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I. GENERALIZED WIGNER-WEYL TRANSFORMS IDENTITIES

We begin by proving some identities for the ring-polymer generalized Wigner-Weyl trans-
forms. The ring-polymer phase-space function [O]x(q, p) is the generalized Wigner-Weyl
transform defined, as follows:

N

0] (@p==Y[0] (@m) (1)
N N = w
where
0], (ap = [dneis(g=F101a+3), ©)

is the one-dimension Wigner-Weyl transform.[1-4] On the other hand, the generalized
Wigner Boltzmann transform [e %] (q, p) is the Wigner-Weyl transform defined as

: Ay A : A
] tap) = [aa [Tt s = e la+ 3. 3)
To keep the presentation clear, we will use the shorthand notation
OA} = [OA} i Di), 4
©l,. = 10], @n) (4)

to denote the dependence on the j-th coordinates of the (one-dimension) Wigner-Weyl trans-
form. Additionally, we will use the following well-known properties of the Wigner transforms:

[1-5]

e Moyal or Sine bracket

@)oo, = (B) ol (67) . "

e Baker or Cosine bracket

1 A A A h R
5 1, U2+ - = 1 WCOS §<—> 2 W
(3) [0:04],, = o], s (55) [0 ®

e Wigner-Moyal series



In the previous equations,

(8)

represents the negative Poisson bracket and L is the quantum Liouvillian operator defined

as
27 . h+
L = 7 [H}Wsm (§A)
— ——
o p 90 2 . (RO O
= d hV(q) sin (23q 3p) . (9)

Finally, we will make extensive use of the integral representation of the delta function,

1
i(A) = 5 dp eiP®, (10)

and the operator identity

1= [dg la)ta
:/dq/dAcS g+ 2 ><q—%|
:ﬁ/dq/dA/dpehpA |q+%>(q—%|- (11)

A. Ring-Polymer Partition Function

Here we show that the ring-polymer partition function, defined as

Zy = W/dq/dp [6‘5H]N(q,p), (12)

is equivalent to the partition function in Hilbert space, namely

where

Z =Tr [e‘ﬂﬁ] : (14)



The proof follows from

In = d —ﬁH
N 2h//pe (q,p)

N
N
All —ﬂH Al
B zwhN/dq/dp/dAH e LAY

=1

- 27Th /dq/dp/dA i Breimie iy N _%|€ﬁNﬁ‘Q1+%>
(fh——]e*’BNH] —|——> (qu_ANl‘ fBNH’ +%>
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= /dQN (an] e |qn)

=1Tr [e’ﬁﬁ]

= Z. (15)

We used the definition of Zy [Eq. (12)] at the first equality and the the definition of [e=##]y
[Eq. (3)] at the second equality. At the third equality, we expand the productorial, noting
that ¢o = gy and Ay = Ax. To obtain the fourth equality, we used the identity Eq. (11) to
integrate out the variables pi, qx and Ay for k # N, and recognized that <65NH>N = ¢=PH,
At the fifth equality, we performed the integral over py to obtain the delta function §(Ay)
[Eq. (10)]. The sixth equality follows from the integration over Ay. At the seventh equality,
we recognized a trace in position basis. The final equality follows from the definition of the

partition function in Hilbert space. This completes the proof of Eq. (13).

B. Ring-Polymer Phase-Space Averages

Here we prove that the ring-polymer average, defined as

is equivalent to an average in Hilbert space, namely



where

(o),

<O(t)> = 7'y [e—ﬂﬁ O(t)] . (18)
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We used the definition of <O(t)>N [Eq. (16)] at the first equality. At the second equality,

~

we used the definition of [O(¢)|n(q,p) [Eq. (1)] and the fact that Zy = Z [Eq. (13)]. At

(1)) (19)

the third equality, we use the definition of [e=#4 l& [Eq. (3)], we expand the productorial
(noting that ¢y = gy and Ay = Ay) and we used the identity Eq. (11) to integrated out the
variables py, g and Ay, for k # j, k # N [see derivation of Eq. (15)].! We used the definition
of the one-dimensional Weyl-Wigner transform [Eq. (2)] to obtain the fourth equality. At
the fifth equality, we performed the integral over p; to obtain the delta function d(A; + A’)
[Eq. (10)]. We performed the integral over A’ at the sixth equality. At the seventh equality,
we performed the change of variables ¢; £ % — x4. We performed the integral over x4 at
the eighth equality. At the ninth equality, we performed the integral over py [giving a delta
function §(Ay)] followed by the integral over Ay. We recognized a trace at the tenth line.
To obtain the eleventh equality we used the invariance of the trace to cyclic permutations
to reorder the operators inside the trace. The final equality follows from the definition of an

average in Hilbert space. This completes the proof of Eq. (17).

C. Explicit Expression for Generalized Boltzmann Transform

In the N — oo limit, an explicit expression for the generalized Wigner Boltzmann trans-

form can be obtained by noting that

A ﬁ A A ﬁ A
(wle ™ ja) = (yle 3 Ve e H )

= ¢ BV @) (] BT |y

yle

I Note that for the case j = N, we are abusing the notation.



2
= ¢ 2 VWV /dp<y|p> BN (p|)

_ A wvmevae) L / dp ekP—2) =B i
2mh

1/2 . ,
() V@) a0 (20)

2T B N h? 7
where we used the Trotter splitting to symmetrically split the Boltzmann operator at the
first equality and evaluated the corresponding matrix elements of the potential and kinetic
operator on the position and momentum basis, respectively. Employing Eq. (20) to evaluate
the (q_1 — %\ el | 4 %} matrix elements in the definition of the generalized Wigner

Boltzmann transform [Eq. (3)], it follows that

[e—ﬁﬁ]ﬁ _ (%ZLH?)M / dA exp <%g} p1A1>
X exp (—/BTN XN: {V(ql - %) + Vg + %)})

=1
N 2
m A+ A
Xexp <—W 5221: [QZ —q—1+ T} > . (21)

Note that upon integration over momenta p, the generalized Boltzmann-Wigner trans-

form reduces to

) / . N
/dp [@—5H}N — (%)NQ/dp/dA exp (%lzlplAz>

X exp (—%V Z [V(QI - %) + Vg + AQI )}>

( JAVESWAYE 1:|)
Xexp -1t
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where we performed the integration over momenta p to obtain the delta functions §(A;) [Eq.

(10)] at the second equality, and we performed the integrals over A at the final equality.

D. Alternative Definition of the Generalized Wigner-Weyl Transforms

The generalized Wigner-Weyl transformed introduced by Eq. (1) can be written in dif-

ferent but equivalent notations. For example, in Ref. [6] (see also Refs. [7, 8]) we defined it

0] (@p) = [da [z 0@ e ta—SHei™ ) ale o+ 51,29
with
0) = Y- 0() (24)

Here we prove that Eq. (1) and (23) are equivalent for observables that are only functions
of the position (namely, O = O(g)).
The proof follows from the fact that N — 1 of the forward-backward propagators in Eq.

(23) are identities, as:

N
A i A i 7y i 1y A
[O(t)]N(q,p) = /dA/dZ O(z)ﬂethAz <QZ_7‘6ﬁHt|Zz> <Zl|€_EHt|ql+7l>
N N
1 i A i F i 7 A
= NZ/dA/dZ O(Zj)HegpzAz <Ql _ 71|65Ht|zl> <Zl|€—ﬁHt|ql+7l>
J=1 =1
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j=1
N
i A A
Xlllenpl l<q1 Tl’eh ’Zl> <Zl’€ R |QJ+7l>
I#]
1 N A . A
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j=1
N
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[O(t)] . (25)

J
We used the alternative definition of the generalized Wigner transform [Eq. (23)] at the
first equality and we used the definition of O(z) [Eq. (24)] at the second equality. At the
third equality, we used the fact that for position-dependent operators, O |z) = O(z)|z).
At the fourth equality, we integrated out the z variables. We recognized the time-evolved
operator O(t) = eiltOe= it at the fifth equality. We performed the integrals over Ay
for k # j to arrive at the sixth equality. The final equality follows from the definition
of the Wigner-Weyl transform [Eq. (2)]. This completes the proof that the definitions of
the generalized Wigner-Weyl transform provided by Eqgs. (1) and (23) are equivalent (for
position-dependent operators). We remark that the generalized Wigner transform definition
adopted in this paper provides a more general definition that can be applied to arbitrary

operators of position and momenta O = O(q,p).

E. Ring-Polymer Quantum Liouvillian

Here we prove that the time evolution of the generalized Wigner transform is given by

~

0] (ap) = [00)] (a.p). (26)

where the ring-polymer quantum Liouvillian £y is defined as

2N 1~ . [ heo
EN = ? |:H:|NSH1 <§AN>7 (27)

and the ring-polymer Janus operator as

N N

T >

Ay = — = A 2
N Zap@q. dq; Op; Z j (28)

We begin by proving that the ring-polymer quantum Liouvillian £y can be written in

terms of single-bead terms as

N — S — N
Ly = Z_; [&i - %V(qj)sin (Eii)] = Zﬁj. (29)



To prove Eq. (29), we notice that since the ring-polymer Janus operator is a sum of one-

s
dimensional operators involving derivatives [Eq. (28)], the action of A x on a function that

only depends on one coordinate reduces to the action of the one-dimensional Janus operator,

namely

TNf(Qk;pk) = ka(%,pk),

f(QImpk)(K)N = f(CIlmpk)(K)ka

s s
J(ae,pe) A vgla,p) = flar, pe) A rkg(a, pi)ow.

From these properties of the Janus operator, and the Sine Taylor expansion
h<= h<=>
sin ( A N) =—-A N+

it follows that

. A<
sin (5 A N) f(qr, pr) = sin ( ) f(qw, pr),
. h< A<
f(qx, pr) sin (5 A N) = f(qx,px) sin (5 A k>
. A< A<
f(qx, px) sin (5 A N) 9(q,m) = f(aqk, pr) sin (5 A k> 9(q, 1)

Similarly, for the Cosine function

the following relations hold:

(FHK)N) J(qx, pr) = cos (ZTO far, pr),
f(Qk,pk) COS (STN) = f(Qk,Pk) COS (STO )
f(Qk,pk) COos (ng\/> Q(Qlapl> = f(Qk,pk) COS (STO g(Ql,pl)%l

+ f(qr, pre)g(a, o) (1 — 6pa).

The proof of Eq. (29) follows as

ex = 20 [a] s (5%0)

2N [ p?
= [p_ + V(cj)] sin <E<X>N)
h N 2

11

(30)

(32)

(33)

(34)



_ i &z _2 (¢;)sin ﬁzz
= mog h Y 2 0q; Op;
N

-y g, (35)
j=1

We used the definition of the generalized quantum Liouvillian [Eq. (27)] at the first equality,
and the definition of the Hamiltonian H = p?/2m+V (§) at the second equality. At the third
equality, we used the definition of the generalized Wigner transform [Eq. (1)] and evaluated
the one-dimensional Wigner transforms of the Hamiltonian. We used the property Eq. (32)
to obtain the fourth equality. At the final equality, we used the Taylor expansion of the Sine
function. This completes the proof of Eq. [29].

Using Eq. (35), it is straightforward to show that

R 1 & R
(0] tap) = 52 (0]

- %Z 9.,
-+ X [ou,,
= [O(®)Ix(a. p). (36)

We used the definition of the generalized Wigner transform [Eq. (1)] at the first equality.
At the second equality, we used Eq. (35). We used the property Eq. (32) to obtain the third
equality. The fourth equality follows from the (one-dimensional) Moyal series expansion
of the quantum Liouvillian [Eq. (7)]. The final equality follows from the definition of the
generalized Wigner transform [Eq. (1)]. This completes the proof of Eq. [26].

12



F. Ring-Polymer Sine and Cosine Couplings
1.  Sine Coupling

Defining

= (%) sin (’;K)N) (37)

as the Sine coupling (note the inclusion of the 2N/h factor in the definition), it follows that

_ (%) w3 [0n00] (39)

=1 »J

At the first equality, we used the definition of the generalized Wigner transform [Eq. (1)].
We used the property Eq. (32) to obtain the second equality. The last equality follows from
the definition of the one-dimensional Moyal bracket [Eq. (5)]. Note that the Sine coupling
between two generalized Wigner transforms is just the sum of one-dimensional Wigner-Weyl

transform of the commutator [Ol, 02], evaluated at a particular bead coordinate.

2. Cosine Coupling

Defining



_ L Z%[Ol,OQ ]W*Z[Ol}m [Oz]w - (40)

j=1 T k=1

At the first equality, we used the definition of the generalized Wigner transform [Eq. (1)].
We used the property Eq. (34) to obtain the second equality. The last equality follows
from the definition of the one-dimensional Baker bracket [Eq. (6)]. Note that the Cosine
coupling between two generalized Wigner transforms, is composed of two terms: the first
one is a sum of one-dimensional Wigner-Weyl transforms of the anti-commutator [Oy, Oy]
evaluated at a particular bead coordinate; the second term, on the other hand, consists of
sums of products between [Oy]y and [Os]y evaluated at different bead coordinates. We

remark that this “bead decoupling” is reminiscent of a (discrete) Kubo integral.

3. Multiple Sine and Cosine Couplings

It is straightforward to generalize the formulas for the Sine and Cosine coupling to the
case of multiples generalized Wigner transforms.

Specifically, the Sine-Sine coupling between generalized Wigner functions is given by
(o] w0 }o o). = (2) LI (0000 ] an (234 [0)]
1y i ] hQNijI L&l 5 AN 3w
. N
21\ 1 A oA hes R
- (3) S o0, m (07) o
(hZ) N {j:l [[01’02] }ij o <2 ]) s W’k}
N2 1 (X
== = _ _ . 41
(;) ¥ {Z 610,05 ]W} ()
We used Eq. (38) and the definition of the generalized Wigner transform [Eq. (1)] at the
first equality. We used the property Eq. (32) to obtain the second equality. The last equality
follows from the definition of the one-dimensional Moyal bracket [Eq. (5)]. Note that the
Sine-Sine coupling involves a sum of one-dimensional Wigner-Weyl transforms of the double

commutator operator [[O1, O5]_, Os]_ evaluated at a particular bead coordinate.

Similarly, the Sine-Cosine coupling between generalized Wigner functions is given by

(o, 7370, - (3)

14

N
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() {22 ),

Jj=1

N - -
+ Z [[01702]__ W,j [Og W,k
gy

_ (%) % {é% (01,0504, )

+ iv: [[Ol’éz]_: W,j [OAS} wk [ (42)

k=1

ik
We used Eq. (38) and the definition of the generalized Wigner transform [Eq. (1)] at the first
equality. We used the property Eq. (34) to obtain the second equality. At the last equality,
we used the definition of the Baker bracket [Eq. (6)] for the first term. Note that the Sine-
Cosine coupling is composed of two terms: the first one is a sum of one-dimensional Wigner-
Weyl transforms evaluated at a particular bead coordinate of the (symmetrized) operator
[Ol, OQ]_O3; the second term, on the other hand, consists of sums of products between the
commutator [[O1,0s]_]w and [Os]y evaluated at different bead coordinates. We remark
that the “bead decoupling” and structure of the Sine-Cosine coupling is reminiscent of a

(discrete) Kubo integral between [0y, O,]_ and [Os].

We remark that one could define an alternative ordering of couplings between generalized

Wigner functions giving rise to the Cosine-Sine expression (compare to Eq. (42))

{lo], 2 o]} [0, - (}) w {3 lovon), m (3%4) o,

7,0=1
Y A A . [ h<> A
3 [0, [0, (5%5) 0],
ixk )
N
= (%) % {;% [[Ol, Og]+] W sin (gT]) [OA;),} W
N
o550l o], on (45 01,
ik
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3o, [0.00],, 1 <43>

We used Eq. (40) and the definition of the generalized Wigner transform [Eq. (1)] at the first
equality. We used the property Eq. (32) to obtain the second equality. At the final equality,
we used the definition of the Moyal bracket [Eq. (5)] to evaluate the sine couplings. Note,
however, that since [[O1,0s]1, Os]_ = [[O1,0s]—, Os]4 + [[O2,0s]_, Oy, the Cosine-Sine
coupling can be expressed in terms of Sine-Cosine couplings instead (see Eq. (55))

Finally, the Cosine-Cosine coupling between generalized Wigner functions, is given by

(o], 20} 7 [0, - 3 {5 l0n00], o (374) o1,
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g, k,l=1 ’
J#k,j#LEA
N
1 1 [
= IS 161.04,,0 }
Ng{;4 01,0211, 03] |
+ [o L0, ] [O}
]ZZI 1, U2 Wi 3 Wi
J#l
N 1. ) )
-0 05,0
+J;12 1“1 W [ 2 3]+_ Wk
J#k
N
1 r. - R N -
+ 5 02 [01,03]+ )
) L 1Wik L 1W,j
J#k

(44)

_l’_
M-
=
=
Bl
=

HHW# ksél
We used Eq. (40) and the definition of the generalized Wigner transform [Eq. (1)] at the first
equality. We used the property Eq. (34) to obtain the second equality. At the final equality,
we used the definition of the Baker bracket [Eq. (6)] to evaluate the cosine couplings. Note
that the Cosine-Cosine coupling presents a more complex structure in which, depending
on the sum term, different operators are evaluated at particular (equal or different) bead
coordinates. We remark that the “bead decoupling” and structure of the Cosine-Cosine

coupling is reminiscent of a symmetrized (discrete) Double Kubo integral [6, 9, 10] between

Ol, OQ and Og.

G. Properties of Sine/Cosine Couplings
1. Adjoint property of Janus operator

Noting that the Janus operator involves partial derivatives with respect to q and p, it
follows that for arbitrary functions a(q, p) and b(q, p) of ring-polymer variables the following
equality holds for arbitrary integer n:

a(q, p)w%b(q, p) = (—1)" b(q, )<K> a(q, p) (45)

17



2. Anti-self-adjoint property of Sine

The anti-self-adjoint property of the Sine coupling

a(q,p)5’b(a, p) = —b(a.p) s a(a, p) (46)

with a(q, p) and b(q, p) arbitrary functions of ring-polymer variables, follows from

a’s’h = (%) a sin <2TN> b

where we have used Eq. (45) for even powers at the third equality.

3. Self-adjoint property of Cosine

The self-adjoint property of the Cosine coupling

a(q,p)c’b(q, p) = b(q,p)Calq,p) (48)

with a(q, p) and b(q, p) arbitrary functions of ring-polymer variables, follows from

a’c’b = a cos (STN) b

= bCa (49)
where we have used Eq. (45) for odd powers at the third equality.
4. Properties under integral sign

The properties of Sine and Cosine coupling under the integral sign

/ dq / dp a(q,p) {b(a, p)F c(q,p)} = / dq / dp {a(q,p)*s’b(q, p)} c(a, p) (50a)
18



dq [ dp a(q,p){b(a,p)’c’c(q,p)} = [ dq [ dp {a(q,p)’c’b(q,p)} c(q,p) (50b)
[aaf (ba.p)Tela.p)) = [da [ dp {ata.p)@ha.p))

with a(q, p), b(q, p) and ¢(q, p) arbitrary functions of ring-polymer variables, follows from
the fact that for each term in the Taylor expansion of the Sine and Cosine the following

equality holds

/ dq / dp a(q,p) {b(q, p) A e(a, p)} = / dq / dp {a(q, p) A b(a, p)}C(q, p)
(51)

for any integer n.

We will prove Eq. (51) by induction. For n = 1 (base case), we have that
— ob 0c  0b Oc
d/dabAc:/d/da — -
/ 1) { N} 4 {zk:apk@qk 8qk8pk}
ob da  Ob Oa
— —[d /d Ppga PO,
/ 1/ ® {Z Op Oar D apk}

_ —/dq/dp {b%Na}c
_ / dq / dp {aTNb}c (52)

where in the second line we have used integration by parts, assumed that the surface term

vanishes and recognized that terms containing mixed derivatives 6}2 é’qk cancel out, and in

the last line, we used Eq. (45).

Now we take the inductive step and prove that if Eq. (51) holds for n, then it also holds
for n + 1:

/dq/dp a{bTﬁlc} _ /dq/dp a{bT’;VTNc}



where in the third line we have used integration by parts, assumed that the surface term

9%b
OprOqy

s
vanishes and recognized that terms containing mixed derivatives | A 5\7;)0] cancel out,

and in the fourth line used Eq. (51) that we assume holds for n and arbitrary functions of

ring-polymer variables (such as 887‘1 or 8%).

5. Association rules

The Sine and Cosine coupling operators satisfy the association rules

with follows from Eqs. (41)-(44). Note that the first relation resembles the Jacobi identity
[[01,05]-,05]- = [01,[02,04]-]- + [[O1, 0], O] - (57)

in ring-polymer phase-space.

II. KUBO IDENTITY IN RING-POLYMER PHASE-SPACE

In this section, we will prove that in the N — oo limit the following identity holds
between Sine and Cosine coupling operators
) R 3 d -
| s ow] = sle] @l ow)] 58
] 7 [ow], = sl @ g [owl, 58)

We remark that Eq. (58) resembles the Kubo identity in ring-polymer phase space.
We start by recognizing that

] s om] - <2N> [P sin (ETN) om]



and that

= % 2 [e‘ﬁﬁ}ﬁ (e% Ay e_%TJ) [OA(t)} W (60)
We used the definition of the Sine and Cosine coupling operators at the first equality. At
the second equality, we used the definition of the generalized Wigner transform [Eq. (1)].
To obtain the third equality, we used the properties Eqs. (32) and (34) to express the
Sine/Cosine in terms of the one-dimension Janus operator. Note that in Eq. (60) we used
the shorthand notation O(t) = %O(t).

The evaluation of the terms in Eqs. (59) and (60) can be performed by realizing that

the generalized Boltzmann transform can be expressed in terms of one-dimensional Wigner

transforms as

G
N
a A A
= dA lplAl = = _BNH _l
/ llleeﬁ (@1 = =5+l g+ 5)
T A AV N i _ 3 Al Al _ 2 A
= /dA] erPiB; <qj _73 {/dA/ H erPIAL o ,BNqul_i_?) <QZ _ 7| e ﬁNH’q]'+7]>
I=j+1
J+N-1
i 3 A A A
_ [{/dA/ H erPlA G_BNH|ql+7l> <ql_?l|}€—5NH ’ (61)
l=j+1 W)

where we have used the definition of the generalized Boltzmann transform in the first line,
reorder and regrouped terms in the second line (by singling out the j-th contribution to the
integral), and used the definition of the one-dimensional Wigner function in the third line.
Therefore, it follows that
J+N-1
*ﬁH] oy, [O] — /dA/ imd ,—BNH é _ é *5N1:IOA
e e = en e e
G . I at+ 50 (- 5
W,

=i+l j
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N
AVES T A
PLA _ BNH =
X Heh <ql71 5 ’ ’(Jl + 9 >
I#]
i -1, _gyHA l
— /dA lllehpzm <C]171 _ 5 ‘e ﬁNHOj |QI + 7% (62)
and
J+N-1
X ; R . A A :
—ﬁH] —%T]‘ [O} - 10 {/dA/ H (SN BNH‘ ! _ = —AnH
e e ' 2 e a+ ) (@ e
N Wi I=j+1 2 2 W,j
i JAVIR ] A,
= /dAehijf (q; — —]\ Oe PN giy + ]2+1)
A : A
XHthlAl CJl——l e PN gy + l2+1>
l#]
B i A I I SN I+1
~ [aa [T et o= G105 hasa + =5)
N
i A A
= [aa [et o= 5210 a s 5. (03

=1

where we have used the one-dimensional Moyal product in the first lines, and used the
definition of the one-dimensional Wigner transform to reorder and regrouped terms to obtain
the final expressions. To simplify notation, in the last lines of Eqs. (62) and (63) we have
introduced the operator Oj that only acts on the j-th path integral bead.

From Egs. (62) and (63) it, therefore, follows that

[ (AT O]
/dA ﬂeéplm (@—1 —
1=1

Using the Kubo identity[11]

M-

1

J

1t _gefr A A
(et Ol lan+ 51 (64

I
AMZ

7j=1

P - A X
(e 0] = ihe ™M / dNO(—ih\)
0
A . R
= ih / dNO(+ih)\) e M (65)
0
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it is possible to relate the commutators and anti-commutators [e=#~ O;]+ in the N — oo

limit as
" A . B [ 1 A A . A . ot
e 0, = ih = | / d\ e MO (—ihN) + O;(+ihN)e PN
2 By Jo
= %\7 _e_ﬁNﬁéj + éje_BNH]
where we have used the fact that
1 xT
lim — [ dz’ f(2") = f(0) (67)

x—0 0
to linearize the Kubo integral in the N — oo limit.

Combining relation Eq. (66) with Eq. (64), it follows that in the N — oo limit

S, () [0, = [ (et o] s
and, therefore, from Eqs. (59) and (60),
), [, - o] 2 ool o

ITII. ALTERNATIVE EXPRESSION FOR CORRELATION FUNCTIONS

Due to the properties of the Sine and Cosine operators, there are different but equivalent
forms of expressing time correlation functions in ring-polymer phase-space. We remark that
previously derived path-integral expressions for the Kubo transformed and Double Kubo
transformed correlation functions by others|[7, 8] and us[6] are expressed in these alterna-
tive forms. The notation used in this paper, however, provides the most general form of
correlation functions, allowing to apply the theory to general non-linear operators and non-
equilibrium systems, permitting the natural extension of the theory to multi-point correla-
tion functions, and highlighting the similarities and symmetries of the different correlation
functions.

To demonstrate the equivalence of notation, consider the ring-polymer phase-space rep-
resentation of the Kubo transform correlation function given by the Cosine two-point time

correlation function

<B(t)<7A>N B (Qiji_g]v/dq/dp [eiﬂﬁ]ﬁ {[B(t)}z\/<?> [A]N} (70)
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Using the Cosine operator self-adjoint property [Eq. (48)] and property under the integral

sign [Eq. (50)], we can rewrite the Cosine correlation as

<B(t)<?A>N: P /dq/dp et @ [4] Y[Bw] (71)

But, since [see Section II, Egs. (60), (64)]

[e‘ﬁﬁ]ﬁ%> [A]N = % ;/dA Eeémm (-1 — AIZI [[e™ P8, Al | + %>

N
i 1, 1 A
- dA A (o 11 (A —BnH —BNHA> !
/ H@h (@11 5 +e @+ 5
= *ﬁﬁj] 72
el (72)
where, to simplify the notation, we have defined the operator
~ 1 N
A=< > A (73)
j=1
we can rewrite the Kubo correlation as
~ R 71 S N
B TA) = N /d /d ea] B . 4
(Bo@d) = ooy [ da [ do [7A][B] (74)
Note that for operators A = A(q) that only depend on position
e 1 A A A 1 A
*5HA] = [da (A A PO (g — DL B H .
g ¥ / o \Ala- )+ Alat 5 Heﬁ (= = 5o o+ 5)
(75)
Moreover, for linear operators
N
s i A A
A = [da A@ et (g - S e Ly 76
e~ ] DG S et g+ 5. (7o)

We remark that the path-integral expression for the Kubo transform correlation function
given by Egs. (74) and (75) [or (76)], - equivalent to the Cosine correlation function [Eq.
(70)] - has previously appeared in the literature[6-8, 12, 13].

IV. EXACT RING-POLYMER PHASE-SPACE REPRESENTATION OF MULTI-
POINT CORRELATION FUNCTIONS

Here, we present a step-by-step proof of the connection and equivalence between the

ring-polymer phase-space and Hilbert space representation of time-correlation functions.
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A. Auxiliary integrals

For future convenience, we introduce some general integrals in ring-polymer phase space
and their connection to Hilbert space.

Consider the “type 17 integral defined as

= (Qi];v_;N /dq/dp [e‘ﬂﬁ]ﬁ (%Z [O} ij) , (77)

Jj=1

where O represents an arbitrary operator. Note that the integral defined above involves a
ring-polymer phase-space average of a sum of one-dimensional Wigner transforms evaluated
at particular phase-space points (g;,p;). However, recognizing the invariance of the Boltz-
mann operator [e~ | to cyclic permutations of the variables (i.e. invariance to the change

¢ — qi+1), the sum can be simplified to obtain an equivalent expression for 1, namely

pr— ﬁH 9
I 27rh /dq/dp e [O} _— (78)

It is straightforward to perform the integration over the ring-polymer phase-space with

the help of identity Eq. (11) to obtain

11:( / /dpeﬁH q,)[é} -

7z Ay A
= — qu/de/dAN efipN N< ——2 |6_BH| N + 2N>
Z A
= _h/ QN/de/dAN ehpNAN <q - ‘eiﬁH| N+ 2N>

i A A A
X { dA’NeﬁpNAN (qn — QN\ Olan + QN)}

A A A
= Z_l/qu/dAN/dAlN 5(AN+A3\7) <qN—TN|6_BH|QN+_N>

2
< fay ~ X O lay + )
:Zl/qu/dAN {qn — \eﬂH]qN+%>
<lan + 2210 law — 5
=2 [do. [do (oo o) (2O o)
— Z77y [e—ﬁﬁé}. (79)
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We used the identity Eq. (11) to integrate out the variables py, qr and Ay for k # N
(and recognized that Zy = Z) in the second line [see the derivation of Eq. (15)], used
the definition of Wigner-Weyl transform in the third line, performed the integral over py
(giving a delta function) in the fourth line, performed the integral over A’y in the fifth line,
performed the change of variables ¢ + % = x4 in the sixth line, and recognized a trace in
the final line. We remark that type-1 integrals correspond to averages in Hilbert space.

Similarly, consider the “type-2” integral defined as

N

SN S ST R

ik

where O and P represent arbitrary operators. Note that the integral defined above involves
a ring-polymer phase-space average of a sum of products of one-dimensional Wigner trans-
forms evaluated at different phase-space points (¢;,p;) and (gx, px), with j # k. However,
recognizing the invariance of the Boltzmann operator [e*ﬁg | to cyclic permutations of the

variables, the sum can be simplified to obtain an equivalent expression for I, namely

I, = 2rn)y 4% /dq/dp € ﬁH <NZ:1 [O]W]> [P]W,N
) N- 1]2 (81)

Using the identity Eq. (11), the integration over ring-polymer phase-space can be per-

formed, giving

BU) = G / da [ dp [7"] (a,p) [O]W [p]w

A A A;
X (o = X (€Y g+ 52 {gy — S ()N g+ 5
<[], 7]
W,j W,N
Z_
= dg; | dgn [ dp; | dpn | dA; | dAy ehPidi g PN AN
A
><<qN——r< o8y g, + ) <qj— | (PN g+ S
A/
/ PNA N
X [O]Wj/dA en (q 5 )
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- /qu/qu/dp]/dA /dAN/dA eiPRI5(Ay + Aly)

<oy — 2] (e Wf) 5+ 50 gy — B2 )N g 1+ 5

2 2
X[O] !

A/
= /dq]/qu/dp]/dA /dAN eiPili

5

AN

<oy = S5 (Y Jgy + ) by — B (PN gy + 5
X O]W <QN+—| |QN—ﬂ>
= /dqj/qu/dA /dAN
<o = S5 (Y Jgy + ) by — B )N gy + 5
<q]+ﬁ|0|qj—ﬁ><qN+ﬂ|P|qN—%>
= /dm+/dx /dy+/dy
x (x| (e |y )y, | O lyo) (-] (e PN )YNT o) (g | P la_)
= Z7'Tr [(e—ﬂwﬂ)jO(e—ﬂNH)N—jp] . (82)

We have used the identity Eq. (11) to integrate out the variables pg, g, and Ay for k # j,
k # N (and recognized that Zy = Z) in the second line [see the derivation of Eq. (15)],
used the definition of the Wigner-Weyl transform of O, in the third line, performed the
integral over py (giving a delta function) in the fourth line, performed the integral over A’y
in the fifth line, performed a similar integration over p; and A’ (arising from the definition
of the Wigner-Weyl transform of Ol) in the sixth line, performed the change of variables
gy ATN = x4 and ¢; = % = y4 in the seventh line, and recognized a trace in the final line.

Therefore, it follows that

-1
L=Y 27T [(e*ﬁNﬁ)jOA(e*ﬁNﬁ)N*jﬁ]
=1

_ Nz__:l Z-17,. [(e—ﬁNﬁ)N—jO(e—ﬁNﬁ)jp] . (83)

We remark that type-2 integrals correspond to discrete Kubo transform correlations between

arbitrary observables O and P. 2

2 Technically speaking, the end points of the Kubo integral discretization are not accounted for.
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Similarly, consider the “type-3” integral defined as

dq

L G 2 DR 1 R I W R

j7k7l:1
J#k#

where O, P and Q represent arbitrary operators. Note that the integral defined above
involves a ring-polymer phase-space average of a sum of products of one-dimensional Wigner
transforms evaluated at different phase-space points (g;,p;), (qx, px) and (q;, p) with j # k,
j # I, k # |. However, recognizing the invariance of the Boltzmann operator [e‘ﬁﬁ]ﬁ
to cyclic permutations of the variables, the sum can be simplified to obtain an equivalent

expression for I3, namely

-1 N-1
b= Gy daf e [ (0], 17, | 1]
() h)N/ q/ P : wy L Jw QWN
7,k=1
J#k
N-1
= ]3
7,k=1
J#k
N—1k—1 N—-1 N—1
= I3(j, k) + I3(7, k). (85)
k=1 j=1 k=1 j=k+1

Employing the identity Eq. (11), integration over the ring-polymer phase-space coordi-

nates can be performed. For the case j < k, one obtains
. s — _B A a A
Kki <h) = s [da fap [7] @ [0], [7],,[4],

Zl
- /qu/qu/qu/dp]/dpk/de/dA /dAk/dAN

XeﬁpﬂAﬂehp’“AkeﬁpNAN (q _‘ (e ﬁNH) ‘qﬁ + _>

N —

2 2
A; A A B AN A
x (g = SR g+ ) (g — SE (T F gy + SN

00,
_ Z /dq]/qu/qu/dpj/dpk/de/dA /dAk/dAN

XeﬁpJA]ehpkAkeﬁpNAN gy — 2 ‘ (e 6NH> |q] . >
A' _ 2 s Ak Ak AN
gy = S (eI g+ 28y (g — S (e g+ B
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<[0],, [Pl { f actsitan = G110+ 50)
_ Zl /dq]/qu/qu/dpj/dpk/dA /dAk/dAN/dA’

XethAJehpkAké(A + A )<QN_7 (e ,BNH) |q]+7>
AVIWET N Ay Ak aaiyN—k Ay
x Gy — S (T gy + 28 (g — ZE (VIR gy + 2N)
R R Aly Aly
x[O} o [P] G = S Qlan +50)
= 27Th /dq]/qu/qu/dpj/dpk/dA /dAk/dAN
XeﬁpJA]ehpkAk <qN 2 |< ,BNH) |qj+7>
A; Ay, A A
_ 2Ny (,—BNH\E—j —k 2k _ByvH\N—k N
x gy — S (T gy + ) (g — ZE (eI R gy + 2
K Ay Ax
P = _ =N
[l [ i 5
Za oo [ o s i f
xeFPiR gy — 2 =X | (=TT |g ‘]+7>
VAV IS A A A
x (s — S (e ﬁNH)M|qk+7’“><qk—7’“|< AN gy 4 2X)
R A A A
x[O}W (a0 + 251 Pla— 55 fav + 221 Qlav — 55

_ /dqj/qu/qu/dA /dAk/dAN

_ 2N (L —BNnH\j =J
x (qn 2I( )|qg+2>
A, A A - A
><<qj—7]|( —OnHY= | gy 4 2k><qk—7k (e PN IN=E gy +7N>
A, A A A
x (q; |O|QJ__><Qk+_|P|Qk__k><QN+_N|Q|CIN__N>

_ /dx+/dx /dy+/dy /m/dz o] (€Y g, (4] O [y)

X (| (PN [20) (24| On |22) (o] (€PN o) (4| Og )
= Z'Tr [(e‘ﬂNﬁ)jOA(e_BNH)k_jp(e_ﬂNﬁ)N_kQ} . (86)
We have used the identity Eq. (11) to integrated out the variables p;, ¢; and A for | # j, k, N
in the second line [see derivation of Eq. (15)], used the definition of the Wigner-Weyl
transform of O in the third line, performed the integral over py (giving a delta function)

in the fourth line, performed the integral over A’y in the fifth line, performed the integral
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over p and A} (arising from the definition of the Wigner-Weyl transform of 02) in the sixth
line, performed the integral over p; and A’ (arising from the definition of the Wigner-Weyl
transform of Ol) in the seventh line, performed the change of variables ¢y + ATN = Ty,
q; £ % =y+ and g, + % = 24 in the eighth line, and recognized a trace in the last line.

Following a similar analysis, for j > k it follows that

Lj. ki > K) = 27T (e W) P(e WP RO I IQ) (87)
Notice that
N—-1k-1 N—-1k-1 A . .
I(j.k) = 27 Tr (eI O(e P Ple mINEQ)
k=1 j=1 k=1 j=1
N-1j-1

- 27T (NN IO VI IQ, (88)

J=1 k=1
and
N—-1 N-1 N—-1 N-1 . . .
Li(j k) = 27T (P plem RO (e NN IQ)
k=1 j=k+1 k=1 j=k+1
N-1 -1

=3 Yz (e NNE (eI O Q) (89)

where we have reordered the sum and relabeled the dummy indexes to obtain the last
equalities in the previous equations.

Combining the terms, it follows that
N-1j-1 A ) )
Iy = 3030270 (e AN IO (e Ak plemin Q|
Jj=1 k=1
N-1 N-1

0N 2Ty (e IR p(e IO (e Q) (90)
j=1 k=j+1
We remark that type-3 integrals are related to (discrete) symmetrized Double-Kubo trans-
form correlations involving arbitrary operators O, P and Q.

We remark that the procedure to define and evaluate “type-n” integrals I,, can be gen-
eralized to any order. However, as the order of the integral increase, the number of terms
and possible permutations to be considered in the sums quickly grow, and the derivation
of the expressions become tedious. Nevertheless, clear trends can be identified: a type-n
integral consist of ordered sums involving different imaginary-time steps e~ H hetween all
the possible permutations of operators [e.g., Egs. (83) and (90) ]. As such, type-n integrals

are discrete versions of symmetrized n-order Kubo transforms.
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B. Two-point correlation functions
1. “Sine” correlation functions
Consider the “Sine” ring-polymer correlation defined as
(020,) = ooy [aa [ [] {[0], = [0}
! /N T (2rR)N N U “In
Zy' BH
- s oo )
(ZWH)N/ q/ p || _(a,p)

x {[OI}N (a,p) (%) sin (ng\/> [OQ]N (a, p)}. (91)

Introducing the expressions for the Sine coupling [Eq. (38)] into Eq. (91), the Sine

correlation can be expressed as
A A A -
Ay _ N —BH
) 1§ 16,.0 92
i) w00, ¢ %)

Besides an additional i/ factor, the Sine correlation in Eq. (92) represents a type-1

integral [Eq. (77)] with O = [Oy, O,]. Therefore, it follows from Eq. (79) that

(050:) = (3) (0041, (93)

namely, Sine correlation functions are an exact ring-polymer phase-space representation of

a correlation involving a commutator between two operators. We remark that this equality
holds for any finite N. Note that for O,=B (t1) and Oy = A(to), one obtains the correlation

functions appearing in linear response theory.

2. “Cosine” correlation functions
Consider the “Cosine” ring-polymer correlation defined as
(020), = G [1a [ ae [ {[0] = [0], }
= (Qi%N / dq / dp [e’ﬁﬂﬁ(q, D)
x {[MN (a, p)cos (?X}N) 0] (a, p)}~ (94)
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Introducing the expressions for the Cosine coupling [Eq. (40)] into Eq. (94), the Cosine

correlation can be decomposed into two terms, namely

PR 1
<01<702>N =;h T (95)
with
_ Z]:fl _Bf{ 1 N ~ A~
= <2wh>N/ dq/ do [ m;[[()h%h]m ’ (96a)
and

Besides an additional 1/N factor, the 77 term in Eqs. (96) represents a type-1 integral
[Eq. (77)] with O = [0y, O,]4, whereas the T} term represents a type-2 integral [Eq. (80)]
with O = Oy and P = O,. Therefore, it follows from Egs. (79) and (83) that

<01<F>OQ> - —i’ﬂ [(e*ﬁNH)N*J‘a(e*ﬁNﬂ)jog], (97)

where the prime in Y indicates that the first and last indexes are weighted by one-half.
Recognizing that the sum over j is just the trapezoidal rule for the discretization of a

Riemann integral, it follows that in the N — oo limit

) . 7-1 P . .
lim <01<?02> 2 [ axrr [e*ﬁ*)f’olefwog}

N—oo N 6 0

Lo OQ> , (98)

namely, Cosine correlation functions are an exact ring-polymer phase-space representation
of correlations involving a Kubo integral between two operators. Note that for O; = B (t1)

and Oy = fl(to), one obtains the correlation functions appearing in linear response theory.
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C. Three-point correlation functions
1. “Sine-Sine” correlation functions

Consider the “Sine-Sine” ring-polymer defined as
(OF0:} T, = w [ el Flod,y 5 1o, )
- /dq/dp <] (a.p)
{0 (%) (1) 0] )
X (%) sin (ZTO [Og]N(q, p)}. (99)

Introducing the expressions for the Sine-Sine coupling [Eq. (41)] into Eq. (99), the

dq

Sine-Sine correlation can be expressed as

({ovo} 5oy, = B [da [0 [77] (D)

X {(%f%i [[[01,02],03]]W}. (100)

J=1

Besides an additional (i/h)? factor, the T} term in Eq. (100) represents a type-1 integral
[Bq. (77)] with O = [[O1, O3], Os]. Therefore, it follows from Eq. (79) that

(oo o), = (3) ([[ovo) o) aon

namely, Sine-Sine correlation functions are an exact ring-polymer phase-space representation
of correlation functions involving a double-commutation relation between operators. We
remark that this equality holds for any finite N. Note that for O; = C(t), O, = B(t;), and

Oy = fl(to) one obtains the correlation function appearing in second-order response theory.

2. “Sine-Cosine” correlation functions

Consider the “Sine-Cosine” ring—polymer correlation defined as
{owo} @0, = oo [ fae ] {{[0], < 0], =} [0}
- (Qiji\;;N /dQ/dP efﬁH N(CL p)
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X {{ [Ol}N (a.p) (%) sin (%RTN) [OAZ}N (a, p)}
X cos (%“TN) [@]N (a, p)}. (102)

Introducing the expressions for the Sine-Cosine coupling [Eq. (42)] into Eq. (102), the

Sine-Cosine correlation can be decomposed into two terms, namely
A A A 1
<{01<?02} %)03> - §T1 + TQ, (103)
N

with

i foafo () S 000, )

. N
dp |:€_ﬂH:|N (%) %j;l [[01, OQ]:| W [OS]W,k (104b)
ik

Besides an additional i/(hN) factor, the T3 term in Egs. (104) represents a type-1 integral
[Eq. (77)] with O = [0y, Os]_, O3], whereas the T, term represents a type-2 integral [Eq.
(80)] with O = O, and P = Os. Therefore, it follows from Eqs. (79) and (83) that

<{01?OZ}?63>N - ( )Z IZ Tr[ “BNIYN=3[0, Og](e PV TYIO4] | (105)

where the prime in Y’ indicates that the first and last indexes are weighted by one-half.
Recognizing that the sum over j is just the trapezoidal rule for the discretization of a

Riemann integral, it follows that in the N — oo limit

. . . i\ Zz7t [P NP N
<{01?02} <?()3> = (L) 2 / dNT'r [e_(ﬁ_A)H[Ol, Osle MO,
N h) B J
- (%) (01,05] 0 05). (106)
namely, Sine-Cosine correlation functions are exact ring-polymer phase space representa-
tion of correlation functions involving a commutator relation and Kubo integral between

three operators. Note that for Oy = A(ty), O» = B(t;), and O3 = C(t,), one obtains the

correlation function appearing in second-order response theory.
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3. “Cosine-Cosine” correlation functions

Consider the “Cosine-Cosine” ring-polymer defined as
(0:20,520,) = h / da [ap [1] _{[0] <o) @0 )
— ]7_‘; / /dp e_ﬁH N (q,p)
{[ ] q, p)cos (STN> [OQ]N (a,p)
X €OS (SWN) [Og]N (q, p)} . (107)

Introducing the expressions for the Cosine-Cosine coupling [Eq. (44)] into Eq. (107), the

Cosine-Cosine correlation can be expressed as

VIR QUIN 1, 1
(0:20,5205) = 2Th+ (T + Ty +TY) + T, (108
with
— Z]:fl *BH N
I = (27rh)N/dq/dp [e }W _32[ (01,044, ]Jr]W,j , (109a)
( \
Z_ 1 &
T, = /dq/dp e BH N (a,p) N3 Z [[01702]+} W [Og]W,l >, (109Db)
j1=1 )
\ ]J' ! )
( 3
Z . 1 XN
i N —BH L A A A
1, = (QWH)N/dQ/dp [e }N(%P) N3 j;l[Ol]I/V,J [[02,03]4‘4/71C , (109¢)
S )
( 3
"o ZNI _BH 1 A A
I = (2mh)N /dq/dp [e }N(Q,p) mj;I[OZ]W,k [[01703]4‘” , (109d)
[ 7k )
and
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Besides an additional 1/N? factor, the T; terms in Egs. (109) represent different type
of integrals introduced in Sec. IV A. For instances, T} is a type-1 integral [Eq. (77)] with
O = [[01,0,]+, Os)4. The Ty terms represent type-2 integrals [Eq. (80)] with O = [Oy, Os]+
and P = O; for Ty, O = O, and P = [Og,@g]+ for T3, and O=0,and P = [01,03]+ for
TJ. The term T represent a type-3 integral [Eq. (84)] with O = Oy, P = O, and Q = Os.

Combining all the 7} terms together, it follows from Eqgs. (79), (83) and (90) that

B N
(6:20,70) - z S 3 T (e B0, (e kG e

T S

where the prime in ' indicates that the first and last indexes are weighted by one-half.
Recognizing that the sum over j, k is just the trapezoidal rule for the discretization of an

iterative double Riemann integral, in the N — oo limit it follows that

A N A 7-1 B Ao o o o
<01 ?OQ?O3>N = F / d)\o / d\Tr [6—(5—)\0)11016—()\0—>\1)H02€—)\1HO3]
0 0

Z=t [P g —(B=AA A, —(M—Xo)H A —AoH
5 [ o [ ATy [ TR0, G, G
B Jo Ao

I Ao YR YRy

- @/0 dAO/O )y <01(—m0)02(—zm1)03>

1 B B . . .
+—2/ d)\o/ d\, <02(—m1)01(—zm0)03>

B 0 Ao

1 (B 8 . . .
- / dXo / oy <T501(—ih)\0)02(—ih)\1)03>
5 Jo 0

_ <(51 ey og>, (111)

where we have introduced the imaginary time-ordering operator TB to freely commute oper-
ators inside the integral sign. [6, 9] In other words, Cosine-Cosine correlation functions are
exact ring-polymer phase space representations of (symmetrized) Double-Kubo transformed
correlation functions[6, 9]. Note that for O; = A(ty), O, = B(t1), and O3 = C(t,), one

obtains the correlation function appearing in second-order response theory.
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