0.0122 ± 0.0002	
(0,4)	1.60E-02	1.68E-02	0.0162 ± 0.0007	0.0229 ± 0.0002	
(0,5)	2.64E-02	2.74E-02	0.0255 ± 0.0008	0.0288 ± 0.0003	
(0,6)	3.59E-02	3.70E-02	0.0357 ± 0.001	0.0336 ± 0.0003	
(0,7)	4.16E-02	4.26E-02	0.043 ± 0.001	0.0332 ± 0.0003	
(0,8)	4.19E-02	4.27E-02	0.044 ± 0.001	0.0391 ± 0.0003	
(0,9)	3.73E-02	3.77E-02	0.039 ± 0.001	0.0355 ± 0.0003	
(0,10)	2.96E-02	2.98E-02	0.0316 ± 0.0009	0.026 ± 0.0003	
(0,11)	2.13E-02	2.12E-02	0.0228 ± 0.0008	0.0202 ± 0.0002	
(0,12)	1.39E-02	1.38E-02	0.0154 ± 0.0006	0.0118 ± 0.0002	
(0,13)	8.33E-03	8.20E-03	0.0098 ± 0.0005	0.0079 ± 0.0001	
(0,14)	4.60E-03	4.50E-03	0.0051 ± 0.0004	0.009 ± 0.0001	
(0,15)	2.36E-03	2.29E-03	0.0029 ± 0.0003	0.0084 ± 0.0001	
(1,0)	7.82E-05	8.11E-05	0.0002 ± 0.0002	0.0072 ± 0.0001	
(1,1)	6.91E-04	7.19E-04	0.0005 ± 0.0002	0.0046 ± 0.0001	
(1,2)	3.03E-03	3.16E-03	0.0029 ± 0.0003	0.009 ± 0.0001	
(1,3)	8.81E-03	9.14E-03	0.0078 ± 0.0005	0.0131 ± 0.0002	
(1,4)	1.91E-02	1.97E-02	0.0192 ± 0.0007	0.0254 ± 0.0002	
(1,5)	3.28E-02	3.36E-02	0.0321 ± 0.0009	0.031 ± 0.0003	
(1,6)	4.66E-02	4.75E-02	0.046 ± 0.001	0.0383 ± 0.0003	
(1,7)	5.63E-02	5.71E-02	$0.\overline{053} \pm 0.001$	0.0402 ± 0.0003	
(1,8)	5.92E-02	5.97E-02	0.056 ± 0.001	0.0475 ± 0.0003	
(1,9)	5.49E-02	5.50E-02	0.053 ± 0.001	0.0439 ± 0.0003	

(1,10)	4.55E-02	4.53E-02	0.042 ± 0.001	0.033 ± 0.0003
(1,11)	3.40E-02	3.37E-02	0.0321 ± 0.0009	0.0247 ± 0.0002
(1,12)	2.32E-02	2.28E-02	0.0214 ± 0.0008	0.0149 ± 0.0002
(1,13)	1.44E-02	1.41E-02	0.0143 ± 0.0006	0.0106 ± 0.0002
(1,14)	8.30E-03	8.04E-03	0.0073 ± 0.0005	0.0111 ± 0.0002
(1,15)	4.42E-03	4.25E-03	0.004 ± 0.0004	0.0101 ± 0.0002
(2,0)	2.61E-05	2.68E-05	0.0004 ± 0.0001	0.0044 ± 0.0001
(2,1)	2.47E-04	2.52 E-04	0.0001 ± 0.0001	$0.00261 \pm 8E-05$
(2,2)	1.15E-03	1.17E-03	0.0013 ± 0.0002	0.0041 ± 0.0001
(2,3)	3.57E-03	3.60E-03	0.0031 ± 0.0003	0.0057 ± 0.0001
(2,4)	8.19E-03	8.21E-03	0.0082 ± 0.0005	0.0127 ± 0.0002
(2,5)	1.49E-02	1.48E-02	0.016 ± 0.0007	0.0165 ± 0.0002
(2,6)	2.25E-02	2.22E-02	0.0211 ± 0.0008	0.0203 ± 0.0002
(2,7)	2.87E-02	2.81E-02	0.0307 ± 0.0009	0.0214 ± 0.0002
(2,8)	3.19E-02	3.10E-02	0.0318 ± 0.0009	0.027 ± 0.0003
(2,9)	3.12E-02	3.01E-02	0.0312 ± 0.0009	0.0256 ± 0.0002
(2,10)	2.72E-02	2.61E-02	0.0276 ± 0.0009	0.0205 ± 0.0002
(2,11)	2.14E-02	2.04E-02	0.0211 ± 0.0008	0.0167 ± 0.0002
(2,12)	1.53E-02	1.45E-02	0.0162 ± 0.0007	0.0097 ± 0.0002
(2,13)	1.00E-02	9.46E-03	0.0111 ± 0.0006	0.0069 ± 0.0001
(2,14)	6.02E-03	$5.67 \text{E}{-}03$	0.0064 ± 0.0004	0.0069 ± 0.0001
(2,15)	3.36E-03	3.14E-03	0.0038 ± 0.0003	0.0067 ± 0.0001
(3,0)	2.78E-06	3.35E-06	0	$0.00174 \pm 7E-05$
(3,1)	2.97E-05	3.43E-05	$8E-05 \pm 8E-05$	$0.00091 \pm 5E-05$
(3,2)	1.56E-04	1.74E-04	$9E-05 \pm 8E-05$	$0.00142 \pm 6E-05$
(3,3)	5.37E-04	5.79E-04	0.0006 ± 0.0002	$0.00189 \pm 7E-05$
(3,4)	1.36E-03	1.43E-03	0.0021 ± 0.0003	0.0044 ± 0.0001
(3,5)	2.73E-03	2.79E-03	0.0034 ± 0.0003	0.005 ± 0.0001
(3,6)	4.50E-03	4.49E-03	0.0053 ± 0.0004	0.0069 ± 0.0001
(3,7)	6.26E-03	6.12E-03	0.0078 ± 0.0005	0.0073 ± 0.0001
(3,8)	7.52E-03	7.22E-03	0.0093 ± 0.0005	0.0092 ± 0.0002
(3,9)	7.94E-03	7.50E-03	0.0097 ± 0.0005	0.0095 ± 0.0002
(3,10)	7.46E-03	6.94E-03	0.0082 ± 0.0005	0.0078 ± 0.0001
(3,11)	6.29E-03	5.78E-03	0.0076 ± 0.0005	0.0063 ± 0.0001
(3,12)	4.81E-03	4.37E-03	0.0062 ± 0.0004	0.0041 ± 0.0001
(3,13)	3.30E-03	3.01E-03	0.0033 ± 0.0003	$0.00279 \pm 8E-05$
(3,14)	2.10E-05 1.28E 02	1.91E-05	0.0020 ± 0.0003	$0.00277 \pm 8E-05$
(3,13)	1.20E-05	1.12E-05	0.0012 ± 0.0002	$0.00233 \pm 8E-03$
(4,0)	2.00E-09	1.55E-07 1.74E-06	0	$0.00029 \pm 3E-05$ $0.00017 \pm 2E.05$
(4,1)	1.45E-07 1.73E-06	0.00F.06	$6E 05 \pm 6E 05$	$0.00017 \pm 2E-05$
(4,2)	1.75E-00 1.02E.05	<u>9.99E-00</u> 3.70E-05	$0.0001 \pm 8E.05$	$0.0002 \pm 2E-05$ 0.00033 $\pm 3E.05$
(4,3)	3.86E.05	1.06E.04	0.0001 ± 0.001	$0.00055 \pm 3E-05$
(4,4)	1.06E-04	2 33E-04	0.0004 ± 0.0001 0.0005 ± 0.0002	$0.00003 \pm 4E-05$ $0.00073 \pm 4E-05$
(4,5)	2.25E-0.4	<u></u>	0.0000 ± 0.0002	$0.00079 \pm 4E-05$
(4,0)	2.201-04 3.88E-04	6 34E-04	0.001 ± 0.0002	$0.0009 \pm 5E-05$
(4,1)	5.63E-04	8.24E-04	0.0014 ± 0.0002 0.0014 ± 0.0002	$0.00052 \pm 6E-05$ $0.00144 \pm 6E-05$
(4 9)	7.01E-04	9.36F-04	0.0019 ± 0.0002	$0.00139 + 6E_{-05}$
(4.10)	7.63E-04	9.43E-04	0.0013 ± 0.0003	0.00100 ± 000000 $0.00127 \pm 6E-05$
(4.11)	7.36E-04	8.50E-04	0.0014 ± 0.0002	0.00094 + 5E-05
(4.12)	6.36E-04	6.92E-04	0.0011 ± 0.0002	0.00067 ± 0.000
(4.13)	4.97E-04	5.13E-04	0.0008 ± 0.0002	$0.00051 \pm 4E.05$
(4.14)	3.54E-04	3.49E-04	0.0005 ± 0.0001	0.00049 + 3E-05
(4.15)	2.31E-04	2.18E-04	0.0004 ± 0.0001	$0.00046 \pm 3E-05$
1 1 1 - 1				

FIG. 2. Photoionization of the ozone anion to neutral ozone starting in the vibrationless state n = 0, m = 0.

	$O_3^- \xrightarrow{h\nu} O_3 + e^-$ starting in $(n = 0, m = 0)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	1.14E-01	1.16E-01	0.127 ± 0.002	0.1372 ± 0.0005	
(0,1)	2.42E-02	2.47E-02	0.0271 ± 0.0008	0.0286 ± 0.0003	
(0,2)	5.57E-03	5.60E-03	0.0063 ± 0.0004	0.0071 ± 0.0001	
(0,3)	1.06E-03	1.06E-03	0.0013 ± 0.0002	$0.0024 \pm 8E-05$	
(1,0)	2.06E-01	2.08E-01	0.215 ± 0.002	0.1998 ± 0.0006	
(1,1)	4.55E-02	4.60E-02	0.046 ± 0.001	0.0439 ± 0.0003	
(1,2)	1.06E-02	1.06E-02	0.01 ± 0.0005	0.0109 ± 0.0002	
(1,3)	2.06E-03	2.04E-03	0.0022 ± 0.0003	0.0036 ± 0.0001	
(2,0)	1.98E-01	1.98E-01	0.201 ± 0.002	0.1766 ± 0.0006	
(2,1)	4.52E-02	4.52E-02	0.045 ± 0.001	0.0403 ± 0.0003	
(2,2)	1.07E-02	1.05E-02	0.0104 ± 0.0005	0.0101 ± 0.0002	
(2,3)	2.11E-03	2.06E-03	0.0025 ± 0.0003	$0.00349 \pm 9E-05$	
(3,0)	1.33E-01	1.32E-01	0.128 ± 0.002	0.1177 ± 0.0005	
(3,1)	3.15E-02	3.12E-02	0.031 ± 0.0009	0.0274 ± 0.0003	
(3,2)	7.54E-03	7.37E-03	0.0073 ± 0.0005	0.0071 ± 0.0001	
(3,3)	1.51E-03	1.47E-03	0.0012 ± 0.0002	$0.00248 \pm 8E-05$	
(4,0)	7.08E-02	6.97E-02	0.066 ± 0.001	0.0546 ± 0.0004	
(4,1)	1.73E-02	1.70E-02	0.0173 ± 0.0007	0.0133 ± 0.0002	
(4,2)	4.19E-03	4.06E-03	0.0047 ± 0.0004	$0.00342 \pm 9E-05$	
(4,3)	8.51E-04	8.19E-04	0.0008 ± 0.0002	$0.0012 \pm 6E-05$	
(5,0)	3.15E-02	3.09E-02	0.0307 ± 0.0009	0.0253 ± 0.0003	
(5,1)	7.91E-03	7.74E-03	0.0092 ± 0.0005	0.0065 ± 0.0001	
(5,2)	1.94E-03	1.87E-03	0.0022 ± 0.0003	$0.00173 \pm 7E-05$	
(5,3)	4.01E-04	3.83E-04	0.0004 ± 0.0001	$0.00064 \pm 4E-05$	
(6,0)	1.22E-02	1.19E-02	0.0132 ± 0.0007	0.0165 ± 0.0002	
(6,1)	3.15E-03	3.07E-03	0.0039 ± 0.0004	0.0041 ± 0.0001	
(6,2)	7.83E-04	7.52E-04	0.0007 ± 0.0002	$0.00105 \pm 5E-05$	

(6,3)	1.64E-04	1.56E-04	$0.00024 \pm 9E-05$	$0.00036 \pm 3E-05$
(7,0)	4.23E-03	4.10E-03	0.0066 ± 0.0005	0.0102 ± 0.0002
(7,1)	1.12E-03	1.09E-03	0.0021 ± 0.0003	$0.00252 \pm 8E-05$
(7,2)	2.81E-04	2.69E-04	0.0005 ± 0.0001	$0.00068 \pm 4\text{E-}05$
(7,3)	5.96E-05	5.64E-05	$0.00019 \pm 8E-05$	$0.00017 \pm 2\text{E-}05$
(8,0)	1.33E-03	1.28E-03	0.0049 ± 0.0005	$0.00132 \pm 6E-05$
(8,1)	3.61E-04	3.48E-04	0.001 ± 0.0002	$0.00035 \pm 3E-05$
(8,2)	9.18E-05	8.73E-05	0.0002 ± 0.0001	$9E-05 \pm 2E-05$
(8,3)	1.97E-05	1.85E-05	$0.00013 \pm 7E-05$	$2.8E-05 \pm 8E-06$
(9,0)	3.86E-04	3.68E-04	0.0047 ± 0.0005	$0.00156 \pm 6E-05$
(9,1)	1.07E-04	1.03E-04	0.0012 ± 0.0002	$0.00038 \pm 3E-05$
(9,2)	2.76E-05	2.60E-05	0.0004 ± 0.0001	$8E-05 \pm 1E-05$
(9,3)	5.98E-06	5.59E-06	$0.00013 \pm 7\text{E-}05$	$3.6E-05 \pm 1E-05$

FIG. 3. Photoionization of the ozone anion to neutral ozone starting with one quanta in the symmetric-stretching mode and zero in the bending mode n = 1, m = 0.

	$O_3^- \xrightarrow{h\nu} O_3 + e^-$ starting in $(n = 1, m = 0)$					
(n',m')	Classically	Master equation	Single-bit	Sampling		
	calculated	simulation	extraction			
(0,0)	2.24E-01	2.23E-01	0.226 ± 0.002	0.2226 ± 0.0007		
(0,1)	5.42E-02	5.40E-02	0.054 ± 0.001	0.0537 ± 0.0004		
(0,2)	1.31E-02	1.28E-02	0.0121 ± 0.0006	0.0139 ± 0.0002		
(0,3)	2.64E-03	2.56E-03	0.0023 ± 0.0003	0.0044 ± 0.0001		
(1,0)	8.96E-02	9.09E-02	0.095 ± 0.002	0.0923 ± 0.0005		
(1,1)	2.67E-02	2.69E-02	0.0304 ± 0.0009	0.0288 ± 0.0003		
(1,2)	6.90E-03	6.83E-03	0.0075 ± 0.0005	0.0075 ± 0.0001		
(1,3)	1.51E-03	1.48E-03	0.002 ± 0.0003	$0.00263 \pm 9E-05$		
(2,0)	3.14E-04	5.76E-03	0.0265 ± 0.0009	0.0299 ± 0.0003		
(2,1)	2.69E-04	1.39E-03	0.006 ± 0.0004	0.0064 ± 0.0001		
(2,2)	1.59E-04	4.07E-04	0.0013 ± 0.0002	$0.00174 \pm 7E-05$		
(2,3)	6.61E-05	1.11E-04	0.0004 ± 0.0001	$0.00059 \pm 4E-05$		
(3,0)	6.59E-02	6.96E-02	0.088 ± 0.002	0.074 ± 0.0004		
(3,1)	1.05E-02	1.14E-02	0.0129 ± 0.0006	0.0124 ± 0.0002		
(3,2)	2.11E-03	2.27E-03	0.0028 ± 0.0003	$0.00267 \pm 9E-05$		
(3,3)	3.34E-04	3.67E-04	0.0005 ± 0.0001	$0.00078 \pm 5E-05$		
(4,0)	1.26E-01	1.25E-01	0.132 ± 0.002	0.1097 ± 0.0005		
(4,1)	2.51E-02	2.49E-02	0.0264 ± 0.0009	0.0216 ± 0.0002		
(4,2)	5.55E-03	5.42E-03	0.0054 ± 0.0004	0.0049 ± 0.0001		
(4,3)	1.01E-03	9.81E-04	0.0009 ± 0.0002	$0.00165 \pm 7\text{E-}05$		
(5,0)	1.19E-01	1.16E-01	0.111 ± 0.002	0.0925 ± 0.0005		
(5,1)	2.58E-02	2.51E-02	0.0261 ± 0.0009	0.0198 ± 0.0002		
(5,2)	5.94E-03	5.68E-03	0.0054 ± 0.0004	0.0048 ± 0.0001		
(5,3)	1.14E-03	1.08E-03	0.0014 ± 0.0002	$0.00153 \pm 7E-05$		
(6,0)	7.79E-02	7.54E-02	0.071 ± 0.001	0.056 ± 0.0004		
(6,1)	1.79E-02	1.73E-02	0.0171 ± 0.0007	0.013 ± 0.0002		

(0,0)				
(6,2)	4.23E-03	4.01E-03	0.0041 ± 0.0004	$0.00313 \pm 9E-05$
(6,3)	8.33E-04	7.82E-04	0.0012 ± 0.0002	$0.00091 \pm 5E-05$
(7,0)	4.03E-02	3.89E-02	0.038 ± 0.001	0.0344 ± 0.0003
(7,1)	9.69E-03	9.34E-03	0.0098 ± 0.0005	0.008 ± 0.0001
(7,2)	2.33E-03	2.21E-03	0.0024 ± 0.0003	$0.00207 \pm 8E-05$
(7,3)	4.70E-04	4.40E-04	0.0004 ± 0.0001	$0.00065 \pm 4E-05$
(8,0)	1.75E-02	1.69E-02	0.0186 ± 0.0008	0.0089 ± 0.0002
(8,1)	4.38E-03	4.22E-03	0.0045 ± 0.0004	$0.00239 \pm 8E-05$
(8,2)	1.07E-03	1.02E-03	0.0013 ± 0.0002	$0.00059 \pm 4E-05$
(8,3)	2.20E-04	2.06E-04	$0.00016 \pm 8E-05$	$0.0002 \pm 2\text{E-}05$
(9,0)	6.66E-03	6.43E-03	0.0105 ± 0.0006	0.0046 ± 0.0001
(9,1)	1.72E-03	1.66E-03	0.0033 ± 0.0003	$0.00132 \pm 6E-05$
(9,2)	4.28E-04	4.05E-04	0.0006 ± 0.0002	$0.00034 \pm 3E-05$
(0, 0)	8.93E-05	8.37E-05	$3E-05 \pm 6E-05$	$0.00013 \pm 2\text{E-}05$

FIG. 4. Photoionization of the ozone anion to neutral ozone starting with one quanta in the symmetric-stretching mode and two in the bending mode n = 1, m = 2.

	$O_3^- \xrightarrow{h\nu} O_3 + e^-$ starting in $(n = 1, m = 2)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	6.24E-03	9.10E-03	0.0208 ± 0.0008	0.0255 ± 0.0003	
(0,1)	1.21E-01	1.20E-01	0.122 ± 0.002	0.1215 ± 0.0006	
(0,2)	4.73E-02	4.75E-02	0.039 ± 0.001	0.0403 ± 0.0004	
(0,3)	6.01E-02	6.02E-02	0.057 ± 0.001	0.0583 ± 0.0004	
(0,4)	3.85E-02	3.65E-02	0.0295 ± 0.001	0.0274 ± 0.0003	
(0,5)	1.46E-02	1.39E-02	0.0137 ± 0.0007	0.0124 ± 0.0002	
(0,6)	4.57E-03	4.18E-03	0.0042 ± 0.0004	0.0049 ± 0.0001	
(0,7)	1.21E-03	1.10E-03	0.001 ± 0.0002	0.0042 ± 0.0001	
(1,0)	9.99E-04	1.99E-03	0.0049 ± 0.0004	0.0072 ± 0.0002	
(1,1)	3.79E-02	3.89E-02	0.041 ± 0.001	0.0395 ± 0.0004	
(1,2)	1.90E-02	1.99E-02	0.0198 ± 0.0008	0.0198 ± 0.0003	
(1,3)	3.22E-02	3.22E-02	0.037 ± 0.001	0.0329 ± 0.0003	
(1,4)	2.14E-02	2.04E-02	0.0207 ± 0.0008	0.0174 ± 0.0002	
(1,5)	8.78E-03	8.31E-03	0.0096 ± 0.0006	0.0079 ± 0.0002	
(1,6)	2.87E-03	2.63E-03	0.0033 ± 0.0003	0.0031 ± 0.0001	
(1,7)	7.99E-04	7.23E-04	0.0011 ± 0.0002	0.00258 ± 0.0001	
(2,0)	4.14E-04	6.10E-04	0.0037 ± 0.0004	0.0045 ± 0.0001	
(2,1)	1.56E-03	4.26E-03	0.0145 ± 0.0007	0.0168 ± 0.0002	
(2,2)	2.44E-04	1.72E-03	0.0066 ± 0.0005	0.0085 ± 0.0002	
(2,3)	5.64E-04	1.90E-03	0.0095 ± 0.0006	0.0085 ± 0.0002	
(2,4)	6.09E-04	1.33E-03	0.0047 ± 0.0004	0.0043 ± 0.0001	
(2,5)	4.53E-04	6.66 E-04	0.0027 ± 0.0003	$0.00229 \pm 9E-05$	
(2,6)	1.95E-04	2.51E-04	0.0012 ± 0.0002	$0.00098 \pm 6E-05$	
(2,7)	6.97E-05	7.85E-05	0.0003 ± 0.0001	$0.0008 \pm 5E-05$	
(3,0)	2.02E-03	2.95E-03	0.0082 ± 0.0005	0.0079 ± 0.0002	
(3,1)	3.84E-02	3.97E-02	0.049 ± 0.001	0.0422 ± 0.0004	

(3,2	(1.87E-02)	1.94E-02	0.0224 ± 0.0009	0.0179 ± 0.0003
(3,3	b) 1.20E-02	1.34E-02	0.0155 ± 0.0007	0.0145 ± 0.0002
(3,4	6.36E-03	6.72E-03	0.0064 ± 0.0005	0.0051 ± 0.0001
(3,5) 1.83E-03	2.05E-03	0.0026 ± 0.0003	$0.00206 \pm 9E-05$
(3,6	() 4.70E-04	5.06E-04	0.0006 ± 0.0002	$0.00093 \pm 6E-05$
(3,7	9.93E-05	1.14E-04	0.0002 ± 0.0001	$0.00086 \pm 6E-05$
(4,0	2.05E-03	3.41E-03	0.0082 ± 0.0005	0.0082 ± 0.0002
(4,1) 6.06E-02	6.01E-02	0.063 ± 0.001	0.0505 ± 0.0004
(4,2	3.64E-02	3.58E-02	0.035 ± 0.001	0.0277 ± 0.0003
(4,3	3.11E-02	3.13E-02	0.031 ± 0.001	0.0258 ± 0.0003
(4,4	1.77E-02	1.68E-02	0.0149 ± 0.0007	0.01 ± 0.0002
(4.5	5.91E-03	5.69E-03	0.0054 ± 0.0004	0.0039 ± 0.0001
(4.6	1.69E-03	1.55E-03	0.0014 ± 0.0002	$0.00167 \pm 8E-05$
(4.7	() 4.09E-04	3.80E-04	0.0003 ± 0.0001	$0.00151 \pm 7E-05$
(5.0)	1.18E-03	2.29E-03	0.0053 ± 0.0004	0.0062 ± 0.0002
(5.1	5.02E-02	4.93E-02	0.048 ± 0.001	0.0367 ± 0.0004
(5.2)	3.57E-02	3.46E-02	0.034 ± 0.001	0.0245 ± 0.0003
(5.3)	3.39E-02	3.31E-02	0.033 ± 0.001	0.0244 ± 0.0003
(5.4	1.96E-02	1.82E-02	0.0156 ± 0.0007	0.0103 ± 0.0002
(5.5)	6.87E-03	6.40E-03	0.0066 ± 0.0005	0.0043 ± 0.0001
(5,6)	2.03E-03	1.81E-03	0.0012 ± 0.0002	$0.00196 \pm 8E-05$
(5,0)	5 10E-04	4.57E-04	0.0012 ± 0.0002	$0.00148 \pm 7E-05$
(6.0)	473E-04	1.01E-01	0.0032 ± 0.0002	0.00110 ± 10.001 0.0038 ± 0.0001
(6,0)	2.94E-02	2.89E-02	0.0252 ± 0.0009	0.0201 ± 0.0001
(6,1)	2.01 ± 0.2	2.36E-02	0.0225 ± 0.0009	0.0169 ± 0.0002
(6,2)	2.10 ± 02	2.30E 02	0.0226 ± 0.0009	0.0105 ± 0.0002
(6, 3)	1.44F-02	1.32E-02	0.0113 ± 0.0006	0.011 ± 0.0002 0.0078 ± 0.0002
(6,1)	5 18E-03	4 76E-03	0.0119 ± 0.0000	0.0010 ± 0.0002 0.0033 ± 0.0001
(6,6)	1.10 ± 0.0	1.70E 00	0.0015 ± 0.0001	0.0000 ± 0.0001 0.00143 ± 7 E-05
(6, 7)	1.00 ± 00	3.53E-04	0.0010 ± 0.0002	$0.00122 \pm 7E-05$
(7.0)	1.00 ± 01	4.53E-04	0.0000 ± 0.0001	0.00122 ± 12.00 $0.00221 \pm 9E-05$
(71)	1.11E 01	1.35E-02	0.0010 ± 0.0002	0.0122 ± 0.0002
(7.2)	1.37 ± 02	1.00E 02 1.28E-02	0.0109 ± 0.0001	0.0122 ± 0.0002
(7.3)	1.39E-02	1.33E-02	0.0126 ± 0.0007	0.0112 ± 0.0002
(7.4)	8.18E-03	7.46E-03	0.0064 ± 0.0005	0.0054 ± 0.0001
(7.5)	3.00E-03	2.73E-03	0.0024 ± 0.0003	$0.00221 \pm 9E-05$
(7.6)	9.14E-04	8.02E-04	0.001 ± 0.0002	$0.00102 \pm 6E-05$
(7.7)	2.38E-04	2.08E-04	0.0004 ± 0.0001	$0.00092 \pm 6E-05$
(8.0)	3.37E-05	1.55E-04	0.0005 ± 0.0002	$0.00085 \pm 6E-05$
(8.1	5.37E-03	5.35E-03	0.0074 ± 0.0005	0.003 ± 0.0001
(8.2)	6.07E-03	5.83E-03	0.0058 ± 0.0005	0.0033 ± 0.0001
(8,3)	6.54E-03	6.22E-03	0.0079 ± 0.0005	0.0034 ± 0.0001
(8.4)	3.86E-03	3.52E-03	0.0044 ± 0.0004	$0.00176 \pm 8E-05$
(8.5)	144E-03	1 30E-03	0.0018 ± 0.0003	$0.00085 \pm 6E-05$
(8,6)	442E-04	3.88E-04	0.0003 ± 0.0001	$0.00033 \pm 3E-05$
(8,7)	1.12E 01	1.02E-04	$0.0001 \pm 7E-05$	$0.00023 \pm 3E-05$
(0,1)	5.90E-06	4 75E-05	0.0001 ± 0.0002	$0.00020 \pm 01000000000000000000000000000000$
(9,0)	1.84E-03	1.84E-03	0.0038 ± 0.0002	$0.00149 \pm 7E-05$
(9.2)	2.42E-03	2.32E-03	0.0041 ± 0.0004	$0.00184 \pm 8E-05$
(9.3)	2.67E-03	2.53E-03	0.0044 ± 0.0004	$0.00208 \pm 9E-05$
(9.4)	1.58E-03	1.44E-03	0.0023 ± 0.0003	$0.00105 \pm 6E-05$
(9.5)	5.95E-04	5.39E-04	0.0012 ± 0.0002	$0.00044 \pm 4E-05$
(9.6)	1.85E-04	1.62E-04	0.0003 ± 0.0001	$0.00016 \pm 2E-05$
(97)	4.94E-05	4.28E-05	$0.00012 \pm 7E-05$	$0.00015 \pm 2E.05$
(v, '	,		1 2.2227= - 12.00	, <u>-</u>

FIG. 5. Photoionization of nitrite to nitrogen dioxide starting in the vibrationless state n = 0, m = 0.

	$NO_2^- \xrightarrow{h\nu} NO_2 + e^-$ starting in $(n = 0, m = 0)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	3.54E-03	3.14E-03	0.0033 ± 0.0004	0.0222 ± 0.0002	
(0,1)	2.17E-02	2.07E-02	0.0243 ± 0.0008	0.0337 ± 0.0003	
(0,2)	6.42E-02	6.40E-02	0.066 ± 0.001	0.0802 ± 0.0004	
(0,3)	1.22E-01	1.24E-01	0.126 ± 0.002	0.1145 ± 0.0005	
(0,4)	1.66E-01	1.73E-01	0.165 ± 0.002	0.1498 ± 0.0006	
(0,5)	1.73E-01	1.82E-01	0.175 ± 0.002	0.1492 ± 0.0005	
(0,6)	1.43E-01	1.51E-01	0.139 ± 0.002	0.1125 ± 0.0005	
(0,7)	9.68E-02	9.95E-02	0.089 ± 0.002	0.079 ± 0.0004	
(0,8)	5.41E-02	5.27E-02	0.049 ± 0.001	0.0375 ± 0.0003	
(0,9)	2.53E-02	2.29E-02	0.0229 ± 0.0008	0.0179 ± 0.0002	
(0,10)	9.93E-03	8.49E-03	0.0076 ± 0.0005	0.0067 ± 0.0001	
(0,11)	3.29E-03	2.75E-03	0.0014 ± 0.0003	0.0043 ± 0.0001	
(1,0)	2.74E-04	1.03E-04	0.00026 ± 0.0001	$0.0008 \pm 4E-05$	
(1,1)	1.18E-03	6.52E-04	0.0012 ± 0.0002	$0.00147 \pm 6E-05$	
(1,2)	2.24E-03	1.73E-03	0.0027 ± 0.0003	$0.00316 \pm 9E-05$	
(1,3)	2.32E-03	2.48E-03	0.0033 ± 0.0003	0.00384 ± 0.0001	
(1,4)	1.26E-03	2.04E-03	0.0039 ± 0.0004	0.00414 ± 0.0001	
(1,5)	2.02E-04	1.04E-03	0.0022 ± 0.0003	$0.00336 \pm 9E-05$	
(1,6)	6.79E-05	7.77E-04	0.0015 ± 0.0002	$0.00245 \pm 8E-05$	
(1,7)	6.34E-04	1.27E-03	0.0015 ± 0.0002	$0.0018 \pm 7\text{E-}05$	
(1,8)	1.12E-03	1.53E-03	0.0012 ± 0.0002	$0.00107 \pm 5E-05$	
(1,9)	1.13E-03	1.15E-03	0.0011 ± 0.0002	$0.00067 \pm 4\text{E-}05$	
(1,10)	8.04E-04	5.44E-04	0.0005 ± 0.0001	$0.00039 \pm 3\text{E-}05$	
(1,11)	4.38E-04	1.56E-04	0.0004 ± 0.0001	$0.00021 \pm 2\text{E-}05$	
(2,0)	4.71E-04	2.67E-04	0.0005 ± 0.0001	$0.0026 \pm 8E-05$	
(2,1)	2.62E-03	1.71E-03	0.0026 ± 0.0003	$0.00376 \pm 9E-05$	
(2,2)	7.06E-03	5.16E-03	0.0077 ± 0.0005	0.0088 ± 0.0001	

(2,3)	1.24E-02	$9.77 \text{E}{-}03$	0.0134 ± 0.0006	0.0128 ± 0.0002
(2,4)	1.58E-02	1.31E-02	0.017 ± 0.0007	0.0164 ± 0.0002
(2,5)	1.58E-02	1.35E-02	0.0165 ± 0.0007	0.0154 ± 0.0002
(2,6)	1.28E-02	1.09E-02	0.0126 ± 0.0006	0.0119 ± 0.0002
(2,7)	8.70E-03	7.12E-03	0.008 ± 0.0005	0.0084 ± 0.0001
(2,8)	5.07E-03	3.79E-03	0.0046 ± 0.0004	$0.00354 \pm 9E-05$
(2,9)	2.56E-03	1.67E-03	0.0017 ± 0.0002	$0.00191 \pm 7E-05$
(2,10)	1.14E-03	6.20E-04	0.0008 ± 0.0002	$0.00064 \pm 4E-05$
(2,11)	4.45E-04	1.96E-04	0.0005 ± 0.0001	$0.00039 \pm 3E-05$

FIG. 6. Photoionization of nitrite to nitrogen dioxide starting with one quanta in the symmetric-stretching mode and zero in the bending mode n = 1, m = 0. The more significant errors are primarily due to having a large self-Kerr on cavity A (~30 kHz) during the beamsplitter operation after starting in a state with higher photon number.

	$NO_2^- \xrightarrow{h\nu} NO_2 + e^-$ starting in $(n = 1, m = 0)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	9.08E-03	4.87E-03	0.0036 ± 0.0004	0.0166 ± 0.0002	
(0,1)	3.77E-02	2.40E-02	0.0239 ± 0.0008	0.0287 ± 0.0003	
(0,2)	6.70E-02	5.28E-02	0.059 ± 0.001	0.0562 ± 0.0004	
(0,3)	6.21E-02	6.36E-02	0.07 ± 0.001	0.0686 ± 0.0004	
(0,4)	2.57E-02	4.12E-02	0.058 ± 0.001	0.0534 ± 0.0004	
(0,5)	5.78E-04	1.47E-02	0.0306 ± 0.001	0.0288 ± 0.0003	
(0,6)	1.25E-02	2.20E-02	0.034 ± 0.001	0.0321 ± 0.0003	
(0,7)	4.34E-02	5.43E-02	0.065 ± 0.001	0.0474 ± 0.0004	
(0,8)	6.17E-02	7.15E-02	0.078 ± 0.001	0.0625 ± 0.0004	
(0,9)	5.65E-02	5.71E-02	0.06 ± 0.001	0.0507 ± 0.0004	
(0,10)	3.80E-02	2.95E-02	0.0308 ± 0.001	0.0231 ± 0.0003	
(0,11)	2.00E-02	9.85E-03	0.0083 ± 0.0005	0.0124 ± 0.0002	
(0,12)	8.41E-03	2.11E-03	0.002 ± 0.0003	0.004 ± 0.0001	
(0,13)	2.87E-03	4.62E-04	0.0002 ± 0.0002	$0.00248 \pm 9E-05$	
(0,14)	8.00E-04	2.41E-04	0.0004 ± 0.0002	0.0058 ± 0.0001	
(1,0)	1.46E-04	9.10E-04	0.0002 ± 0.0002	0.0071 ± 0.0001	
(1,1)	2.73E-03	6.17E-03	0.0036 ± 0.0004	0.0078 ± 0.0002	
(1,2)	1.51E-02	2.15E-02	0.0125 ± 0.0006	0.0211 ± 0.0002	
(1,3)	4.29E-02	4.89E-02	0.0336 ± 0.001	0.0344 ± 0.0003	
(1,4)	7.59E-02	7.90E-02	0.063 ± 0.001	0.0592 ± 0.0004	
(1,5)	9.21E-02	$9.34\overline{\text{E-02}}$	0.081 ± 0.001	0.0694 ± 0.0004	
(1,6)	8.05E-02	8.20E-02	0.073 ± 0.001	0.0573 ± 0.0004	
(1,7)	5.16E-02	5.33E-02	0.048 ± 0.001	0.0392 ± 0.0003	
(1,8)	2.39E-02	2.52E-02	$0.0\overline{202} \pm 0.0008$	0.0163 ± 0.0002	

L	(1,9)	7.45E-03	8.37E-03	0.0061 ± 0.0005	0.0055 ± 0.0001
Γ	(1,10)	1.24E-03	1.78E-03	0.0014 ± 0.0003	$0.00124 \pm 6E-05$
Γ	(1,11)	1.95E-05	1.99E-04	0.0006 ± 0.0002	$0.00118 \pm 6E-05$
ľ	(1,12)	8.94E-05	1.33E-05	0.0005 ± 0.0002	0.0037 ± 0.0001
ľ	(1,13)	1.56E-04	1.69E-05	0.0003 ± 0.0002	0.0046 ± 0.0001
ľ	(1,14)	1.08E-04	2.40E-05	0	0.0045 ± 0.0001
ľ	(2,0)	3.83E-04	1.99E-04	0.0005 ± 0.0001	$0.00161 \pm 7E-05$
h	(2.1)	1.23E-03	1.20E-03	0.0016 ± 0.0002	$0.00233 \pm 8E-05$
ľ	(2.2)	1.61E-03	3.06E-03	0.0037 ± 0.0004	0.0044 ± 0.0001
ľ	(2.3)	9.74E-04	4.06E-03	0.0051 ± 0.0004	0.0052 ± 0.0001
t	(2.4)	1.41E-04	2.92E-03	0.0048 ± 0.0004	0.005 ± 0.0001
t	(2.5)	1.05E-04	1.84E-03	0.005 ± 0.0004	0.0043 ± 0.0001
t	(2.6)	7.93E-04	3.63E-03	0.0068 ± 0.0005	0.006 ± 0.0001
ł	(2.7)	1.49E-03	6.90E-03	0.0096 ± 0.0005	0.007 ± 0.0001
ł	(2.8)	1.71E-03	7.86E-03	0.0096 ± 0.0005	0.0078 ± 0.0002
ł	(2.9)	1.50E-03	5.59E-03	0.0063 ± 0.0004	0.0053 ± 0.0001
ł	(2.10)	1.002.00 1.08E-03	2.48E-03	0.0028 ± 0.0003	$0.00219 \pm 8E-05$
ł	(211)	6 70E-04	6 10E-04	0.00020 ± 0.0002	$0.0012 \pm 6E-05$
ł	(2.12)	3.63E-04	5 24E-05	0.0000 ± 0.0002 0.0003 ± 0.0001	$0.0012 \pm 010000000000000000000000000000000$
ł	(2.13)	1.72E-04	1.32E-05	0.0000 ± 0.0001 0.0001 + 8E-05	$0.00037 \pm 3E-05$
ł	(2,10)	7.12E-05	2 40E-05	$0.0001 \pm 0000000000000000000000000000000$	$0.00074 \pm 5E-05$
ł	(3.0)	8.70E-05	1.50E-04	$0.00012 \pm 9E-05$	$0.00133 \pm 6E-05$
ł	(3.1)	1.12E-03	9.95E-04	0.0003 ± 0.0001	$0.00132 \pm 6E-05$
ł	(3,2)	5.23E-03	3.46E-03	0.0023 ± 0.0003	0.0036 ± 0.0001
ł	(3.3)	1.33E-02	7.92E-03	0.0054 ± 0.0004	0.0062 ± 0.0001
ł	(3.4)	2.19E-02	1.29E-02	0.011 ± 0.0006	0.0117 ± 0.0002
ľ	(3.5)	2.53E-02	1.53E-02	0.014 ± 0.0007	0.0135 ± 0.0002
ľ	(3.6)	2.16E-02	1.35E-02	0.0121 ± 0.0006	0.0115 ± 0.0002
ľ	(3.7)	1.39E-02	8.77E-03	0.0075 ± 0.0005	0.0078 ± 0.0002
ľ	(3.8)	6.67E-03	4.15E-03	0.0039 ± 0.0004	$0.00296 \pm 9E-05$
ľ	(3,9)	2.31E-03	1.37E-03	0.0014 ± 0.0002	$0.00103 \pm 6E-05$
ľ	(3,10)	5.13E-04	2.86E-04	0.0004 ± 0.0001	$0.00025 \pm 3E-05$
ľ	(3,11)	4.40E-05	3.18E-05	0.0002 ± 0.0001	$0.00021 \pm 2\text{E-}05$
ľ	(3,12)	2.11E-06	7.28E-06	0.0002 ± 0.0001	$0.00071 \pm 5E-05$
ľ	(3,13)	1.79E-05	8.77E-06	$0.00018 \pm 9E-05$	$0.00091 \pm 5E-05$
ľ	(3,14)	1.77E-05	7.78E-06	$0.0001 \pm 8E-05$	$0.00084 \pm 5E-05$
ľ	(4,0)	9.46E-06	3.58E-05	0	$0.0004 \pm 3E-05$
ľ	(4,1)	8.74E-06	2.20E-04	0.0004 ± 0.0001	$0.00055 \pm 4E-05$
ľ	(4,2)	2.89E-07	5.52E-04	0.0006 ± 0.0002	$0.00096 \pm 5E-05$
ľ	(4,3)	3.10E-05	7.20E-04	0.0011 ± 0.0002	$0.00115 \pm 6E-05$
ľ	(4,4)	8.57E-05	5.26E-04	0.0012 ± 0.0002	$0.00112 \pm 6E-05$
ľ	(4,5)	9.82E-05	3.86E-04	0.0014 ± 0.0002	$0.00095 \pm 5E-05$
Γ	(4,6)	6.28E-05	7.62E-04	0.002 ± 0.0003	$0.00118 \pm 6E-05$
Γ	(4,7)	2.51E-05	1.35E-03	0.0023 ± 0.0003	$0.0016 \pm 7E-05$
Γ	(4,8)	7.91E-06	1.48E-03	0.0014 ± 0.0002	$0.00149 \pm 7E-05$
ľ	(4,9)	3.98E-06	1.03E-03	0.0011 ± 0.0002	$0.00117 \pm 6E-05$
Γ	(4,10)	5.12E-06	4.58E-04	0.0004 ± 0.0001	$0.00043 \pm 4\text{E-}05$
Γ	(4,11)	8.37E-06	1.20E-04	$0.00015 \pm 8E-05$	$0.00027 \pm 3E-05$
Γ	(4,12)	1.07E-05	1.67E-05	0	$0.0001 \pm 2\text{E-}05$
ſ	(4,13)	1.00E-05	5.98E-06	0	$7E-05 \pm 1E-05$
Γ	(4.14)	7.02E-06	5.32E-06	$0.00015 \pm 7\text{E-}05$	$0.00013 \pm 2\text{E-}05$

FIG. 7. Photoionization of sulfur dioxide to the cation starting in the vibrationless state n = 0, m = 0.

	$SO_2 \xrightarrow{h\nu} SO_2^+ + e^-$ starting in $(n = 0, m = 0)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	2.82E-02	2.88E-02	0.0275 ± 0.0009	0.0497 ± 0.0003	
(0,1)	1.14E-01	1.15E-01	0.112 ± 0.002	0.1167 ± 0.0005	
(0,2)	2.13E-01	2.15E-01	0.213 ± 0.002	0.2017 ± 0.0006	
(0,3)	2.47E-01	2.47E-01	0.245 ± 0.002	0.2136 ± 0.0006	
(0,4)	1.97E-01	1.95E-01	0.202 ± 0.002	0.1652 ± 0.0006	
(0,5)	1.14E-01	1.11E-01	0.113 ± 0.002	0.0947 ± 0.0005	
(0,6)	4.85E-02	4.72E-02	0.051 ± 0.001	0.0452 ± 0.0003	
(0,7)	1.54E-02	1.48E-02	0.0152 ± 0.0007	0.0268 ± 0.0003	
(0,8)	3.57E-03	3.38E-03	0.0037 ± 0.0004	$0.00302 \pm 9E-05$	
(0,9)	5.68E-04	5.28E-04	0.0003 ± 0.0002	$0.00091 \pm 5E-05$	
(1,0)	9.40E-06	2.89E-05	0.0003 ± 0.0001	$0.00108 \pm 5E-05$	
(1,1)	4.35E-05	1.53E-04	0.0007 ± 0.0002	$0.00206 \pm 7E-05$	
(1,2)	7.70E-04	9.82E-04	0.0008 ± 0.0002	$0.00318 \pm 9E-05$	
(1,3)	2.67E-03	2.84E-03	0.0017 ± 0.0003	0.00374 ± 0.0001	
(1,4)	4.54E-03	4.53E-03	0.0023 ± 0.0003	0.004 ± 0.0001	
(1,5)	4.78E-03	4.60E-03	0.0031 ± 0.0003	$0.0035 \pm 9E-05$	
(1,6)	3.44E-03	3.22E-03	0.0022 ± 0.0003	$0.00219 \pm 7E-05$	
(1,7)	1.76E-03	1.62E-03	0.0009 ± 0.0002	$0.0014 \pm 6E-05$	
(1,8)	6.53E-04	5.89E-04	0.0008 ± 0.0002	$0.00038 \pm 3E-05$	
(1,9)	1.73E-04	1.54E-04	$0.0003 \pm 9E-05$	$0.00011 \pm 2\text{E-}05$	

FIG. 8. Photoionization of sulfur dioxide to the cation starting with zero quanta in the symmetric-stretching mode and one quantum in the bending mode n = 0, m = 1.

	$SO_2 \xrightarrow{h\nu} SO_2^+ + e^-$ starting in $(n = 0, m = 1)$				
(n',m')	Classically	Master equation	Single-bit	Sampling	
	calculated	simulation	extraction		
(0,0)	8.52E-02	8.36E-02	0.075 ± 0.001	0.0855 ± 0.0005	
(0,1)	1.79E-01	1.78E-01	0.174 ± 0.002	0.1566 ± 0.0006	
(0,2)	1.17E-01	1.19E-01	0.124 ± 0.002	0.1271 ± 0.0006	
(0,3)	8.11E-03	1.50E-02	0.0306 ± 0.0009	0.0395 ± 0.0003	
(0,4)	3.64E-02	4.42E-02	0.052 ± 0.001	0.0564 ± 0.0004	
(0,5)	1.40E-01	1.42E-01	0.144 ± 0.002	0.1226 ± 0.0006	
(0,6)	1.73E-01	1.69E-01	0.166 ± 0.002	0.1299 ± 0.0006	
(0,7)	1.21E-01	1.16E-01	0.113 ± 0.002	0.0872 ± 0.0005	
(0,8)	5.56E-02	5.22E-02	0.053 ± 0.001	0.0382 ± 0.0003	
(0,9)	1.74E-02	1.60E-02	0.0176 ± 0.0007	0.0133 ± 0.0002	
(0,10)	3.62E-03	3.24E-03	0.0036 ± 0.0004	$0.00296 \pm 9E-05$	
(0,11)	4.51E-04	3.96E-04	0.0016 ± 0.0003	$0.00206 \pm 8E-05$	
(1,0)	1.68E-03	1.55E-03	0.0037 ± 0.0003	0.0047 ± 0.0001	
(1,1)	3.27E-03	3.16E-03	0.0064 ± 0.0005	0.0082 ± 0.0002	
(1,2)	3.48E-03	3.48E-03	0.0058 ± 0.0004	0.0083 ± 0.0002	
(1,3)	3.89E-03	3.99E-03	0.0064 ± 0.0004	0.006 ± 0.0001	
(1,4)	5.95E-03	6.09E-03	0.006 ± 0.0004	0.0062 ± 0.0001	
(1,5)	9.44E-03	9.38E-03	0.007 ± 0.0005	0.0077 ± 0.0001	
(1,6)	1.18E-02	1.14E-02	0.0083 ± 0.0005	0.008 ± 0.0001	
(1,7)	1.07E-02	9.95E-03	0.0072 ± 0.0005	0.0067 ± 0.0001	
(1,8)	6.90E-03	6.24E-03	0.0048 ± 0.0004	0.0041 ± 0.0001	
(1,9)	3.18E-03	2.79E-03	0.0031 ± 0.0003	$0.00203 \pm 8E-05$	
(1,10)	1.03E-03	8.79E-04	0.0005 ± 0.0001	$0.00061 \pm 4\text{E-}05$	
(1,11)	2.26E-04	1.86E-04	$4E-05 \pm 6E-05$	$0.00035 \pm 3\text{E-}05$	

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford, CT, 2016.
- [2] V. A. Mozhayskiy and A. I. Krylov, ezSpectrum (ver. 3.0), downloaded January 2019 from http://iopenshell.usc.edu/downloads, 2014.
- [3] T. H. Dunning, Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen. J. Chem. Phys. 90, 1007-1023 (1989).
- [4] R. A. Kendall, T. H. Dunning, Jr., R. J. Harrison, Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 96, 6796-6806 (1992).
- [5] D. E. Woon, T. H. Dunning, Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 98, 1358-1371 (1993).
- [6] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. *Phys. Rev. Lett.* 73, 58-61 (1994).
- [7] George Cybenko. Reducing Quantum Computations to Elementary Unitary Operations, Computing in Science & Engineering 3, 27 (2001).
- [8] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, A. Aspuru-Guzik. Boson sampling for molecular vibronic spectra. *Nature Photonics.* 9, 615–620 (2015).
- [9] Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh, K. Kim. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. *Chem. Sci.* 9, 836–840 (2018).
- [10] Y. Y. Gao, B. J. Lester, Y. Zhang, C. Wang, S. Rosenblum, L. Frunzio, L. Jiang, S. M. Girvin, R. J. Schoelkopf. Programmable Interference between Two Microwave Quantum Memories. *Phys. Rev. X*. 8, 021073 (2018).
- [11] Y. Zhang, B. J. Lester, Y. Y. Gao, L. Jiang, R. J. Schoelkopf, S. M. Girvin. Engineering bilinear mode coupling in circuit QED: Theory and experiment. *Phys. Rev. A*. 99, 012314 (2019).
- [12] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Charge-insensitive qubit design derived from the Cooper pair box. *Phys. Rev. A*. 76, 042319 (2007).
- [13] K. S. Chou, "Teleported operations between logical qubits in circuit quantum electrodynamics", thesis, Yale University (2018).
- [14] S. S. Elder, C. S. Wang, P. Reinhold, C. T. Hann, K. S. Chou, B. J. Lester, S. Rosenblum, L. Frunzio, L. Jiang, R. J. Schoelkopf. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. *Phys. Rev. X* (Accepted) (2019).