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S1. Figure of PSII highlighting the portion of protein used for MCCE calculations 

 

Figure S1 (A) Structure of complete PSII monomer (PDB: 4UB6) [1] in gray color. Hydrogen bond 
network determined in the red 88 Å × 70 Å × 65 Å  rectangle by MCCE. For MCCE, all the atoms in 
the grey region are deleted. (B) Crystal structure of the OEC (PDB: 4UB6 [4,57]) with all terminal 
ligands. W1 and W2 are ligands to Mn4 and W3 and W4 to Ca.  O5 is nominally closest to the broad 
channel entry, O4 to the narrow channel and O1 to the large channel.   
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S2. Water mediated hydrogen bond network for nine representative snapshots  
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Figure S2 Network of hydrogen bond connections from the OEC to the lumen found in MCCE 

calculations for nine MD snapshots. Nodes are labeled as Residue type Chain designation Residue 

number. No chain designation indicates D1. Chain C is CP43; D is D2; M is PsbO; and P is PsbV, O 

is PsbU. For example, EC354 is CP43-Glu354. Diamonds are primary ligands and triangles are 

residues with at least 20% of their surface exposed to the lumen. Lines show hydrogen bond 

connection mediated by 0-4 waters. The inner circle encloses highly interconnected residues near the 

OEC.  Connections between residues nominally in different channels are seen. The outer circle 

encloses residues in their separated channels. Beyond the outer circle are residues connecting the 

channel and the surface. The same layout for the residues (nodes) is used in all figures.  The changes 

in lines connecting nodes shows how hydrogen bonds are made and broken in the MD trajectory. 
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S3. Energetic profile for hydronium moving through the three channels in ten representative 
snapshots  

 

 

 

 

 
Figure S3 Free energy profile for hydronium at different positions in the broad (green), narrow 
(magenta) and large (orange) channels for ten individual snapshots. x-axis is the position of 
hydronium at positions moving away from the OEC in each channel.  Residues near each position are 
described in main text. y-axis is the energy (in kcal/mol) of protein with hydronium at each position. 
The reference energy (at position 0) is for the full protein with no hydronium plus the energy of an 
isolated hydronium in water.  Shorter lines indicate where a dehydration event breaks the hydrogen 
bonded chain within the protein, blocking proton egress.  
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S4. Details of the PSII molecular dynamics and MCCE simulations setup. 

 MD set up. The MD simulations start with the 1.9 Å resolution X-ray crystal structure of 

Thermosynechococcus vulcanus 4UB6 [1]. The 20 subunits of one PSII monomer are included. The 

CHARMM-GUI [2] bilayer membrane builder embeds the system within a membrane of MGDG, 

DGDG and POPG in 1:1:1 ratio. The final system has the PSII monomer in a 180 Å × 180 Å × 81 Å 

rectangular box with ~300,000 TIP3P [3] water molecules along with the membrane. There are 616 

Na+ and 320 Cl- ions added to maintain charge neutrality at a 0.15 M concentration. There are 494,990 

atoms in the system.  

 The OEC bond lengths, angles, and dihedrals, as well as those from the Mn to the side chain and 

water primary ligands, are taken from the QM/MM optimized S1 state [4]. The cofactor structure is 

maintained with constraints of 1000 kcal/mol/Å2 for bond lengths and 200 kcal/mol/Å2 for angles. 

Additional restraints of 500 kcal/mol/Å2 are added for the hydrogen bonds between QB and Ser264 

and between YZ and H190 [5]. The latter may be a strong, short hydrogen bond, which will not be 

maintained in the standard classical mechanics force field [6]. ESP charges are used for the Ca2+ and 

four Mn (Mn1, Mn2, Mn3 and Mn4). RESP charges are used for the 5 µ-oxo ligands, four terminal 

waters of Ca2+ and Mn4 as well as the primary OEC ligands D1-D170, E189, H332, E333, D342, 

A344, and CP43-E354. The ESP charges [7] are obtained using density functional theory at 

B3LYP/6-31G level using the Gaussian software package [8]. RESP charges were derived from the 

DFT-calculated ESP charges using the RESP program [9]. CHARMM forcefield parameters for lipids 

and for neutral pheophytin, chlorophyll and plastoquinone cofactors of PSII were taken from Guerra 

et al. [6].  

 Ligand bond connections are made for both heme b559 and the non-heme Fe complex in 

CHARMM [10]. The di-sulphide linkage [11] between Cys 19 and 44 in PsbO is made. The 

protonation states of the residues must be fixed at the beginning of the MD simulations. The 

ionization states of acidic and basic residues were modified based on MCCE calculations of the 

protein in the S1 state with all other cofactors in their ground state [12]. All Asp, Glu, Arg, and Lys 

are ionized and His, Cys and Tyr are neutral with the following exceptions:  CP47 -D380, E387, 

E405, CP43 -E413, D2 -E242, E343, PsbO- D102, D224, E97, PsbV- K47, K134 are neutral, while 

His D1- H92, H304, H337, CP47- H343, CP43- H74, H398, PsbO- H228 and PsbU-H81 are 

protonated. In addition, by default CHARMM-GUI chooses the neutral His with a proton on ND1 

(HSD). However, MCCE found that the following His residues prefer to have a proton on NE2 

(HSE): D1- H195, H252, CP43- H157, H201, D2- H61, H87, H189, H336, PsbO- H231, PsbV- H118. 

It should be noted that these choices have consequences. For example, choosing the HSD tautomer for 

D1- His252 leads to the opening of a loop near QB.   

 OpenMM [13] is used to generate MD trajectories including periodic boundary conditions with 

Langevin dynamics with Nose-Hoover Langevin piston at constant pressure (1 bar) and temperature 
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(303.15 K). The coulombic interactions are calculated using the Particle-Mesh Ewald (PME) 

algorithm. A 2fs time step is used. To relax initials clashes, the system is first minimized in 

CHARMM using Steepest Descent (SD) minimization for 1000 steps. The system is then further 

equilibrated in OpenMM where the protein backbone, side chains and lipids are allowed to relax for 

355 ps when all constraints are removed.  The production run is 100 ns long.  

 The position of chloride near the OEC has moved ≈3-5 Å in the trajectory from its position within 

the structure. This is a rigid body motion, retaining stable distances amongst Cl and D1-E333, R334 

and D2-K317. The Cl to D1-N181 lengthens in the new minimum. The calculations were restarted 

and equilibrated several times and this motion was found each time.   

 

MCCE set up. The implicit salt concentration is 0.15 M with a 2 Å stern layer, and a pH of 6. The 

dielectric constant is 4 for the protein and 80 for the solvent. Parse charges [14], optimized for 

continuum calculations, are used for amino acids while integer valence charges are used for the OEC 

[12]. TIPS [3] charges are used for explicit waters. Standard MCCE topology files are used for the 

cofactor chlorophylls, pheophytin, plastoquinone, chloride, heme and non-heme iron [15]. Amber van 

der Waal parameters are reduced to 25 % of their full value based on previous MCCE benchmark 

calculations [16].  As we are concerned with the proton exit from the OEC which is out of the intra-

membrane region no lipids are included. The coordinates for the ten snapshots, including only those 

atoms in the region used for MCCE analysis can be found in the GitHub repository 

(https://github.com/DivyaMatta15/Proton-egress-pathways-surrounding-oxygen-evolving-complex-

of-Photosystem-II).    

 

S5. Motion of water and chloride molecules observed in the MD trajectory 

 The water molecules in the trajectories are allowed to leave or come back near the water channels. 

Notably, near the narrow channel a chain of water molecules is aligned from the OEC extending from 

the O4-µ-oxo bridge to D1-N338. This was also observed in previous computational studies that 

focused on the narrow channel [7,17]. Recently, computational studies done on these trajectories by 

Batista et al find that the first 4-5 waters in narrow channel have a very clear hydrogen bond network, 

with well positioned water positions. The oxygen positional probability distributions are spherical and 

visible even at high contour levels, indicating they are maintained in these positions. The orientation 

of the water proton positions is also maintained through the trajectory. 
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