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X-ray diffraction patterns of Si, GaN/Si, and Pt/GaN/Si
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Supplementary Fig. 1. X-ray diffraction (XRD) patterns of GaN/Si and Pt/GaN/Si. XRD
peaks of GaN (002) and (004) were observed.



X-ray photoelectron spectroscopy of Si and Pt/Si

(a) Si 2p (b) Pt 4f
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Supplementary Fig. 2. X-ray photoelectron spectroscopy (XPS) spectra of (a) Si 2p and (b)
Pt 4f for Si and Pt/Si. Si 2p peaks were found in both samples and Pt 4f peaks were found
only in Pt/Si, indicating that Pt cocatalyst was deposited on n"-p Si wafer by photodeposition.



Reactor and energy band diagram
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Supplementary Fig. 3. (a) Schematic illustration of reactor for photoelectrochemical
hydrogen evolution reaction. IrOx counter electrode and Ag/AgCl reference electrode were
used for measurement with 3-electrode configuration. (b) Schematic of the energy band
diagram of Pt/GaN/Si photocathode under light illumination. Ec refers to the conduction band
minimum, E\ refers to the valance band maximum, and Er is fermi level. The energy level of
each layer was obtained from literautrue.'>> When light is illuminated on the photocathode,
photoelectrons generated in p-Si region spontaneously migrate to n*-Si and n"-GaN without
significant energy barrier since conduction bands of n*-Si and n*-GaN are approximately

aligned.



Electrochemical surface area
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Supplementary Fig. 4. Cyclic voltammetry curves of (a) Si, (b) Pt/Si, (c) GaN/Si, and (d)

Pt/GaN/Si. (e) Current density plots at various scan rates. Double layer capacitance, which

linearly correlates to electrochemical surface area (ECSA), can be obtained from the slopes of

current density-scan rate curves. ECSA of Pt/GaN/Si was ~10 times larger than Pt/Si.



BET surface area
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Supplementary Fig. 5. Specific surface area (BET) of Si and GaN/Si measured by
adsorption of N2. BET surface area of GaN/Si was ~10 times larger than Si. This is consistent

with ECSA results.



Photoelectrochemical hydrogen evolution reaction in different solutions

(a) 0.5 M H,SO, (pH = 0)
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(b) 0.5 M NaCl + 0.5 M H,SO, (pH = 0)
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(d) 0.5 M NaCl + 1 M PBS (pH = 7.4)
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Supplementary Fig. 6. Linear sweep voltammetry (LSV) curves of Si, GaN/Si, Pt/Si, and
Pt/GaN/Si in (a) 0.5 M H2SOs4 (pH = 0), (b) 0.5 M NaCl + 0.5 M H2SO4 (pH=10), (¢c) 1 M
phosphate-buftered solution (PBS) (pH = 7.4), and (d) 0.5 M NaCl + 1 M PBS. The

measurements were conducted with a 3-electrode configuration under AM1.5G 1 sun light.



(a) 0.5 M H,SO, (pH = 0)
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(c) 1 M PBS (pH = 7.4)
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(b) 0.5 M NaCl + 0.5 M H,SO, (pH = 0)

Current density (mA/cm?)

16 f
24t
32t

-40 :

0

'
(o]
T T T

GaN/Si

Pt/GaN/Si

32 24 6 08
Potential (V)

hay
o

(d) 0.5 M NaCl + 1 M PBS (pH = 7.4)
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Supplementary Fig. 7. LSV curves of Si, GaN/Si, Pt/Si, and Pt/GaN/Si in (a) 0.5 M H2SO4
(pH = 0), (b) 0.5 M NaCl + 0.5 M H2SO4 (pH = 0), (c) 1 M PBS (pH = 7.4), and (d) 0.5 M

NaCl + 1 M PBS. The measurements were conducted with a 2-electrode configuration under

AM1.5G 1 sun light.



PEC HER in NaCl solutions with different molar concentrations
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Supplementary Fig. 8. LSV curves of Pt/GaN/Si in NaCl solutions with different molar
concentrations (0.1 — 5 M). The measurements were conducted with (a) 3-electrode and (b) 2-
electrode configurations under AM1.5G 1 sun light. The photoelectrochemical (PEC)
hydrogen evolution reaction (HER) performance was nearly the same regardless of the molar

concentration of NaCl.



PEC HER in NaCl + PBS solutions with different molar concentrations of NaCl
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Supplementary Fig. 9. LSV curves of Pt/GaN/Si in NaCl + 1 M PBS solutions with different

molar concentrations of NaCl (0.1 — 5 M). The measurements were conducted with (a) 3-

electrode and (b) 2-electrode configurations

under

AMIL.5G 1

sun

light. The

photoelectrochemical (PEC) hydrogen evolution reaction (HER) performance was nearly the

same regardless of the molar concentration of NaCl in 1 M PBS solution.

10



Product analysis
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Supplementary Fig. 10. Amount of H2 and Oz produced during hydrogen evolution reaction

in 0.5 M NaCl at (a) -2 V and (b) -3 V vs IrOx and (c) in seawater at -3 V vs [rOx. The
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measurements were conducted 3 times and statistic errors were indicated.
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Stability test in 0.5 M NaCl
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Supplementary Fig. 11. LSV curves of Pt/GaN/Si photocathode in 0.5 M NaCl before and
after the stability test for 15 h at —3 V vs IrOx.
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Stability test in seawater

0

1
0]

N
o

24

-32

-0.8 -0.4 0.0 0.4 0.8

40—

Current density (mA/cm?)

1
—
N

Potential (Vrye)

Supplementary Fig. 12. LSV curves of Pt/GaN/Si photocathode in seawater before and after
the stability test for 15 h at —3 V vs IrOx.
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Supplementary Fig. 13. Pt/GaN/Si after the stability test in 0.5 M NaCl for 15 h at-3 V vs
IrOx. (a) Tilt-view SEM image, (b) HAADF-STEM image, STEM-EDS elemental maps of
(c) Ga, (d) N, (e) Pt, and XPS spectra of (a) Ga 2ps.2, (g) N Is, and (h) Pt 4f. The morphology
and composition of Pt/GaN/Si remains almost identical even after long-term stability test.
However, the atomic ratio of Pt/(Ga+N) calculated from XPS analysis decreased from 0.042
to 0.037 after 15 h of reaction.
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Stability test in 0.5 M NaCl +1 M PBS
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Supplementary Fig. 14. LSV curves of Pt/Si and Pt/GaN/Si in 0.5 M NaCl + 1 M PBS
before and after the stability test for 12 h at -2.5 V vs IrOx. The measurements were

conducted with 2-electrode configuration under AM1.5G 1 sun light.
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Supplementary Fig. 15. Long-term stability of Pt/GaN/Si (black curve) and TiO2/Pt/GaN/Si
(red curve) at -3 V (vs IrOx) in 0.5 M NaCl under 1-sun light illumination. Pt/GaN/Si
degraded after 18 h of reaction. After the re-deposition of Pt NCs, the photocurrent density
recovered. 2 nm-thick TiO2 passivation layer effectively stabilized the photocurrent density
~30 mA/cm? for 120 h, indicating that Pt NCs were more strongly anchored on GaN NWs by

a TiOz2 passivation layer.
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Supplementary Fig. 16. LSV curves of Pt/GaN/Si and TiO2/Pt/GaN/Si photocathodes
measured with 3-electrode configuration in 0.5 M NaCl solution. When the thickness of TiO2
layer on Pt/GaN/Si increased to 2 and 5 nm, the onset potential at -10 mA/cm?* was negatively
shifted from 0.16 Vrue to 0.01 Vrue and -0.62 Vrug, respectively. The photocurrent density
also gradually decreased as the thickness of TiO:2 increased. The decrease in performance is

likely due to the shielding of Pt-Ga sites by inactive and electrically resistive TiO:z layer.
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Slab models for DFT calculation
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Supplementary Fig. 17. Slab models of Pt(111), GaN(1010), and Pt7@GaN(1010). The Pt7
cluster was taken from the Pt(111) surface (highlighted atoms). The blue, green, and grey

spheres represent N, Ga, and Pt atoms, respectively.
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Water dissociation at Pt/GaN and Pt/GaON interface

Supplementary Fig. 18. Energy changes of water dissociation at the Pt/GaN (upper panel)
and Pt/GaON (lower panel) interfaces (in eV). The blue, red, green, and grey spheres
represent N, O, Ga, and Pt atoms, respectively. The black box indicated the supercell we used

in our calculations.
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PEC HER under the concentrated light (9 suns) in 0.5 M NaCl
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Supplementary Fig. 19. Chronoamperometric curves of two individual Pt/GaN/Si
photocathodes measured under light intensity of 9 suns at -3 V vs IrOx in 0.5 M NaCl. There

was no noticeable degradation for 4 h reaction.
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PEC HER under the concentrated light in 0.5 M NaCl +1 M PBS
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Supplementary Fig. 20. LSV curves of Pt/GaN/Si measured with (a) 3-electrode and (b) 2-
electrode configurations in 0.5 M NaCl + 1 M PBS under different light intensities. (c)
Chronoamperometric curve and (d) amount of Hz produced and faradaic efficiency measured

under light intensities of 1, 3, 6, and 9 suns at -3 V vs IrOx.
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Electrochemical HER under dark condition

(a) 0.50M NaCl + 0.5 M H,SO, (pH =0) (b) 0.% M NaCl +1 M PBS (pH =7.4) (c) 0.50M NaCl (pH = 7.4)
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Supplementary Fig. 21. LSV curves of front contact electrochemical HER measured with 3-
electrode configuration in (a) 0.5 M NaCl + 0.5 M H2SOs4, (b) 0.5 M NaCl + 1 M PBS, and
(c) 0.5 M NaCl solutions.
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Supplementary Fig. 22. LSV curves of front contact electrochemical HER measured with 2-
electrode configuration in (a) 0.5 M NaCl + 0.5 M H2SOs4, (b) 0.5 M NaCl + 1 M PBS, and
(c) 0.5 M NaCl solutions.
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Switchable photo/electrochemical HER under light and dark conditions

Front contact (light)

-80 Front contact (dark)
—o— Back contact (light)

-100 —o— Back contact (dark)

_120 L 1 L 1 L 1 L 1 L
-0.9 -0.6 -0.3 0.0 0.3 0.6

Potential (Vrye)

Current density (mA/cm?)

Supplementary Fig. 23. (a) LSV curves of dual contact electrode measured with 3-electrode

configuration in 0.5 M NaCl solution.
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Supplementary Fig. 24. Chronoamperometric curve at -2 and -3 V under dark (front contact)
and light (back contact) conditions. The measurement was conducted with 2-electrode

configuration.
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Supplementary Table 1. Performance and reaction condition comparison of catalysts for hydrogen evolution reaction in seawater from recent

literature.
Mo N1o
Cathodes Electrolyte (pH) (3-electrode 2-electrode cathode || anode (2-electrode Ref.
configuration) configuration)
0.16 Vrue (PEC) . -1.88 V (PEC)
0.5 M NacCl (9.1) -0.40 Vrite (EC) Pt/GaN/Si || IrOx 233V (EC)
Pt/GaN/Si This work
0.40 Vrue (PEC) . -1.45 V (PEC)
0.5 M NaCl + 1 M PBS (7.4) 10,05 Vauts (EC) Pt/GaN/Si || IrOx 183V (EQ)
p-Si/TiO2/NiOx Artificial seawater (8.4) ~-0.7 Vrue (PEC) NA 3
C0304 Natural seawater (7.69) ~-0.6 Vrue (PEC) NA 4
. Nioo = -0.252 . . _ 5
Ni2P-Fe,P 1 M KOH seawater (~14) Viiie Niz2P-FezP || Ni2P-Fe2P N0 =-1.811V
RuW/WNO@C nanowires 3 M NaOH + 3 M NaCl (~14) -0.0269 VruE Ru/WNO@C || RuO2/1IrO2-coated Ti-mesh 248V 6
Ru-CoOx/Ni foam 1 M KOH + seawater (~14) ~-0.02 VRug Ru-CoOx/NF || Ru-CoOx/NF -1.86 V 7
nioo =-0.221 - 8
Co-Fe2P 1 M KOH + seawater (~14) Viiie Co-FezP || Co-FeoP Nioo =-1.69V
. . Nioo = -0.082 . . . _ 9
NiMoN@NiFeN 1 M KOH + seawater (~14) Viite NiMoN || NiMoN@NiFeN Nioo =-1.581V
NiCoN|NixP|NiCoN microsheet Seawater (7.2) -0.165 VruE NiCoN|NixP|NiCoN || S-(Ni,Fe)OOH -1.81V 10
Ni surface nitride (Ni-SN@C) 1 M KOH seawater (~14) -0.023 Vrug Ni-SN@C || Ni-SN@C -1.72V 1
NiCoP nanoarrays Seawater (8.4) -0.287 Vrue NA 12
MosNs nanosheet Seawater (8.4) -0.257 VruE NA 13
Rh with N/S-doped C Seawater (8.32) -0.340 Vrug NA 14
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Coo.31Mo1.60C/MXene/NC Seawater (8.28) -0.208 VruE NA 15
Pt/Ni-Mo 1 M KOH + 0.5 M NaCl (~14) ”2°°°V=R Hg 13 NA 16
Pt@multi-level hollow structures Mxene Seawater (8.28) -0.280 VRrHE NA 17
h-MoN@BNCNT Seawater (7.9) ~-0.16 VRHE NA 18

Ni single atom/NC 1 M KOH + seawater (13.8) -0.139 Vrue NA 19
Mo@(2H-1T)-MoSe: Seawater (8.26) M20 = -0.470 VRHE NA 20
Rh/N-doped hollow carbon spheres Seawater (8.35) -0.220 VRruE NA 21
Graphdiyne/MoO3 Seawater (8.21) ~-0.3 VrHE NA 2
Rh2P/NPC Seawater (7.8) -0.160 Vrug NA 3

VS:@V2C Seawater (8.6) ~-0.15 VRHE NA 24
CoNiP/CoxP Seawater (8.19) -0.290 VrHE NA 25

26




Supplementary Table 2. Performance and reaction condition comparison of Si-based photocathodes for hydrogen evolution reaction from

literature.
Light . .
Photocathodes Electrolyte (pH) . . Potential Current density ABPE Ref.
intensity
0.5 M NaCl (9.1) 1 sun 0.16 Vrae at 10 mA/cm? 21.6 mA/cm? at 0 Vrug 1.6%
0.5 M NaCl + 1 M PBS (7.4) 1 sun 0.40 Vrae at 10 mA/cm? 34.3 mA/cm? at 0 Vrug 7.9%
Pt/GaN/n"p Si This work
0.5 M NaCl (9.1) 9 sun 0.23 Vrae at 10 mA/cm? 165 mA/cm? at -0.6 VruE -
0.5 M NaCl + 1 M PBS (7.4) 9 sun 0.26 Vrae at 10 mA/cm? 182 mA/cm? at -0.6 VruE -
Pt/TiO2/InAs NWs/p-Si PBS with 0.5 M Na2SOs (7.0) 1 sun 0.48 Vrue at 1 mA/cm? 8.6 mA/cm? at 0 VRuE 1.9% 26
Pt/TiO2/CdS/p-Si PBS (6.8) 1 sun 0.42 VruE 21.9 mA/cm? at 0 Vrug 2.07% 27
NiO,-Fe205/SnOx/p-Si PBS with 0.25 M Naz2304 1 sun 0.25 Vi at 0.1 0.25 mA/cm? at 0 Viue NA %
(7.1) mA/cm
NiOx/TiOx/p-Si microwires PBS (7.0) 1 sun 0'“3&‘22? 0.1 1.48mA/cm? at 0 Vrue 1.74% 3
n-ZnO/p-Si NWs 0.25 M Na2S04 (7.2) 1 sun -0.5 Vagagal ~6 mA/cm? at -1.5 Vagagci NA 2
Fe203/Sn02/p-Si NWs 0.25 M Na2S04 (7.2) 1 sun -0.55 VruE ~2 mA/cm? at -0.75 VruE NA 30
g-C3Na/p-Si NWs 0.5 M Na2SO4 (~7) 1 sun 0.42 VRrHE 0.5 mA/cm? at 0 VruE 4.3% 3
g-C3N4 NSs-SrTiO3 NPs/p-Si NWs 0.5 M Na2SO4 (~7) 1 sun 0.606 VrHE 0.97 mA/cm? at 0 Vrug 5.4% 32
CoSe2/p-Si NWs 1 M PBS (6.5) 1 sun 0.137 VreE at 1 mA/cm? 2.6 mA/cm? at 0 VRHE NA 3
NiP2/Ti/n*p-Si 1 M KBi buffer (9.5) 1 sun 0.35 VruE Saturation J = 19 mA/cm? 2.6% 34
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NiFe LDH/Ti/p-Si 1 M KOH (14) 1 sun ~0.3 VruE at 1 mA/cm? 7 mA/cm? at 0 VRHE NA 3
Pt/TiO2/n np™*-Si 1 M HCIOx4 (0.0) 1 sun 0.52 Vrae at 1 mA/cm? ~35.1 mA/cm? at 0 VruE 11.5% 36
MoS2/TiO2/p-Si 0.5 M H2S04 (0.0) 1 sun 0.35 Vrae at 1 mA/cm? 28 mA/cm? at 0 VRHE 1.8% 37

MoSe2/n"p-Si 1 M HCIOx4 (0.0) 1 sun 0.4 Vrae at 1 mA/cm? Saturation J = 29.3 mA/cm? 3.8% 38
Pt/n*p-Si 1 M HCIOx4 (0.0) 1 sun 0.56 Vraue at 1 mA/cm? Saturation J = 34.6 mA/cm? 10.8% »
MoS2/ALO3/n"p-Si 1 M HCIlO4 (0.0) 1 sun 0.4 Vrue at 1 mA/cm? Saturation J = 35.6 mA/cm? NA 40
Ni-Mo/n*p-Si microwires KHP with KOH (4.5) 1 sun 0.46 Vree at 1 mA/cm? 9.1 mA/cm? at 0 Vrug 1.9% 4
MoSy/n'p-Si 0.5 M HaSOs (0.0) 1 sun 0'32522’;3} 0.3 Saturation J ~ 17 mA/em? NA @
Pt/Ti/SrTiOs/p-Si 0.5 M H2SOx4 (0.0) 1 sun 0.46 VRHE Saturation J ~ 35 mA/cm? 4.9% 4
Pt/TiO2 nanorods/p-Si 0.5 M H2SOx4 (0.0) 1 sun 0.44 VRHE 40 mA/cm? at 0 VrHE 2.5% 44
NiCoSec/p-Si nanopillar 0.5 M H2S04 (0.0) 1 sun 032;;}{;? 0.1 37.5 mA/em? at 0 Vrie NA 45
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