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The power conversion efficiency (PCE) of pure polymer solar cells (PSCs) remains low, although sig-
nificantly higher values could be achieved by using PSCs as carrier donors in conjunction with composite
fullerene derivative (FD) acceptors. Significant resources, however, are required to experimentally de-
velop and screen FDs that may serve as efficient acceptors in PSCs. Often, the materials are expensive, the
methods are time consuming, and the production processes can generate toxic hazards. As an alternative
approach, we introduce a quantitative structure-property relationship (QSPR) model for predicting the
PCE of 59 FDs, including both Cgo and C;o FDs. The QSPR model enables identification of the essential
structural attributes necessary for quantifying the molecular prerequisites of diverse FDs, chiefly re-
sponsible for high PCE of PSC acceptors in composition with poly(3-hexylthiophene) (P3HT). The iden-
tified properties and structural fragments are particularly valuable for guiding future synthetic efforts for
development of FDs with improved power conversion efficiency. Furthermore, a large number of FDs are
collected to generate a database. Virtual screening of the database employing the developed QSPR model

allows for identification of nine FDs with higher PCE than previously studied FDs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental pollution and resource depletion are serious
problems that require immediate solutions. Solar cells are already
producing a significant impact as viable solutions to sustainable
energy. Replacing oil and coal energy sources by solar cell energy
would provide multiple benefits to society, including increasing
economic competitiveness in the global clean energy race, cutting
carbon pollution to combat climate change and wide-spreading
energy independence. In particular, solar technology already sup-
ports broader national priorities as a domestic energy source in
the United States, including national security, economic growth
and job creation [5]. Furthermore, it has great potential to mod-
ernize the global energy infrastructure since PSC panels on just
0.6% of total land area could supply electricity to power the entire
nation [5]. An outstanding challenge is the development of ma-
terials for cost effective solar energy panels.

Significant research is currently directed at generating
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materials for clean, renewable energy and photocatalytic ap-
proaches for sustainable chemistry [1]. Recently, organic photo-
voltaics have been the subject of intense research [2,3]. The power
conversion efficiencies (PCEs) of organic photovoltaic materials,
however, have remained significantly lower than those of silicon-
based wafers or other semiconductors materials [4]. Therefore,
there is great interest in the discovery of organic materials with
high PCE to bypass some of the disadvantages of silicon-based
solar cells technologies, such as high cost, heavy weight, limited
silicon resources, and production methods that lead to high en-
vironmental pollution and high energy consumption during pur-
ification of silicon materials [4].

Recent studies have shown that combining electron donor
polymer materials with composite of fullerene derivatives (FDs) as
acceptors could provide attractive PCEs [4]. The efficiency con-
version could be further improved by optimizing the excitation,
dissociation, and charge transport processes in the device [4].
Therefore, polymer solar cells (PSCs) with a bulk-heterojunction
(BH]J) active layer attract much attention and offer advantages in
fabrication, cost, and flexibility, when compared to traditional in-
organic semiconductor photovoltaics [6,7]. The general mechan-
ism behind such PSCs is as follows: initially light irradiates the
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polymer donor through the transparent electrode to form excitons.
The excitons diffuse to the donor/acceptor interface where they
dissociate into electrons and holes. The electrons are typically lo-
calized on the acceptor LUMO and holes on the donor HOMO.
Next, the dissociated electrons and holes are collected by the
electrodes, resulting in overall photon-to-electron conversion [8].

Many conjugated polymers have been synthesized for use as
donor materials in PSCs. Poly(3-hexylthiophene) (P3HT) is among
the most widely used polymer in photovoltaic devices, typically
providing PCE as high as 4.2 [8,9]. In addition, since [6,6]-phenyl-
C61-butyric acid methylester (PCBM) was first introduced as PSC
acceptor, a significant number of fullerene derivatives (FDs) have
been synthesized and characterized to enhance the photovoltaic
performance of PSCs, though relatively few have been able to
outperform PCBM [10,11]. As a result, there is a constant effort to
design more efficient FDs that might serve as PSC acceptors [12].
The required experimental work, however, requires a significant
amount of resources. Experiments are expensive, time consuming,
and may generate toxic hazards [10]. Therefore, there is significant
interest in the use in silico modeling techniques that could predict
PCE values for newly PSCs. Such predictions could significantly
expedite experimental efforts, narrowing the range of promising
acceptor materials by ruling out candidates that are doomed to fail
experimental tests.

The use of in silico methods for chemical property prediction is
well established and quantitative structure-property relationship
(QSPR) methods emerged as an important computational tool with
a diverse range of applications [13]. Robust and validated QSPR
models can predict properties for new or untested molecular
structures. In this way, QSPR approaches provide insights that
expedite the design of novel compounds with desired properties
[13]. When applied to property and risk assessment of chemical
compounds, regulatory agencies worldwide have already accepted
the implication of QSPR models. To date, however, only a single
QSPR model has been built to predict the PCE of FDs for PSCs [14].
The model employed 45 FDs and was limited to Cgp FDs. Therefore,
further work is required in the field to demonstrate the cap-
abilities and limitations of QSPR models as applied to materials for
energy research.

Here, we derive the first global QSPR model for predicting PCE
values of 59 FDs, including both Cgg and C7¢ FDs. Multiple linear
regression (MLR) based on a genetic algorithm (GA) as a variable
selection tool is employed to develop our predictive QSPR model.
All of the models have been assessed according to the re-
commended Organization of Economic Co-operation and Devel-
opment (OECD) principles [15]. In addition to identifying the
structural features relevant for higher PCE value of FDs as accep-
tors for PSCs, the data analysis provides significant insights on the
applicability of this type of statistical modeling. A large number of
FDs (169) were collected to generate a database, which was sub-
sequently followed to identify the most efficient FDs. Along with
the predicting and quantifying the structural features responsible
for higher PCE values of FDs, our study thus provides helpful in-
sights regarding the use of virtual screening approaches to iden-
tification of lead FDs. A complete workflow of our study is shown
in Fig. 1, addressing the issue of low efficiencies in PSCs which
must be resolved to transform PSCs into competitively viable
products.

2. Methodology
2.1. Dataset

Our data set includes 59 fullerene derivatives (52Cgq derivatives
and 7C5q derivatives) as solar cell acceptors with experimental PCE
values collected from the literature [8,16,17]. The experimental %
PCE values for all compounds are assessed according to BHJ de-
vices, where P3HT is the donor material and FDs are the electron
acceptor components. The BH] devices were assembled by both
solvent annealing and thermal annealing methods. Chemical
structures and experimental %PCE values for all compounds are
given in Table 1.

2.2. Descriptors calculation

2.2.1. Structure preparation: molecular and quantum mechanics
FDs structures were first prepared by molecular mechanics

Dataset: 59 structurally diverse Cg (52) and C44 (7) FDs with % PCE values based on P3HT/PC4BM by
solvent annealing and thermal annealing

2

Structures preparation: Drawn in Gauss view 5.0 |

Optimization: MM* molecular mechanics method in HyperChem 8.07 software to obtain the basic
conformations

v

DFT with the hybrid meta exchange-correlation functional M06-2X including 6-31G (d, p) basis set
applied to attain reliable optimal geometries by the Gaussian 09 code

v

Descriptors calculation: Exploring the Gaussian output files, computed basic quantum-mechanical
descriptors as well as employed MarvinView (ChemAxon) and Maestro 10.2 (Schrodinger) software for
computation of electronic and physicochemical descriptors, and QSAR4U software to generate more
descriptors to identify the fragment importance of FDs

Descriptor thinning approach: First, descriptors are pretreated with 0.0001 variance cut off and passed
through 0.99 correlation coefficient to eliminate inter-correlated descriptors. Then, genetic algorithm is
performed for 20 times to select the best possible descriptors pool for QSPR modeling from the pretreated
descriptors pool

7

| QSPR model: Employing GA-MLR

—_

Validation, randomization and
applicability domain (AD) assessment

[ Interpretation of essential

higher % of PCE of PSC acceptors

Prediction and screening of 169 Performed AD study to
structural attributes responsible for FDs to find power conversion
efficient acceptors for PSC

identify lead FDs with
reliable prediction

Fig. 1. A complete scheme of the present study.



Table 1

Chemical structure of Cgp and C; fullerene derivatives with their experimental and predicted % PCE properties.
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D Substituents PCE (%)
R, R, [ R; | Ry Rs | R¢ | Experimental | Predicted

1" C4H, CeHs - - 1.9 [ 1.96
2 CH, CoHs - - - 0.4 1.57
3 307 CoHs - - - 22 1.65
4 iso-Propyl C¢Hs - - - 2.8 1.70
5 C,H, CoHs - - - 2.7 1.37
6" -COOCH,Ph CeHs - - - 25 1.65
7 -CH,COOCH,CH; CoHs - - - 2.7 3.11
8 -CH,COOCH; @ - - -

S 3.7 3.07
9 -COOCH; 4-OCH3Ph - - - 0.05 1.40
10 -COOC,Hs . _ - N

S 25 273
11 -COOC;H; \ N - - -

S 34 2.34
12 C4H9 ©—"_ - - -

S 2.9 2.06
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Table 1 (continued )
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13 ] CeHy3 - - 2.8 2.74
14 C,4H, - -

2.1 1.67
15 -COOCH; (CH,),COOCH; - - - 0.02 0.21
16" | -CH,CH,COOCH,CH,OCHj -COOC,H; - - - 0.9 0.16
17 H COOC8H17 - - - 0.3 0.11
18 -COOCH; - - - - 35 3.05
197 CH,COOCH; - - - - 23 281
20 (CH,),COOCH; - - - - 3.6 2.56
21 (CH,);COOCH; - - - - 28 2.36
22 H H H H H 42 3.95
23" H H OCH; H H 3.6 3.85
24 H OCH; OCH; OCH; H 12 1.31
25 H H F H H 35 3.63




Table 1 (continued )
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26 | F F \ F F F - 0.6 0.57

R4

R2
27 H COOCH; OCsHy; | OCsHys 137 1.44
28 H COOCH; OCsH,; | OCsH 5 1.5 1.35
29 H COOCH; OCsHi;| H 1.05 0.81
30 H COOCH; OCH; | OCH; 0.22 0.22
31 COOCH; H OCsH,; | OCsHy5 1 1.44
32 H CN OCgH,; | OCgH, 0.84 1.53
33 H NO, OCsH,; | OCsH 5 0.51 1.11
34 H SO,CH; OCsH,; | OCsHy5 1.24 1.37
35 H SO,CF; OCsHy; | OCsHys 0.86 0.46
36 | COOCH; OCsHy; | OCsHy; - - - 1.6 1.31
37 H CeHs CeHs CeHs | CeHs | CeHs 0.02 0.26
38 CH; CoHs CeHs CeHs | CeHs | CeHs 0.45 0.26
39" CH; -OC4gHs -OCgHs -OCgHs | -OCeHs | -OCeHs 1.08 1.29
40 CH, CsHo CsHo CiHo | CiHo | CiHo 0.91 0.14
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Table 1 (continued )
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41 CH; CH; CH; | CH; | 0.15 0.83
427 02\H5 H - - -
Gy
CgHg” O 173 1.77
43 CoHg CH; - - -
|
.
Catig” O 1.01 2.03
44 CHs B - -
N/
@ 4 3.06
R4
45 CH, CoHs B - - 2.45 2.86
46 CsH7 CeHs - - - 127 1.96
47 CioHys CeHs - - - 1.04 1.05
48" Ci6Hss C¢Hs - - - 0.11 0.15
49 CHj; CH3 CH3 - = -
‘ 4 4.05
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Table 1 (continued )

50 | CH; - - 23 [ 232
517 ] CH, [ - -] 4.1 [ 3.06
52 CH, - - 1.2 1.58
53 CHs - - 1.7 1.67
54 CiHy - - 1.7 1.42
55 C3Hy - -
11 2.44
56" CaHy . B
11 2.20
57 CH, - - 2.74 3.23
58 CH, - -
3.7 3.18
59 CH; o - - -
\ W /i
\an
\—\,,2/ 0 2.46 2.70
AN ~ Ao
A

*Compounds present in the test set.
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(MM), using the MM™ molecular mechanics method as im-
plemented in the HyperChem 8.07 software package [18], and
subsequently optimized by density functional theory (DFT) to
evaluate properties and descriptors as implemented with the hy-
brid meta exchange-correlation functional M06-2X [19] and the
6-31G (d,p) basis set [20]. DFT calculations were carried out by
using Gaussian 09 [21]. The Berny algorithm, using GEDIIS in re-
dundant internal coordinates, was applied to obtain the local
minima [22] following earlier studies where the selected combi-
nation of functional and basis set was found to be robust and re-
liable for calculations of fullerene derivatives [23].

2.2.2. Descriptors

Basic quantum-mechanical descriptors like energy of HOMO
and LUMO, difference of HOMO and LUMO energy, valence band,
conduction band, hardness, mulliken electronegativity, electronic
chemical potential and dipole moment, were computed and ex-
tracted from the standard Gaussian output files. Next, Maestro 10.2
(Schrodinger) [24] and MarvinView (ChemAxon) [25] software
packages were employed to compute topological, semi-empirical
and physicochemical descriptors as well as solvent accessible
surface area descriptors, respectively. Additionally, QSAR4U soft-
ware was utilized to generate descriptors derived from Simplex
Representation of Molecular Structure (SiRMS) [26,27], identifying
the FD fragment importance in the dataset. In the framework of
SiRMS, molecules are represented as a system of simplexes (i.e.,
fragments of fixed composition and topology) and a 2D level of
molecular representation is utilized to generate simplex fragments
of size 3-5 atoms. Detailed description of HiT QSAR based on
SiRMS could be found elsewhere [27]. Three fundamental physical
properties were considered to describe simplex fragments: atom
types, partial charges, or van-der-Waals interaction. On the first
step, fullerene was represented as molecular graph. Next, each
atom was labeled in accordance with certain physical property. For
example, for partial charges, all atoms in molecular graph were
labeled as A, B and C using range — 0.05 (A)<0 (B)<0.05 (C).
Differentiation based on Van-der-Waals interactions was achieved
by dividing types of atoms into six groups: 50 (A) < 100 (B) <250
(C) <400 (D) <650 (E) <2000 (F) [VAW units]. After differentia-
tion, the molecules were represented as molecular graphs where
the vertices were marked by the three properties listed above.
Next, all molecules were fragmented to obtain all possible com-
binations of fragments (namely, simplexes). Finally, the numbers
of simplexes of certain type (e.g., A-B-D-G) were used as de-
scriptors. Therefore, a complete pool of 772 descriptors was
computed to model the % PCEs of our 59 FDs.

2.3. Data pre-processing

Descriptors were initially pretreated with a 0.0001 variance cut
off and passed through a 0.99 correlation coefficient to eliminate
correlations between them and to reduce the noise level in the va-
lues of input descriptors and correlations. Then, a genetic algorithm
(GA) was applied for 20 iterations to select the best possible subset
of descriptors for QSPR modeling from the pretreated pool [28]. Such
a ‘descriptor-thinning’ procedure led us to identify23 descriptors
from the pool of 772, which are most relevant for our study.

Before splitting the dataset into training and test subsets, it is
vital to classify the dataset according to the calculated properties
(descriptors) and to evaluate the number and size of distinctive
groups of FDs. For this purpose we have applied a Kohonen's self-
organizing map (SOM) algorithm to obtain a matrix dataset of
59 x 772 (45,548) data points. Application of artificial neural net-
work analysis in the SOM algorithm reduced the activity space to a
6 x 6 neuron size map (Fig. 2). The weights were randomly in-
itialized and the training was performed for a period of 200

epochs in an unsupervised manner. The resulting Kohonen's map
was produced indicating the most frequent occupation, as shown
in Fig. 2. Closely related FDs, based on the calculated descriptors,
were grouped in the same basin with small interneuron distances
colored in yellow. As shown in Fig. 2, most FDs with similar
properties were projected into the same areas of the map. The
distinctly diverse FDs were significantly far away from the main
group and were separated by large interneuron distances. For
example, neurons [2,3,5] consist of a higher number of FDs though
they are considerably different from each other. The remaining
neurons included fewer compounds (six neurons contain only
1 FD each) and were separated from the main two neurons by
large interneuron distances, thus confirming that an extremely
diverse group of FDs has been used for this study.

2.4. Dataset splitting

The data set was split into the training and test subsets by ran-
dom selection considering three rules: (a) the range of the response
values of both subsets should be covered from the lowest to the
highest value; (b) the highest and lowest values of response were
included in the training set, the response of the test set was similar
to that of the training set, and (c) around 25% molecule contribution
of Cgp and C;q FDs separately were included in the test set. There-
fore, out of 52Cgo FDs and 7C7o FDs, 13 and 2 compounds, respec-
tively were randomly selected as the test compounds, following
these rules. Therefore, the training and test subsets consisted of 44
and 15 compounds, providing a ratio of around 75% and 25%, re-
spectively. The test compounds were marked and listed in Table 1.
The uniformity in the distribution of compounds is graphically
shown in the principle component analysis (PCA) score plot (Fig. S1
in Supplementary material section). The plot shows that the testing
molecules lie within the domain of the training subset, ensuring
that the test subset thus selected captures all of the essential fea-
tures of the entire dataset and all the 59 compounds are located in
the close vicinity of each other in the 3D space.

2.5. Statistical model development and validation metrics

In the present work, we have built a regression-based QSPR
model to quantify the contributions of the structural attributes
and physicochemical properties to PCE values. We employed a
genetic algorithm (GA) technique [29] as the selection statistical
tool implemented in the Genetic Algorithm 1.4 software package
[28]. Next, multiple linear regression (MLR) analysis was per-
formed by MLR Plus Validation GUI 1.2 software [28], using the
training set compounds to develop the QSPR model, which was
followed by validation of the model using the test set compounds.
We used the following steering parameters for the GA algorithm:
total number of iterations 100, cross-over probability 1, mutation
probability 0.5 and smoothing parameter (LOF calculation) 1.

Statistical metrics were computed to check the fitness of the
QSPR model. Different internal, external and overall validation
strategies were subsequently employed for model validation. The
goodness-of-fit of the equations was judged by the quality metric
R?, as well as the internal validation metric leave-one-out cross-
validation parameter Qfoo and external validation metric Rf,red or
QZ.1)The calculation of the ry,? metrics for the test set data
(r2 (test), Ar(test)) additionally estimated the closeness between
the values of the predicted and the corresponding observed ac-
tivity data of the testing set. It has been shown that for an ac-
ceptable model, the value of Arm(ztesr) should be lower than 0.2,
provided that the value of rZ(test) is more than 0.5 [30]. Similarly,
r2(Loo) and Arm(zwo) parameters were used for the training set
and, r2 (overall) and Arm(zavem”) were used for the overall set [30].
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Fig. 2. Self-Organizing Map (SOM) of 169 FDs based on the computed properties.

Table 2
Obtained statistical data from the developed QSPR model.

Validation Metrics Value Threshold
Internal Nrraining 44 -
R? 0.76 >0.5
R3gjusted 0.70 >0.5
SEE 0.69 -
F 13.398 -
(DF:8, 35)
Qfoo 0.68 >05
PRESS 22.87 -
SDEP 0.72 -
2 0.57 > 0.5
m(LOO)Scaled
Arnz‘l(LOO)Scaled 010 <02
External Nrest 15 -
RMSEP 0.61 -
Q%] or R]Z)red 0.70 >0.5
Q% 0.70 >05
2 0.60 >0.5
m(test)Scaled
Arr%l(test)Scaled 014 <02
Overall l‘% (overall)Scaled 058 >05
Arr%l(overall)Scaled o1 <02
Golbraikh and r? 0.70 >05
Tropsha's criteria ‘1’5 - 0.06 <03
2 -3 0.003 Any of them must be
2 <01
22 0.09
2
k 1.01 0.85 <k or k<1.15
K 0.91

The models were also subjected to additional external validation
parameters, including the ngt(FZ) [31]and Golbraikh and Tropsha's
[32] criteria to check the model reliability.

2.6. Y-randomization test

The robustness of the QSPR model was checked based on the
Y-randomization technique. For a robust model, the determination

coefficient (R?) of the non-random model should exceed the
squared average correlation coefficient of the randomized models
(R2). The model randomization was performed 100 times via
shuffling the dependent variables while maintaining the original
independent variables. The average R? of 100 random models was
computed and defined as R,> followed by calculation of the °R,?
parameter [33] that penalizes model R? for small differences in the
values of R? and R,%.

‘R2 =R x |R? - R? )

For an acceptable model, the value of °R,? should be more than
0.5.

2.7. Applicability domain test

According to the OECD principle #3, a QSPR model should have
a defined domain of applicability (AD). Technically, AD represents
the chemical space defined by the structural information of the
chemicals used in model development, i.e., the training set com-
pounds in a QSPR analysis. Here, we have tried two different ap-
proaches to assess the important issue of AD. The AD of the model
was checked employing (a) the leverage approach [34] and (b) the
Euclidean distance approach [35].

3. Results and discussion
3.1. Computational results

Based on the experimental PCE data and selected structural
features (descriptors), we have developed a statistically significant
QSPR model, employing a hybrid GA-MLR as the modeling meth-
od. The developed equation is

PCE(%) = 2.839(+0.448) + 1.731(+0.339) x D1

- 0.814(+0.151) x D2

- 0.057(£0.014) x D3 — 0.806(+0.192) x D4

- 0.129(0.029) x D5

+0.488(+0.140) x D6 — 0.009(+0.004) x D7

~ 0.081(+0.050) x D8 )

Extensive explanation of descriptors D1 to D8 are provided in
the Section 3.2. The statistical data presented in Table 2 support
that our QSPR model is well fitted and robust to reliably predict
the PCE of untested compounds. Eq. (2) involves 8 descriptors and
explains 76.0% of the variance. Eq. (2) was obtained in compliance
with OECD principles, although the complete dataset is extremely
diverse in terms of structural similarity of the molecules, sa-
tisfactory measures of goodness-of-fit, robustness and predict-
ability. Moreover, least possible deviation of the predicted activity
data from the corresponding observed ones is further implied
from the satisfactory values of all the r,,,> metrics. Identical values
for the Q1) (0.70) and Qf) (0.70) metrics indicate that the test
and training sets, selected for development of the QSPR model,
have similar response distributions. External predictability was
further assessed according to the Golbraikh and Tropsha's criteria,
which are highly satisfactory. Both the very good fit and high
predictability are confirmed by a scatter plot of experimentally
determined (observed) versus predicted (employing QSPR model)
PCE values of FDs (Fig. 3).

To avoid the possibility of “correlation-by-chance” and to con-
firm the statistical significance of the developed QSPR model, we
have additionally performed a Y-randomization technique. We
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Fig. 3. Scatter plot of experimentally determined (observed) versus predicted PCE
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0.00 -

R? o’

-0.40

-0.60

Developed model ™ Average of 100 random models

Fig. 4. Randomization plot of the developed GA-MLR model.

have built 100 random models using the same set of descriptors,
however, in each of these models, the descriptors were correlated
with randomly shuffled response values (i.e. PCE value of the FDs).
The average R?> and Q? of 100 random models are 0.19 (R,?) and
—0.43 (Q?); and the ‘R,? parameter is 0.66 which is significantly
higher than the stipulated value of 0.5 (Fig. 4). All the numerical
values strongly suggest that the obtained model is not derived by
chance.

The leverage approach showed a critical HAT diagonal value
(h*) of 0.614. We have used a + 3c standard deviation unit of the
predicted residual values for defining the domain of applicability
of the model. All training set compounds bear values of standar-
dized residue within the limit of + 3o, indicating that there was
no prediction outlier in the training set. However, two FDs of the
training set have greater leverage values than the critical value of
0.614 (h > h*). Therefore, these compounds behave as influential
observations (X outlier), although they are not response outliers
(not Y outlier). All testing compounds were found to be within the
AD of the model. Additionally, in the case of the Euclidean distance
validation approach (i.e., employing a Euclidean distance mea-
sure), all compounds were found to lie within the domain defined
by the training set. Considering both of the AD tests, we conclude

that all test compounds were inside of the AD and their predic-
tions are completely reliable. Therefore, we can confidently predict
100% of test compounds based on the developed model after rig-
orous testing for validation and AD. The standardized cross-vali-
dated residuals versus leverage values (Williams plot) and Eu-
clidean distance plot are provided in Fig. 5(a) and (b), respectively.

3.2. Interpretation of the developed model

The descriptors appearing in Eq. (2) are listed in descending
order of significance, based on their standardized coefficients
(Fig. 6). To comply with the OECD Principle 5, mechanistic inter-
pretation should be given for any predictive QSPR model. Here we
provide the interpretation, with suitable examples, and justify the
importance of each descriptor appearing in the GA-MLR equation:

[D1] The S_A(chg)/A_D_D_D/1_2s,1_3s,3_4a/6 descriptor is
related to the positive effects on the PCE value contributed by the
partial-charge. This descriptor represents a four-atomic fragment
labeled by partial charges. In this case, partial charges are induced
by -ortho directing groups in the substituted benzene rings. The
specific types of fragments on example molecules are presented
below (blue and red circles). As indicated in Box 1 of Fig. 7,
compounds numbered 31, 33 and 35 have fragment type (a) and
26 has another form of fragment type (b). Both are -ortho directing
groups in the substituted benzene ring, so the value of this de-
scriptor for the mentioned molecules would be 2. In the same way,
compound 28 has two (c) type fragments, so its value will be
double ie. 4. As mentioned earlier, the feature has a positive
contribution to the PCE value, and as expected, the experimental
PCE value of compound 28 is greater than the values of com-
pounds 26, 31, 33, and 35.

[D2] The second significant descriptor Fr5(chg)/B_C_C_C_D/
1_4s, 2_3s, 2_4s, 3_4s| also defines partial charges and has nega-
tive impact on the modeled equation. Such a descriptor, based on
partial charges, is represented by the following molecular frag-
ment (d) in Box 2 of Fig. 7, where, A is an aromatic ring, R; an
alkane substituent, and the cross line shows the bond attaching
the fullerene.

[D3] Feature Fr5(type)/C.3_C.3_C.3_C.3_H/1_2s, 2_3s, 3_4s, 4_5s/
defines the presence of specific types of atoms (here, saturated
carbon chains like [C(sp?)-C(sp®)-C(sp®)-C(sp*)-H]) in a particular
compound. It has a negative effect on the PCE values. For instance,
the value of this descriptor is the highest for the compound 28,
which has three long saturated carbon chains (-CgH17) attached to
the benzene ring. Compounds 31, 33, and 35 have two long satu-
rated carbon chains (-CgHy7), generating higher values for this
descriptor leading to lower PCE values. On the contrary, lower
values of this descriptor for compounds 22 and 25 lacking satu-
rated side chains, generate higher PCE values.

[D4] The Fr5(att)/C_C_E_E_E[1_3s, 2_4s, 3_5a, 4_5a/ descriptor
is related to the van der Waals attraction between 3 substituents
in benzene rings, when those are located close to each other. It
also has a negative impact on the PCE. Therefore, the van-der-
Waals attraction between three or more -ortho substituents in
benzene ring decreases the PCE value. This descriptor represents a
five-atomic fragment [X-C(benz)-C(benz)-C(benz)-X], as shown in
Box 3 of Fig. 7 (fragments (e) and (f)). Fragment type (e) is found in
compounds24 (X=CHs3) and 28 (X=CgHy7), with descriptor values
of 3, and 1, respectively, while fragment type (f) is found in com-
pound 26, with a descriptor value of 6. Due to the negative impact
of this feature, compound 26 has a very poor PCE value of 0.6.
Compounds 24 and 28 also showed lower PCE values of 1.2 and
1.5, respectively, but higher than the PCE value of compound 26,
due to the lower value of this descriptor.

[D5] Fr5(type)/C.3.C.3_C. AR_C. AR_C. AR/1_4s, 2_35,2 55,4 50/ iS an atom

type SiRMS-based descriptor that has a negative effect on the PCE.
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This descriptor reflects substituents attached near a pentagon of
the fullerene core. The feature is mainly present in
penta(organo)Cgo fullerene structures, which are chemically and
electrochemically more stable than two-point substituted FDs.
Due to the large number of attachments in the fullerene core itself,
aromaticity and unsaturation properties decrease, reducing the
acceptor property of FDs. Compounds 37-41, for example, have
this particular feature which results in a high value for the
D5descriptor. Due to its negative impact, it reduces the PCE values.
Therefore, it is advisable to avoid this particular type of FD in
polymer solar cell acceptors.

[D6] S_A(type)/C.3_C.3_C.3_C. AR/1_3s,2_3s_3_4s/5 is another
atom type SiRMS descriptor with a positive influence on the PCE
value. Descriptor D6 defines two types of fullerene substituent
linkages (Box 4 of Fig. 7), including fragment type (g) which
corresponds to the presence of aromatic rings (X=phenyl, pyrrole,
thiophene) attached via a linker to the fullerene, and fragment
type (h) corresponds to the presence of only a phenyl ring fused to
fullerene via a linker. It is important to mention that the value of
the descriptor for case (g) is lower than that for case (h). Due to the
positive impact of these fragments, FDs bearing these fragments
show higher PCE values. FDs such as 8, 11, 18 and 20 have type (g)
fragments leading to higher PCE values: 3.7, 3.4, 3.5, and 3.6 re-
spectively. FDs such as 22, 23 and 25 have type (h) fragments and
generate higher PCE values: 4.2, 3.6, and 3.5, respectively.

[D7] ASA_P defines the solvent accessible surface area of polar
atoms (Iqil > =0.125), where Iqil is the absolute value of the partial
charge of the atom. The accessible solvent surface area is im-
portant when calculating free energy changes due to transferring

the molecule from a polar to a non-polar solvent during formation
of PSCs with BH] layers. The D7 descriptor has a negative effect on
the outcome, so increasing its value results in a reduction of PCE.

[D8] Fr5(chg)/B_B_B_C_C/1_4S, 1_5s, 2_3a, 4_5s/ is related to
partial charges and has a negative impact on the PCE values. The D8
descriptor represents the transmission of charge through a chain of
saturated carbons induced by a C=0 group. On the contrary, when
the carbonyl fragment is attached to an aromatic ring, it can induce
a mesomeric effect that is stronger than an inductive effect. Thus, in
the case of compounds 15, and 17, for example, the C=0 group in
the saturated carbon chain produces an inductive effect and leads to
lower PCE values. On the contrary, when the C=0 group is con-
nected to an aromatic ring, the mesomeric effect leads to higher PCE
values, as in compounds 22 and 25.

Based on developed model one can conclude that results are in
agreement with modern theories of optical excitation of a poly-
mer-fullerene solar cell [36,37]. Summarizing the overall inter-
pretation of descriptors, we conclude that the descriptor (D1),
related to partial charge, and the descriptor (D4) related to van-
der-Waals reflect the impact of functional groups in aromatic
rings. In particular, -ortho oriented substitution imposes a positive
impact on the PCE value, while van-der-Waals attraction between
three or more -ortho substituents decreases the PCE. Aromatic
rings are known electron acceptors. Optical excitation is related to
the charge-transfer transition at the donor-acceptor interface. It
leads to generation of charge carriers. Thus, the mesomeric
transmission of charge through the aromatic ring plays an im-
portant role in power conversion.

However, as it was previously demonstrated, the photoinduced
electron transfer between polymer and fullerene is not essential for
the charge carrier generation [37]. The delocalisation of charge car-
riers over a fullerene may be important in driving charge separation.
Intramolecular (descriptors D1 and D8) or intermolecular delocali-
sation of charge may result in a higher effective electron-hole se-
paration, and reduced Coulomb binding in the charge transfer state
[36]. In contrast, the transmission of charge induced by a C=0
group (D8) through saturated carbon chains is related to a typical
inductive effect. A similar effect is observed in the molecular frag-
ment assigned to descriptor D2. Based on the developed model, both
features (D2 and D8) have a negative impact on the PCE.

Considering the influence of simple atomic descriptors (D3, D5
and D6), one concludes that aromatic rings (phenyl, pyrrole,
thiophene) (D6) attached to the fullerene by a linker increase the
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electron withdrawing properties of the fullerene (as aromatic rings
are also electron acceptors) and have a positive effect on the PCE
value. It could be related to mechanism, when electronic state is
formed by “hybridizing” a P3HT 1t* state with a unoccupied state of
the functional groups [38]. At the same time, saturated carbon
chains (D3) introduce inductive effects and quench the mesomeric
effects of aromatic rings. Attachment of substituents near one
pentagon of the fullerene core (D5) can also deteriorate electron-
accepting properties and decrease the PCE.

4. Screening of external datasets
4.1. External dataset collection

We have generated a set of 169 FDs from extensive literature
review (structures and references are given in the Supplementary
material section, Table S1) as an external data set of ligands.
Structures were prepared and the modeled descriptors were cal-
culated following the schemes mentioned in Sections 2.2.1 and
2.2.2, respectively.

4.2. Screening result

Our QSPR equation was applied to predict the % PCE values of
the complete set of 169 FDs. The major aim was to identify com-
pounds with better PCE than those of the compounds used for
development of the model. Here, we must mention that the re-
sulting predictions for such a large number of FDs may not be
sufficiently accurate for all FDs. Therefore, we have verified those
results by performing AD studies based on Euclidean distance and
leverage methods to check whether the FDs fall under the AD of
the modeled compounds.

Out of 169 FDs, 10 were found to be out of the AD (including
compounds 18, 41, 54, 59, 60, 67, 77, 107, 162, and 163). The
leverage values larger than the stipulated HAT (h*) value of 0.614
from the developed model (Fig. 8a). In addition, three FDs

(compound numbers 124, 162, and 163) were identified to be out
of the AD by the Euclidean distance method (Fig. 8b). Therefore,
combining the results of both methods, we can conclude that,
except for 11 FDs (2 FDs are common in both cases), predictions for
the remaining 158 FDs are completely reliable.

In our main dataset, compound22 has the highest PCE value
(4.2). Interestingly, employing the QSPR equation, we have iden-
tified twelve FDs from the true external set for which the pre-
dicted PCE is higher than 4.2. Out of these twelve compounds, nine
are within the AD of the main dataset. Three compounds (numbers
18, 41, and 77) are outside of the AD and their predictions (4.39,
12.11 and 4.95) are not reliable. Therefore, we suggest that the
remaining nine FDs (compounds 17, 19, 20, 28, 40, 45, 71, 73, and
126, with predicted PCE values of 4.23, 5.99, 5.53, 4.23, 4.93, 6.29,
4.62, 4.29, and 4.22, respectively) should be tested as lead mole-
cule experimentally as polymer solar cell acceptors (Fig. 9).

Predicted % PCE values are provided in the Supplementary
material section (Table S1). Final descriptors for all modeled and
screened compounds are included in the excel file of Supple-
mentary material. It is worth mentioning that since the developed
model was based on a large number of Cgg and C;q FDs, it can be
applied for prediction of PCE value for untested or newly devel-
oped FD that could serve as a potential polymer solar cell acceptor.

5. Conclusions

We have introduced a QSPR model that allowed us to identified
fragments and structural features of FD acceptors most responsible
for high PCE of polymer solar cells (PSCs) with a bulk-hetero-
junction (BH]J) active layer (where P3HT is the donor). As there is
no complete theory of charge generation at organic heterojunc-
tions yet, different parts of the problem have been addressed.
Developed model is useful tool for rationalization of experimental
conditions.

Additionally, virtual screening of a large FD database has en-
abled us to identify nine lead FDs with high PCE values, suggesting
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Fig. 9. Structure of 9 FDs as ‘lead molecule’ identified from true external set screening for power conversion efficient acceptor for PSCs.

that further computational and experimental studies of these
molecules are worthwhile pursuing. Among the nine lead FDs, the
most promising FD shows PCE value of 6.29, predicting a 50% in-
crease in PCE when compared to current FDs for which the highest
PCE value has been 4.2 — no doubt an encouraging outcome. At the
same time, it is important to mention that one of the screened FDs
(compound 41) that failed the AD study, and therefore was not
included as a projected lead FD, has actually shown the most
promising PCE value of 12.11, which would provide a 200% in-
crease in PCE compared to existing FDs. Although such an FD failed
the AD test, based on the acceptable QSPR prediction criteria, the
large predicted PCE should motivate experimental studies, along
with the projected nine lead FDs.
Our findings can be summarized, as follows:

® Our QSPR model enables identification of the essential struc-
tural attributes necessary for quantifying the prime molecular

prerequisites of diverse FDs, including molecular requirements
for high PCE of PSC acceptors in composition with P3HT. The
identified structural fragments could guide the design and
synthesis of more efficient FDs.

Our QSPR model, developed from a set of 59 diverse FDs, is an
efficient tool to screen a wide range of Cgpand C;q FDs, allowing
for identification of FDs with high PCE in a time and cost ef-
fective way. Using the QSPR model developed in this study to
virtually screening a set of 169 FDs, we have already identified
nine FDs with promising PCE values. We suggest the FDs iden-
tified here for further experimental investigations as PSC
acceptors.

Our results showed that SiRMS-based descriptors can be used
efficiently for QSPR modeling.

The developed QSPR model is particularly valuable to predict
and characterize the nature of donor-acceptor relationships
critical for photoconversion.
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Our calculations provide a set of data for experimentalists to
reduce the experimental efforts, time and resources by many folds.
In addition, the exploratory features may assist in designing more
efficient units. In our future work, we are working to calculate the
electronic structure and molecular dynamics aspects of all the
screened compounds at P3HT/FD bulk heterojunction systems
with emphasis on electron transfer rates and the experimental
analysis that could further validate our QSPR model and the virtual
screening approach.
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