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ABSTRACT

An exact representation of quantum mechanics using the language of phase-space variables provides a natural starting point to introduce
and develop semiclassical approximations for the calculation of time correlation functions. Here, we introduce an exact path-integral for-
malism for calculations of multi-time quantum correlation functions as canonical averages over ring-polymer dynamics in imaginary time.
The formulation provides a general formalism that exploits the symmetry of path integrals with respect to permutations in imaginary time,
expressing correlations as products of imaginary-time-translation-invariant phase-space functions coupled through Poisson bracket oper-
ators. The method naturally recovers the classical limit of multi-time correlation functions and provides an interpretation of quantum
dynamics in terms of “interfering trajectories” of the ring-polymer in phase space. The introduced phase-space formulation provides a rigor-
ous framework for the future development of quantum dynamics methods that exploit the invariance of imaginary time path integrals to cyclic

permutations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0137898

I. INTRODUCTION

Quantum thermal time correlation functions (TCFs) are ubig-
uitous in chemistry and physics and play a central role in the descrip-
tion of the dynamical properties of condensed phase systems.' ™
Indeed, (multi-)TCFs are the key constituent elements of dynam-
ical theories involving linear and nonlinear response,”” chemical
dynamics,” and even quantum chaos.” However, the exact full quan-
tum mechanical calculations of TCFs for condensed phase systems
involving hundreds of degrees of freedom are still impractical. As
such, the development of approximate methods that capture nuclear
quantum effects—such as tunneling and zero point energy—while
relying on (semi)classical dynamics is of great interest to the
chemistry and physics community.

The representation of quantum mechanics based on the lan-
guage of phase-space variables provides a natural starting point for
the implementation of semiclassical approximations. For equilib-
rium properties, the Feynman path-integral representation of quan-
tum mechanics”® provides an appealing exact framework, allowing

for calculations based on classical phase-space dynamics in imagi-
nary time. In that framework, the canonical Boltzmann distribution
of a quantum particle becomes isomorphic to the phase-space dis-
tribution of a classical ring-polymer composed of particle replica
“beads” linked by harmonic springs, as defined by the discretized
imaginary-time Feynman paths.” Thermal quantum averages are
thus obtained as canonical phase-space integrals over the ring-
polymer ensemble. The ensemble of ring-polymer configurations is
generated using classical methods, such as Monte-Carlo sampling
or molecular dynamics simulations, thus allowing for simulations of
systems in the condensed phase.” "

Extension of imaginary time path-integral techniques to calcu-
late dynamical properties is more challenging due to the presence
of the time evolution propagator controlling the dynamical evolu-
tion. Although one can express the dynamical evolution in terms
of real-time forward-backward Feynman paths,'” the resulting time
correlation functions involve phase factors that are difficult to evalu-
ate numerically. (See Refs. 14-16 for recent developments to address
that challenge.) As such, a variety of approximate methods that
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follow the time evolution of an entire imaginary time path, such
as Matsubara dynamics, 7 centroid molecular dynamics (CMD),IS‘W
and ring-polymer molecular dynamics (RPMD),”’ have been pro-
posed and applied with relative success for the calculation of one-
time correlation functions. Understanding how these methods can
be derived from approximations of the exact quantum Liouvillian
and, especially, how to apply and extend these techniques to calcula-
tions of mult1 time correlation functions is a subject of great research
interest.” "

Here, we introduce a formally exact formulation of multi-
time correlation functions in terms of imaginary time Feynman
paths with dynamics controlled by the exact ring-polymer quan-
tum Liouvillian. The formulation provides a general formalism
that exploits the symmetry of path integrals with respect to per-
mutations in imaginary time, expressing correlations as products
of imaginary-time-translation-invariant phase-space functions cou-
pled through Poisson bracket operators and providing an interpre-
tation of quantum dynamics in terms of “interfering trajectories”
of the ring-polymer in phase space. Moreover, the framework
reduces to classical multi-time correlation functions when % — 0,
providing a natural derivation of the classical limit of quantum
mechanics.

The resulting phase-space formulation establishes a rigorous
and appealing framework for the development of novel theoret-
ical tools for studying quantum dynamics effects in condensed
phase systems. Indeed, since the exact quantum Liouvillian governs
the time evolution of ring-polymer observables, the full quantum-
mechanical evaluation of the quantum correlation functions is
impractical but for the simplest system. The introduction of semi-
classical approximations is, therefore, needed to effectively evalu-
ate the multi-time correlation functions. Remarkably, the invari-
ance of the ring-polymer to imaginary time translation has been
recently used to derive quantum Boltzmann -preserving semiclassi-
cal approximations to single-time'”'®**** and two-times’**" Kubo
transformed TCFs. Similar approximations can be applied to the
generalized TCFs presented in this work, providing a variety of
path-integral-based semiclassical approximations for the evaluation
of multi-time correlation functions. (A detailed derivation of these
approximations will be provided elsewhere.) The introduced phase-
space formulation serves as the starting point for the development of
novel semiclassical approximations.

The paper is organized as follows: Sec. II introduces the nota-
tion for calculations of equilibrium quantum averages as imaginary
time path integrals in phase space. Section III extends the ring-
polymer phase-space representation for calculations of multi-time
correlation functions. Section IV discusses the properties of the
imaginary time path-integrals as well as the symmetries and prop-
erties of ring-polymer multi-time correlation functions. Section V
summarizes and concludes.

Il. IMAGINARY-TIME PATH-INTEGRAL PHASE SPACE

In this section, we introduce the notation and key elements
for the imaginary-time path-integral phase-space representation
of quantum mechanics. We remark that several elements of this
section were originally introduced in Refs. 17 and 21. To keep the
notation simple, we will focus on a one-dimensional system with
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Hamiltonian A = p?/2m + V(§). Nevertheless, the resulting expres-
sions are also applicable to higher-dimensional systems.

A. Ensemble averages

We focus on the thermal ensemble average of an operator
0 =0(g.p),

(0) =z e o) (1)
where
Z = Tr[e_m] (2)

is the partition function and 8 = 1/kp T, with T the temperature and
kg the Boltzmann constant.
We introduce the ring-polymer phase-space average,'”

(O>N (zﬂh)N/ ‘l/ dp |e

to compute expectation values in terms of phase-space averages
with [ dq = [ dq,--- [ dqy. Here, the N ring-polymer coordinates
q={q,,...,qy} are defined by the discretized imaginary time Feyn-
man path subject to cyclic boundary conditions (i.e., g, = gy).
Analogous definitions apply for the ring-polymer of momenta
P=1{py-- Py}

The ring-polymer phase-space function [O]N(q,p), intro-
duced by Eq. (3), is the generalized Wigner-Weyl transform defined,

(q,p)[ Iy(@p), )

as follows:*’
N
(0], (a-p) = -3 [0], (a2, (4)
=1
where
A i Al 4 A
[0],,(a.p) = f dA e“"A<q— S10la+ 2>, (5)

is the Wigner-Weyl transform of the operator O,”"* providing a
map between operators in Hilbert space and classical-like functions
in phase space for the ring-polymer variables (q, p) (see Fig. 1). For
simplicity, we will often suppress the (q, p) dependence. We remark
that for operators that depend only on position,

[0@]y(ap) = 130 ©
j=1

so the generalized Wigner-Weyl transform reduces to a ring-
polymer average.” Similar considerations hold for operators that
only depend on momentum.

The (pseudo)-probability distribution of the ring-polymer
phase-space configuration (q,p), introduced by Eq. (3), is given
by the generalized Boltzmann-Wigner transform [eiﬁH ]ﬁ(q,p)

defined, as follows:'"*"**

—pH — dA il éI’IAI Ay
[e ]ﬁ(q’P) = f Ee (‘Il—l - T

g+ ) )
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with 8 = /N and normalization constant given by

ZNEW[ qfdp

By evaluating the matrix elements (yle ! |x) with the symmet-
ric Trotter approximation in the N — oo limit, an explicit form for

(q>p) ®)

[e“m ]N can be obtained (see Sec. I C of the supplementary material)

as follows:
A N/2
I:e_ﬁH],_ — /dA es(‘IPA) )
N ZﬂﬁNh
with
i Ay
S(qp.A) = =5 piA S St
(gp, ) h;}’l T hzZ(ql qi-1 + — )

_ ﬁ%i[v(ql+%)+v(qﬁﬁ)]. (10)

I=1

Note that Eq. (9) represents a ring-polymer comprised of N
replicas of the system corresponding to the “beads” with coordinates
q, distributed around an open ring-polymer with N openings of fixed

width Aj*® (see Fig. 1). Note that upon integration over momenta p,
the generalized Boltzmann-Wigner transform reduces to
do [ PH] = [ 27 @
Janle ]N—(TN) e (an
with
m XN , X
W;(%_%—l) + ;V(%)» (12)

which corresponds to the standard path-integral expression involv-
ing a close ring-polymer of beads connected with harmonic springs
between nearest-neighbors.’

The significance of the phase-space average introduced by
Eq. (3) is that it provides an exact representation of quantum
mechanical ensemble averages. In fact, evaluating the integrals over
the Wigner transform, we obtain (see Secs. I A and I B of the
supplementary material)

(6) = (0), 1)

[O]W(CINJ?N)

0], (a5,

[O]W(‘Is: P3)
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Therefore, Eq. (3) does not involve any kind of approximation,
being equivalent to Eq. (1). It is just a generalization of the stan-
dard Wigner-Weyl phase-space representation”’ " to ring-polymer
variables, allowing for numerically exact evaluations of quantum
ensemble averages as canonical phase-space averages of an extended
ring-polymer system.”’

B. Quantum Liouvillian

Dynamical extensions of Egs. (3) and (4) can be obtained for
time-dependent operators, O(t) = PO M n fact, the ring-
polymer phase-space representation introduced in Sec. IT A remains
valid when introducing the substitution O — O(t) in Eq. (4) giv-
ing the time-dependent phase-space distribution [O(t)n(q, p). We
remark that the Hamiltonian involved in the time evolution operator
e*1'/" could differ from the one governing the statistics e *’ , allow-
ing the formalism introduced in this work to be applied to systems
out of equilibrium.

The phase-space time evolution of [O(t)] N(q,p) is obtained
by extending the standard Liouvillian formalism™" to ring-
polymer coordinates, a formulation that is also convenient for the
development of semiclassical approximations.

We introduce the Janus ring-polymer operator,”’

N —— >
K=Y =~ = - 22 , (14)

where the arrows indicate the direction in which the derivative is
applied. Note that A is defined as minus the Poisson bracket oper-
ator for the phase-space variables of the ring-polymer. We also
introduce the sine and cosine coupling operators 5 and ¢, which
are defined as follows:

PN 2N\ . (h
S z(?)sm(a([_\)zq), (15)
and
P he
¢ Ecos(EAN). (16)

. . . <> <>
Appendix A summarizes some useful properties of s and ¢.
Finally, we introduce the ring-polymer quantum Liouvillian

FIG. 1. (Left) Schematic representation
of the generalized Boltzmann-Wigner
transform [e‘ﬂﬂ]ﬁ(q,p) [Eq. (7).
Blue segments represent imaginary
time propagation (y\e‘ﬂN’:’ [x). (Right)
Schematic representation of the gen-
eralized Wigner transform [O]y(q,p)
[Eq. (4)]. The initial ring-polymer dis-
tribution [O]n(q,p), associated with
observable O, consists of an average
over single-bead terms.

[O]W(‘hipl)

[0]W(f12'1’z)
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[0],(a.p)

[O]W(QvaN)

[0]W(q1, p1) eth

A ) "
[0],,Ca;p) [0],, (a2, p2)
elst
[0],,(as.p3)
OperatOr,lf 21,28
N - -
=|H _ p 9 2 | )| |
Ly=[H]S ; [m dqj )&,V(%)Sm(2 oo .

which represents a generalization of the Moyal expansion of the
quantum Liouvillian™*® to ring-polymer phase-space variables. We
remark that the potential energy V in Eq. (17) describes the dynam-
ics of the system (not necessarily its statistics). Note that the
quantum Liouvillian can be expressed in powers of #> by Taylor
expansion of the sine function, and that for harmonic potentials,
for which higher-order derivatives vanish, the classical Liouvillian
is recovered.

The Liouvillian formulation allows for a compact notation and
interpretation of time-evolved observables in ring-polymer phase
space (see Sec. I E in supplementary material), namely”**

[0()](ap) =€ [0] (ap) = Ze“[ i (a@p)-  (18)

In this sense, one can evaluate time-dependent averages, as follows:

(th)Nf dq/ dp |¢

(00), = |.(@.p) ¢*'[0] (a.p).

(19)

[eilsH ]ﬁ’
Eq. (19) reduces to the time-independent ensemble average, intro-
duced by Eq. (3). We note that Eq. (19) is formally exact, allowing
for numerically exact quantum dynamics simulations based on Ly
as averages over the contributions of ring-polymer “trajectories” in
phase space. In effect, the initial ring-polymer phase-space distri-
bution [O]x(q, p), which involves the sum over single-beads terms
[Eq. (4)], is evolved by the propagator e“~', according to the exact
quantum Liouvillian L'N describing the motion of N independent
replicas of the system 337 (Fi ig. 2). When the potential energy is

For systems at equilibrium, for which e%”t[e’/sg ]7 =

[O(t)]w(ql,m)

[O(t)]w(qz' p2)

[O(t)]w(qz,.m)

ARTICLE scitation.org/journalljcp

>[0(0)],(a.p)

FIG. 2. Schematic representation of
the time evolution of ring-polymer
phase-space distribution [O(t)]n(q, p)
[Eq. (18)]. The initial ring-polymer
distribution  [O]n(q,p)  associated
with observable O, which consists of
single-bead terms, is evolved in time
by the exact quantum Liouvillian Ly
[Eq. (17)], which evolves individual
replicas of the system.

harmonic, the resulting propagation is analogous to classical propa-
gation, albeit in an extended phase space. However, when the poten-
tial is anharmonic, the quantum Liouvillian includes higher-order
derivatives beyond the classical terms so,

e [0]n(a,p) # [Olw(e™ g, e™'p), 20)
and the amplitude of the Wigner transform at phase-space point
(q(#),p(t)) [with q(#) and p(t) obtained by classical evolution of
q(0) and p(0)] no longer corresponds to the time-evolved Wigner
transform [O(t)]n(q, p). Only for potentials with vanishing higher-
order derivatives (i.e., harmonic potential or free particle), Eq. (20)
becomes an equality and the ring-polymer follows a classical tra-
jectory in phase space. Nevertheless, as shown in Sec. 111, thinking
in terms of quantum trajectories provides a useful interpretation of
multipoint time correlation functions.

lll. MULTI-TIME CORRELATION FUNCTIONS

Section II introduced a path-integral phase-space represen-
tation of quantum mechanics that allows for the calculation of
ensemble or one-time-dependent averages. However, many dynami-
cal properties of condensed phase systems are encoded in multi-time
correlation functions. In this section, we combine the ring-polymer
statistics [e P |5 with the time evolution described by the ring-
polymer propagator et [O] N to derive and introduce an exact ring-
polymer phase-space representation of multipoint time correlation
functions.

A. Two-point time correlation functions

We introduce the “sine” and “cosine” two-point correlation
functions in ring-polymer phase space as follows:

(B(t) A1), = 5 h)N/ fdP ﬁH
B S} e

and
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(BeZAw), = o [da [ i [],
v C[A()] ) 22)

where [O(t)]n = ¢“¥'[O]n represents a quantum ring-polymer tra-
jectory [Eq. (18)] and we understand that in the previous and
subsequent equations, the sine/cosine operators couple pairs of
time-evolved observables. The resulting sine and cosine correlation
functions given by Egs. (21) and (22) have an intuitive interpreta-
tion in terms of phase-space trajectories of the ring-polymer (Fig. 3):
The two initial ring-polymer phase-space functions [A]yx and [B]w
are evolved in time by the propagator ¢“~' and coupled by a sine or
cosine couplings operator.

The significance of the sine/cosine ring-polymer correlation
functions introduced by Eqs. (21) and (22) is that they have a one-
to-one correspondence to correlation functions defined in Hilbert
space. Indeed, in Appendix B, we prove that the sine correlation
function satisfies

(B(1) T A(t)),, = (%)([B(tl),m)]), (23)

with [O1,00] = 0109 — Oy, denoting a commutator. On the other
hand, in Appendix B, we show that the cosine correlation function
is related to the Kubo transformed (KT) time correlation function
given by

anolo(é(tl)‘?A(to))N = (B(t1) @ A(to)), (24)
where we define the KT correlation function of two arbitrary
operators as*®

_ b )
(ol.oz):%fo 1 (01(=i1)0s). (25)

LnTy

R N
Bl @p) | E—\ )], @p)

to t

FIG. 3. Schematic representation of the ring-polymer phase-space two-point time
correlation functions. The initial ring-polymer distributions [ O]y (q, p) associated
with observables A and B [Eq. (4)] evolve in time by the exact quantum Liouvillian
Ly (see Fig. 2). The sine/cosine coupling operators Sic [Egs. (15) and (16)]

couple observables at different times, giving rise to different quantum correlation
functions [Egs. (21) and (22)].

ARTICLE scitation.org/journalljcp

(See Appendix C for properties of the KT.) In other words, in the
limit N — oo Egs. (21) and (22) give an exact path-integral phase-
space representation of time correlation functions that, according to
Egs. (23) and (24), involve a commutation relation or a Kubo inte-
gral between two observables A(ty) and B(, ). This is the first main
result of this paper.**

The relevance of the sine and cosine two-point correla-
tion functions is clear since the commutator correlation function
[Eq. (23)] and the Kubo transform correlation function [Eq. (74 ]
are related through the quantum fluctuation-dissipation relation,"”

(3 B aw) =g 2 (e sd). @9

and are central to linear response theory (Appendix D). Therefore,
the sine and cosine functions allow for ring-polymer calculations
of transport coefﬁc1ents, reaction rates, and simulations of (linear)
spectroscopy.”

B. Three-point time correlation functions

The path-integral phase-space formulation can be extended
to calculations of multi-time correlation functions. Here, we con-
sider the “sine-sine” three-point correlation function, defined in
ring-polymer phase space, as follows:

({C(fZ)?B(fl)}?A(to))

(2nh)N f qf dp [ ]
X {{[C(tz)]N s [B(tl)]N} s [A(l’o)]N}. (27)

Figure 4 shows a schematic representation of this correlation corre-
sponding to the evolution of three observables A, B, and C coupled
by sine coupling operators. Note that since in our notation sine and
cosine operators couple pairs of functions, for the case of correlation
functions involving more than two operators one needs to specify in
which order the operators are coupled [see Eq. (A3)].

The significance of Eq. (27) is that it has a correspondence
with a three-point correlation in Hilbert space. Specifically, in
Appendix B, we show that

({C() TB(1)} T (), ( )2<[[C(t2) B(t)],A(1)]), (28)

so, the “sine-sine” correlation function is an exact path-integral
representation of a correlation function involving a double commu-
tation relation between observables A(t), E(tl), and C( t2). To the
best of our knowledge, Eq. (28) provides a novel representation of a
multi-time correlation function and represents the first main result
of this section.

Remarkably, similar considerations apply to the “sine-cosine”
and “cosine-cosine” correlation functions,

({C()FB(1)} CA(t))

2 h)Nf qfdl’ M

X{{[C(tz)]Ns[B(tl ]N} [ (to)]N}’ (29)
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[Atto)], (a.p) 4—\?/1?
A efnT oo
(Bt (@p) | ——\ [B(t)], (a.p) ‘\s/i

eLNTZ

[Ct)],(a.P)

| ] ]
I T T

to ty iy

FIG. 4. Schematic representation of the ring-polymer phase-space three-point
time correlation functions [Egs. (27), (29) and (30)]. The ring-polymer distributions
[O]w(q.p) associated with observables A, B, and C [Eq. (4)] evolve in time by
the exact quantum Liouvillian Ly (Fig. 2). The sine/cosine coupling operators SIc
[Egs. (15) and (16)] couple observables at different times, giving rise to different
quantum correlation functions [Egs. (27), (29) and (30)].

and

(C(tz)‘E’B(tl)‘E’A(to))

(2nh) dqf ap [
x{[C(8)], € [B(t)], C[A(10)], }- (30)

(We remark that for ring-polymer correlation functions involving
only the cosine coupling operator, the order in which the oper-
ators are coupled is irrelevant [see Eq. (A3c)].) Specifically, in
Appendix B, we prove that the “cosine-cosine” correlation func-
tion provides a ring-polymer phase-space representation to the
symmetrized Double Kubo transformed (DKT) time-correlation
function,

lim (C(tz) ¢B(h) cA(to)>

N—oo

= (C(12) e B(tr) ¢ A(10)),  (31)

where we define the symmetrized DKT time correlation function
21.22.27.39

as

N B B A N R
(G100,00 _EIZfo d/\ofo A (T30 (~ihde) O (~ifk1)Os),

(32)

with T/; an imaginary time-ordering operator that orders the prod-
uct of operators so their imaginary time arguments increase from
right to left and ensure that there is no backward imaginary time
propagation inside the integral [Eq. (C5)].°! (See Appendix C for
properties of the DKT.) On the other hand, the “sine-cosine” cor-
relation function provides a phase-space representation of a KT

ARTICLE scitation.org/journalljcp

quantum correlation function involving a commutator relation,
namely,

lim ({C(0) TB()}ZA®W)), (%)([c*m),g(tl)] o A(to)).
(33)

The ring-polymer phase-space correlation functions defined by
Egs. (27) and (29) and (30), and their connection to the exact quan-
tum correlation functions [Egs. (28), (31) and (33)] represent the
second main result of this paper.

It is interesting that all the Hilbert space correlation functions
defined by Egs. (28), (31) and (33) naturally appear in the context of
second-order response theory (see Appendix D). As such, the three-
point sine/cosine correlation functions are relevant for ring-polymer
calculations of second-order spectroscopy.

C. General time correlation functions

The previous sections and Appendix B showed that the path-
integral phase-space representation can be generalized to calcu-
lations of two-point and three-point time correlation functions.
Generalizations to multipoint time correlation functions are also
possible, although the number of combinations of sine/cosine cou-
plings between time-evolved observables quickly grows with the
order of the correlation and the derivation of the expressions
become tedious. Here, we introduce a convenient mapping between
the expressions of correlations in ring-polymer phase space and
correlations in Hilbert space.

The relation introduced by Eq. (23) suggests that the sine
coupling operator is related to the commutator as follows:

[0, 5[0a],, (7 )[61.0:], (34)

while Eq. (24) connects the cosine coupling operator with the Kubo
integral, as follows:

A1 T A B A A oA
[OI]N Cc [OZ]N R %‘/0 dir Ol(—ih/\)OZ = O] L] Oz. (35)

With the mapping introduced by Egs. (34) and (35), the connec-
tion between canonical averages in ring-polymer phase space and
traces in Hilbert space [Eqgs. (23) and (24)] immediately follow.
More interestingly, these associations still hold for the case of three-
point correlation functions [see Eqgs. (28), (31) and (33)] as long as
one respects the ordering of operations of the sine coupling [e.g.,
Eq. (28)] and adopt the convention that correlation functions involv-
ing multiple Kubo integrals should be symmetrized in imaginary
time [e.g., Eq. (31)]. With those considerations, Eqgs. (34) and (35)
provide a mapping between operators in Hilbert space and their
corresponding ring-polymer representations, allowing to extend
the path-integral phase-space formulation for general multipoint
correlation functions.

A general n-point ring-polymer phase-space correlation func-
tion can be defined as follows:
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(0n(t)Ti-+- 201 ()T O (1))

(Znh)N/ qfdp ﬁH N

< {[0n(t)] Tr - B [0n(t)] T [Oo(t0)] }, (36)

where each (]_j), j=1,...,n, represents either a sine coupling oper-
ator (5) or a cosine coupling operator (¢). Note that since sine
and cosine operators couple pairs of functions, one needs to spec-
ify a particular associative rule in the previous equation by defining
which pairs of observables are coupled to each other and in which
order (see below for examples). Note that different multipoint time
correlation functions can be generated by changing the order of the
correlation (n), the type of coupling between observables (5/C),
and the particular associative rule. For n = 1 and n = 2, one recov-
ers the correlations defined in Secs. I1I A and III B, respectively. We
remark that Eq. (36) represents the most general exact ring-polymer
phase-space representation of a time correlation function and, when
combined with the associations introduced by Egs. (34) and (35)
mapping it to Hilbert space correlations, represents the main result
of this paper.

As an example of how to apply the present theory, let us con-
sider the n = 3 case and focus on the correlation involving three sine
coupling operators. Using the mapping rule of Eq. (34), we postulate
the equality

({({D(1) (1) TB() 2 A)),,
- (3) (@) ce) el dw]) 67

between ring-polymer and Hilbert space correlation functions. By
extending the derivation in Appendix B, it is not difficult to show
that the previous equality holds, proving that the ring-polymer cor-
relation defined by the left-hand side of the expression above is
an exact path-integral phase-space representation of the correlation
defined by the right-hand side.

As a second example, consider the four-point correlations
involving two sine and one cosine couplings. Using the mapping
rules of Egs. (34) and (35), we postulate the equivalences

({({D(6)T (1)} TB(1)} CA(t0)),
- (D) Wb el eaw) o9
and
({D(1)F () 2 {B(1) TA(B)})
- (1) (. cole @) @)

between ring-polymer functions and KT correlation functions. Note
that the correlations presented above exemplify two different associ-
ation rules between observables giving rise to different Hilbert space
functions (i.e., a KT involving one double commutator vs two sin-
gle commutators). A straightforward extension of the derivation in
Appendix B shows that the previous equalities hold in the N — oo
limit, validating the mapping rules Egs. (34) and (35). Similar
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considerations follow for other types of couplings (although the
math becomes cumbersome).

Incidentally, note that the four-point correlations functions
defined above naturally appear in the context of third-order
response theory (see Appendix D). As such, the ring-polymer
phase-space representation of multipoint time correlation functions
provides an exact path-integral formulation of response theory.

IV. DISCUSSION

The ring-polymer phase-space representation of general mul-
tipoint time correlation functions provided by Eq. (36) [and for
two- and three-point functions, in particular, by Egs. (21), (22),
(27), (29) and (30)] represent the main result of this paper. The
present formulation is exact and, in combination with the mapping
rules introduced by Egs. (34) and (35), provides a route to evaluate
Hilbert space correlation functions in terms of ring-polymer phase-
space averages that, to the best of our knowledge, represent a novel
result. In this section, we discuss several interesting properties of the
phase-space formulation.

A. Invariance to imaginary time translation

The ring-polymer phase-space correlation functions are sym-
metric with respect to imaginary time translation, ie., they
are invariant to cyclic permutations of coordinates of the path

integral.'”** In fact, note that both the Boltzmann factor [eiﬂﬁ Ix
and Wigner-Weyl functions [O]w, as well as the Liouvillian Ly and

Janus operator (/_\) N»are invariant to the cyclic permutation q; = qp4q-
As such, the ring-polymer phase space provides a representation that
emphasizes this symmetry for different multipoint correlation func-
tions. Note that the invariance to translation in imaginary time is
a well-known symmetry of the standard Kubo transformed corre-
lation functions'””" and has been recently used for the derivation
of quantum Boltzmann-preserving semiclassical approximations for
the calculation of KT and DKT correlation functions.'”*"*>****** To
the best of our knowledge, this is the first time that a general expres-
sion that emphasizes this symmetry for general multipoint TCF has
been presented.

B. Symmetry

The ring-polymer phase-space representation highlights the
symmetry and the similarity between the different time correlation
functions in ring-polymer phase space (Figs. 3 and 4). In particular,
notice that each commutation relation in Hilbert space maps into a
sine coupling operator (s’ in ring-polymer phase space, whereas
the presence of a Kubo integral contributes with a cosine coupling
operator (). In this sense, the different time correlation functions
in ring-polymer space only differ in the type of coupling between
observables. Note that if not for the sine and cosine coupling terms,
the time evolution of the correlation functions would involve the
action of the exact Liouvillian operator Ly on the classical-like
observables [O]y at different times independently (see Figs. 3 and
4). The effect of the sine/cosine terms is to couple and correlate the
observables at different times with one another, incorporating effects
due to interference and noncommutative in the correlation function,
giving rise to different quantum correlation functions.
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C. Interference of quantum trajectories

The structure of the ring-polymer phase-space functions
[Eq. (36)] also provides an interesting interpretation of the quan-
tum correlations in terms of “interfering trajectories” albeit in the
extended ring-polymer phase space. In effect, note that since

<. Z th(XN)ZnJrl, (40)
n=0

TS (KNP (41)
n=0

the ring-polymer phase-space functions can be expressed in terms
of an infinite series in powers of #1 of correlations involving terms
of the form [Ol(tl)]N((I_\)N)"[Oo(to)]N (with allowed values of n
according to the sine/cosine parity). Using the definition of the ring-
polymer Janus operator [Eq. (14)], each term in the expansion can
be expressed as a hierarchy of different order stability matrices of
the form

9"[0(t) ]n
8361'(0)636]'(0) N 8Xk(0) ’

M (1) = (42)

with x; = (g;,p;) denoting a ring-polymer phase-space point. Note
that in classical mechanics, the stability matrix describes the sensi-
tivity of a trajectory at time ¢ to changes in the initial conditions
and naturally appears in the context of classical response theory
and classical chaos."’ " Equations (36) and (42) naturally general-
ized this concept to the ring-polymer phase space. We remark that
since the ring-polymer observables are propagated according to the
exact Liouvillian operator and the hierarchy of stability matrices
MIE") ,(t) contribute to infinite orders in % in the sine/cosine expan-
sions, Eq. (36) is quantum-mechanically exact. This interpretation
of the ring-polymer formulation provides a rigorous framework for
the development of semiclassical approximations.

D. A word on notation

Due to the properties of the sine and cosine operators, there
are different but equivalent forms of expressing time correla-
tion functions in ring-polymer phase space. Depending on the
problem at hand, some notations could be more advantageous
than others, allowing to simplify the problem. For example, one
could use relations Eqs. (A2a) and (A2b) to express the cor-
relations in terms of [e _ﬁH] C[A(to)]n or [ePH]S[A(t)]n
factors instead. Note that if [A(t)]n is only first order in posi-
tion or momenta, only the first term in the cosine/sine expansion
will survive and [e P 5 C[A(t)]n = [e " ]x[A(to)]n> Whereas
[e ﬁH] S[A(to)]n o< [efﬂH]NXN[A(to)]N. We remark that pre-
viously derived expressions for the KT and DKT by others'** and
us’! are expressed in these alternative forms (see Sec. III of the
supplementary material). The notation used in this paper, however,
provides the most general form of correlation functions, allowing
to apply the theory to general (nonlinear) operators and nonequilib-
rium systems and highlighting the similarities and symmetries of the
different correlation functions.
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E. Emergence of classical limit

Before concluding, it is instructive to analyze the emergence
of the classical limit from the ring-polymer phase-space represen-
tation. Classical analogs of the general correlation functions defined
by Eq. (36) can be obtained by reducing the phase space to one bead
(i.e., setting N = 1) and noting that

lim ¢ =1, (43a)
h—0
lim s = A, (43b)
h—0
p O 0V(q 0
lim £ = = o= — =222 =, 4
h1_r)r(1)£ m 0q 0q Op (43¢)

along with the fact that the quantum Boltzmann distribution
[Eq. (7)] can be replaced with the classical distribution in the # — 0
limit. For example, in the case of two-point correlations, the sine and
cosine TCFs reduce to

(B(tl) N A(t()))

<B(t1)AA(t0)) (44a)

(B(t) cA(to)) (B(tl)A(to))d, (44b)

whereas (-), represents an average over the classical Boltzmann

distribution e P, the observables O(t) are now classical dynami-

<>
cal variables that evolve following classical trajectories, and O; A O,
= —{04,0,}pp represents the negative of the classical Poisson
bracket. In the case of three-point correlations, one obtains

({C(L)SB(1)} T An) ) ({C(tz)AB(tl)}XA(to))d, (45a)

({C(t)¥B(1)} CA(f0)> ({C(tz)AB(tl)}A(to))d» (45b)

(C()CB(n) cA(to)) (C(tz)B(tl)A(to)) (45¢)
The classical expressions presented in Eqs. (44) and (45), and the
more general expressions that can be derived from Eq. (36) in the
classical limit, correspond to TCF that naturally appears in the con-
text of classical response theory and classical chaos theory."”** As
such, the exact ring-polymer phase-space representation presented
in Sec. I1I establishes a rigorous and attractive framework that pro-
vides a bridge between the quantum and classical limits, allowing
for the development of novel theoretical/computational tools for the
incorporation of nuclear quantum effects in multi-time correlation
functions.

V. CONCLUDING REMARKS

In this work, we have presented a general and exact quan-
tum dynamical formulation of multi-time correlation functions in
terms of classical-like canonical averages over an extended ring-
polymer phase space [Eq. (36)]. The ring-polymer representation
provides a general formalism that exploits the symmetry of path
integrals with respect to permutations in imaginary time, express-
ing correlations as products of imaginary-time-translation-invariant
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phase-space functions coupled through Poisson bracket operators.
Moreover, the formulation provides a natural interpretation of
quantum dynamics in terms of “interfering trajectories,” albeit in an
extended phase space, and recovers the classical limit of multi-time
correlation functions when 7 — 0.

The ring-polymer phase-space formulation of multipoint time
correlation functions presented in this work is formally exact. How-
ever, the full quantum-mechanical evaluation of the quantum cor-
relation functions is impractical but for the simplest systems. For
example, the time evolution of ring-polymer phase-space distribu-
tions [Eq. (18)] involves the exact Liouvillian and is tantamount to
solving the Schrédinger equation. On the other hand, the sine/cosine

coupling operators in this formulation involve the evaluation of X N
interactions to (in principle) infinite order, although for operators
that can be expressed as polynomials in ring-polymer phase-space
coordinates, the expansion is exactly truncated at some order. The
application and development of semiclassical approximations are,
therefore, needed to effectively evaluate multi-time correlation func-
tions. The present ring-polymer formulation provides a rigorous
and attractive framework for the development of novel theoreti-
cal/computational tools for studying quantum dynamics effects in
large/complex molecular systems.

SUPPLEMENTARY MATERIAL

The supplementary material includes details of the derivation
of the imaginary time path-integral phase-space formulation.
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APPENDIX A: PROPERTIES OF SINE AND COSINE
COUPLING OPERATOR

It is worth highlighting some properties of the sine and cosine
coupling operators (see Sec. I G of the supplementary material).
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The sine and cosine coupling operators are anti-self-adjoint and
self-adjoint, respectively, i.e.,

A

[0, %102 = -[6:] ¥[Ou],

(0] ¢[02], = [0:] €O
Moreover, considering the integral over the extended ring-

polymer phase space, it is straightforward to verify that the following
properties hold:

(Ala)

(A1b)

(A2b)

The sine and cosine coupling operators applied to multiple
generalized Wigner transforms satisfied the following associative
rules:

([61]%10:]) % [0:] = [01] ¥ ([0:], 50:]

([01]e[0:]y) € [0a], = [0u] E([0:], E[0s] )-
Note that Eq. (A3a) represents the Jacobi identity in ring-polymer
phase space.

(A3¢)

APPENDIX B: DERIVATION OF PATH-INTEGRAL
PHASE-SPACE REPRESENTATION OF CORRELATION
FUNCTIONS

In this appendix, we provide the derivation of the main results
of the paper, showing the connection and equivalence between
the ring-polymer phase space and Hilbert space representation of
time-correlation functions. A detailed step-by-step derivation can be
found in Sec. IV of the supplementary material.

1. Auxiliary integrals

To demonstrate the connection between correlation functions
in ring-polymer phase space and Hilbert space, it is convenient to
introduce some auxiliary integrals that will simplify the algebra. To
keep the presentation clear, we will use the shorthand notation

[O]WJ = [O]W(%>pj) (B1)

to denote the dependence on the jth coordinates of the (one-

dimensional) Wigner-Weyl transform [Eq. (5)].”* Additionally,
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we will employ the operator identity
a 1 i A; A;
- . . IV P | .0
s | [ s [ oy |%+2><q’ 2|
We introduce the “type-1” integral defined as
N /3131 J
L= [da[a (0], B3
where O represents an arbitrary operator. Note that the integral
defined above involves a ring-polymer phase-space average of a

sum of one-dimensional Wigner transforms evaluated at particu-
lar phase-space points (g s pj). However, recognizing the invariance

(B2)

\

of the Boltzmann operator [e 7" ]x to cyclic permutations of the
variables (i.e., invariance to the change g, —» ¢q;, ), the sum can be
simplified to obtain an equivalent expression for I as follows:

H A
L = (ZM) dq f dp [] 0], (B4)
It is straightforward to show that type-1 integrals of the form
Eq. (B3) are connected to averages in Hilbert space. Specifi-
cally, introducing the definitions of the Wigner-Weyl transform
and performing the integration over the ring-polymer phase-space
coordinates (q, p) with the help of identity Eq. (B2), it follows that

L=z" Tr[eiﬁg O] (B5)
In other words, type-1 integrals correspond to averages in Hilbert

space.
Similarly, we introduce the “type-2” integral defined as

_ ZI?I1 —pH 1 X R
= e J S e [ 2 (O Pl | @0
j*k

where O and P represent arbitrary operators. Note that the integral
defined above involves a ring-polymer phase-space average of a sum
of products of one-dimensional Wigner transforms evaluated at dif-
ferent phase-space points (q;, p;) and (g, py), with j # k. However,

recognizing the invariance of the Boltzmann operator [¢ # ]z to
cyclic permutations of the variables, the sum can be simplified to
obtain an equivalent expression for I», given by

b= (Zﬂh)Nf qfdp ] N( 1[(5]WJ)[J?’]W,N. (B7)

j=

It is straightforward to perform the integration in Eq. (B7) over
(q, p) with the help of identity Eq. (B2). In particular, the jth term in
the sum is given by

z! Tr[(e_ﬁ‘VH )jO(e_ﬁNH )N_]f’], (B8)
from which it follows that
_N71 -1 —BNH \N—=j A ¢ —BxH \j
L=%2z Tr[(e WGy p]. (BY)
=1
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We remark that type-2 integrals correspond to (discrete) Kubo
transform correlations between arbitrary operators O and P.*
Similarly, we introduce the “type-3” integral defined as

b e fda [ ap [ ] 85 (0], 700l |
(B10)

where O, P and Q represent arbitrary operators. Note that the inte-
gral defined above involves a ring-polymer phase-space average of a
sum of products of one-dimensional Wigner transforms evaluated at
different phase-space points (g, p; ), (4 px)> and (g, p;), with j # k,
j# 1, k+ 1. However, recognizing the invariance of the Boltzmann

operator [¢ P! ]i to cyclic permutations of the variables, the sum
can be simplified to obtain an equivalent expression for I3,

b= e J 4 e [ 1007 (@
]#k

(B11)

Employing the identity Eq. (B2), integration over the ring-polymer
phase-space coordinates can be performed. Two cases exist: For
j <k, each term in the sum reduces to

Z7 e P YO ) (e TN, (B12)
whereas for j > k,
z! Tr[(e‘ﬁNH Yb(ePH YO FH )¥a] (B13)
Combining the terms, it follows that
_N_U;l -1 —BNH \N=j Ar —BnH \j—k# —PvH \k A
I = VA Tr[(e )" 7O(e Y " P(e ) Q]
=1 k=1
RS BuH NNk by~ N k= A —H N A
+ 27 T (e PN b0 P Y]
=1 k=jt1
(B14)

We remark that type-3 integrals are related to (discrete) sym-
metrized Double Kubo transform correlations involving arbitrary
operators O, Pand Q.5

We remark that the procedure to define and evaluate “type-n”
integrals I, can be generalized to any order. However, as the order
of the integral increases, the number of terms and possible permuta-
tions to be considered in the sums quickly grow and the derivation
of the expressions becomes tedious. Nevertheless, clear trends can
be identified: A type-n integral consists of ordered sums involving
different imaginary time steps ¢ PH between all the possible permu-
tations of operators [e.g., Eqs. (B9) and (B14)]. Such type-n integrals
are discrete versions of symmetrized n-order Kubo transforms.
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2. Sine correlation functions

To obtain the Hilbert space representation of the sine corre-
lation functions [Eq. (21)], we used the definitions of generalized
Wigner transforms [Eq. (4)] and sine coupling operator [Eq. (15)]
to note that

[0:],5[0:],, - (é)%z [(01,0:]],,, (B15)

j=1

The sine coupling between two generalized Wigner transforms
is just the sum of one-dimensional Wigner-Weyl transform of
the commutator [0y, 0,] evaluated at a particular ring-polymer
coordinate (g;,p;).

Introducing the expression Eq. (B15) into Eq. (21), the sine
correlation can be expressed as

RPN Z )
050, = g [ 40 [ (7
(B16)

Besides an additional i/ factor, the sine correlation in
Eq. (B16) represents a type-1 integral [Eq. (B3)] with O — [Oy, O, ].
Therefore, it follows from Eq. (B5) that
A A i A oA
(%6, = (5 ){101.021) (B17)

which proves Eq. (22
finite N.

3). We remark that this equality holds for any

3. Cosine correlation functions

To obtain the Hilbert space representation of the cosine cor-
relation functions [Eq. (22)], we used the definitions of generalized
Wigner transforms [Eq. (4)] and cosine coupling operator [Eq. (16)]
to note that

A ol A ) AR R N .
[01]NC[OZ]N* N2 ZE[[ 1,Oz]+]wj + Y [01]wi[O2]ws ¢
= k=1
Jj*k

(B18)

with [O1,02]+ = 0,0, + 0,0, denoting an anti-commutator. The
cosine coupling between two generalized Wigner transforms is com-
posed of two terms: The first one is a sum of one-dimensional
Wigner-Weyl transforms of the anti-commutator [Oy, 0]+ evalu-
ated at a particular bead coordinate; the second term, on the other
hand, consists of sums of products between [Ol]w and [Oz]w
evaluated at different bead coordinates.
Introducing the expression Eq. (B18) into Eq. (22), the cosine
correlation can be decomposed into two terms as follows:
(0,20s), =

1
ETI + Tz, (B19)
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with

1

qfdp AN{;Zﬁj[ ]J},
oo ) 5 0o

Jok=1
jk

(2ﬂh)

(2nh)

(B20)

Besides an additional 1/N factor, the T} term in Eq. (B20) rep-
resents a type-1 integral [Eq. (B3)] with O — [0y, 0, ]+, whereas the
T, term represents a type-2 integral [Eq. (B6)] with O - O and
P > O,. Therefore, combining the terms, it follows from Eqs. (B5)
and (B9) that

Z—l N

(0120n), 72 T (e PV IO (P VO], (B21)

where the prime in 3" indicates that the first and last indices are
weighted by one-half. Recognizing that in the N — oo limit the sum
becomes a integral, it follows that

lim {0, 20s). = % [far(6:-m)6,) = (010 0), B22)
0
which proves Eq. (24).

4, Sine-sine correlation functions

To obtain the Hilbert space representation of the sine-sine cor-
relation functions [Eq. (27)], we used the definitions of generalized
Wigner transforms [Eq. (4)] and sine coupling operator [Eq. (15)]
and we note that

{[0],510:1,)%[0:], - (5) ;]{Jz [[[él,oz],os]]wJ}.
(B23)

The sine-sine coupling involves a sum of one-dimensional
Wigner-Weyl transforms of the double commutator operator
[[Ol, Oz], 03] evaluated at a particular bead coordinate.

Introducing the expression Eq. (B23) into Eq. (27), the
sine-sine correlation can be expressed as

({0:560:}505), - (zﬂh) dq [ dp [e

x{(;) ;]i[[[ol,Oﬂ,Oﬂ]w’j} (B24)

j=1

Besides an additional (i/h)® factor, the sine-sine correla-
tion in Eq. (B24) represents a type-1 integral [Eq. (B3)] with
0 - [[01,0,], 0s]. Therefore, it follows from Eq. (B5) that

((0:50:)704), = (1) (1101,6:0.61),

which proves Eq. (2
finite N.

(B25)

8). We remark that this equality holds for any
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5. Sine-cosine correlation functions

To obtain the Hilbert space representation of the sine-cosine
correlation functions [Eq. (29)], we note that

> 5 [[101.0:1,6:1.],,
j=1

{[6],3[0:1,}€10.], = (5 )3

J

-3 [10000],,

jok=1
ek

0]

. (B26)

The sine-cosine coupling is composed of two terms: the first
one is a sum of one-dimensional Wigner-Weyl transforms eval-
uated at a particular bead coordinate of the symmetrized opera-
tor [(51,02](33; the second term, on the other hand, consists of
sums of products between the commutator [[Oy, 02]]w and [O3]w
evaluated at different bead coordinates.

Introducing the expression Eq. (B26) into Eq. (29), the
sine-cosine correlation can be decomposed into two terms as

follows:
<{O]?Oz}?o ) =Ty + Ty, (B27)
with
_ pr
= Gy J 40 [ @ ]
iy1 X A A R
(sooion.)
[01], 20, $[03],, = 51 > 5 [[[01,0:1. 03] ],

Note that the cosine-cosine coupling presents a more complex
structure in which, depending on the sum term, different operators
are evaluated at particular (equal or different) bead coordinates.

Introducing the expression Eq. (B31) into Eq. (30), the
cosine-cosine correlation can be expressed as
A > A A 1 1 / "
<OIC02CO3>N:ZT1+E(T2+T2+T2)+T3’ (B32)

where each T; term corresponds to a particular sum in Eq. (B31).
Besides a 1/N? factor, all T; terms in Eq. (B32) correspond to

a type-1, type-2, or type-3 integral. For example, T corresponds to

a type-1 integral with 0 - [[Ol, Oz]+, (53]+, whereas the T, terms
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qfdp

(33 2 [101.0:T) 05D

2=

(2nh)

(B28)
k=1
Jj£k
Besides an additional i/(Nh) factor, the T; term in Eq. (B28)
represents a type-1 integral [Eq. (B3)] with O — [[Oy,0:],0s]4,
whereas the T, term represents a type-2 integral [Eq. (B6)]
with O - [Ol,éz] and P — Os;. Therefore, it follows from
Egs. (B5) and (B9) that
71 N

({0:50:}20s), :( ) z Tr
X I:(e_ﬁNH ) _][Ol, Oz](e_ﬁNH )jO3], (B29)
where the prime in 3" indicates that the first and last indices are

weighted by one-half. Recognizing that in the N — oo limit the sum
becomes a integral, it follows that

(D L ale 10,00

:(%)ﬂéhéﬂ.og,

lim <{Ol s Oz}eO3>

N—oo

(B30)
which proves Eq. (33).

6. Cosine-cosine correlation functions

To obtain the Hilbert space representation of the cosine-cosine
correlation functions [Eq. (30)], we note that

Ny . N o, o
+ Z E[[Ol’oz]*']w,j[oﬂw,l"' Z E[Ol]w,j[[()z,03]+]w)k
=1 k=1
]f*’ ]j¢k
N X X .
Z [O1]w,i[O2]wi[O3]w. (B31)
k=1
j;ikjstl,k;tl

(

correspond to type-2 1ntegrals The T5 term corresponds to a type-3
integral [Eq. (B10)] with 0O—-0,P—-0,and Q - 0s. Combmmg

all the T; terms together, it follows from Egs. (B5), (B9) and (B14)
that .
A > A <> A Z_1 N/ ]/ ,ﬁIﬁIN,‘A
(0:€0,C0s), = 5> > Tr[(e MY O
N 920 o
71

R DTN A 3
J=0 k=j
xTr[( ﬁAH)N kA 0, (e ﬁwH)k ]O( —BnH )]O]

(B33)
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where the prime in ¥’ indicates that the first and last indices
are weighted by one-half. Recognizing that the sums in the N — oo
limit become an iterative double integral, it follows that

A <> A <> A 1 B Ao . ) . ) R
(0:20,20s), = /?fo d)tofo 1 (01 (=ihike) Oa(—iik ) O3)
1 B B A . A . N
+ Efo dlofA dM1 (02 (=ihAy) 01 (~ihAe) Os)

[ S ) )
:éfo d)LO/O- Ay (T304 (=iko) O (~ifiA1) O3)

= <Ol ey Oa); (B34)
which proves Eq. (31). Note that we have introduced the imaginary
time-ordering operator T/; [Eq. (C5)] at the second equality to freely

S . s 2127
commute operators inside the integral sign.

APPENDIX C: KUBO TRANSFORM CORRELATION
FUNCTIONS

We define the Kubo transformed (KT) correlation function® of
two arbitrary operators as

A

A ' )
(ol.oz):%fo A\ (O (=iiN)Os), (1)

with O(=ih)) = ™M O 1t is straightforward to show that the
KT presents the following symmetries:

(01002> = (OZOO1>, (CZ)
(0100,)" = (0] « OF). (C3)

Note that the first symmetry allows expressing the KT in equivalent
notations (i.e., the order of the argument is irrelevant), whereas the
second symmetry indicates that the KT is a purely real correlation
function if both O; and O, are Hermitian operators.

We define the (symmetrized) Double Kubo transformed (DKT)
time correlation function as”>*”***°

A A A 1 [# B A A A
(Ol ° 02 o 03) = 7] dlof d/h (Tﬁol(—lh/lo)()z(—lhll)(%)
ﬂ 0 0 (C 4)
Here, T/; is an imaginary time-ordering operator that orders the
product of operators so their imaginary time arguments increase
from right to left, such that

0 3 O1(=ildo)Oa(=ikAy)  if Ao > A1,
1301 (=ihdo) Oz (—ikAy) = Al( ! O)AZ( ibh1) if Ao > A
O2(=ihA1)O1(=ihdo) if Ao <AL
(C5)

Note that f“ﬁ ensures that there is no backward imaginary time prop-
agation inside the integral.’! It is straightforward to show that the

DKT satisfies the following symmetries:”’
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(01062063)2(02061063), (Ce)
((51002003):(@2003001), (C7)
Ore0ne0) - [0l010)

Note that the first and second symmetries indicate that the DKT
is invariant to permutations and/or reordering of the arguments,
allowing for different but equivalent notations. Moreover, the third
symmetry implies that the DKT is a purely real correlation function
for Hermitian operators 01, 05, and Os.

Similar considerations allow to extend the definition and
notation to higher-order (fully symmetrized) Kubo transformed
correlation functions.”’

APPENDIX D: QUANTUM RESPONSE THEORY

Under the perturbative framework, the response of a system to
a weak external perturbation can be described to nth order in terms
of response functions defined as*’

RO (1) = (%)"Tr{on(tn)[on,l(tn,l),. _[01(1), [Oo(0),p]]1-
(D1)

It is worth remarking that depending on the nature of the operators
Oj and the order n of the perturbation, the response functions can
be related to transport coefficients, reaction rates, and several forms
of linear and nonlinear vibrational spectroscopy (i.e., infrared, sum-
frequency generation, two-dimensional Raman, two-dimensional
terahertz-Raman).'”’

1. First-order

To first order (n = 1), the response function is given by

RO - (£, A ©2)

Using the Kubo identity*®
irs . . B I
(5)[A,p] ) fo Ao A(=ifko), (D3)

where A(t) = %A(t) = é[H,A(t)] denotes a (real-)time derivative,
Eq. (D2) can be also recast as

RO (1) = ﬂd%(l@(n) o A(t)), (DY)

in terms of the time derivative of a Kubo transformed TCF.

Equations (D2) and (D4) represent two alternative but equiva-
lent ways of expressing the quantum first-order response functions
in terms of a correlation function involving a commutator of oper-
ators or the time derivative of a Kubo time correlation function.
We remark that these two correlations are mapped into the ring-
polymer phase-space representation as the “sine” and “cosine” TCF,
respectively.

2. Second-order

To second order (n = 2), the response function is given by
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RO® = () ([C@rbe)] ] o)

a time-correlation function involving a double commutator.

There are various alternative ways of recasting the second-order
response function in terms of Kubo-like correlation functions.*®
For example, using the Kubo identity [Eq. (D3)] Eq. (D5) can be
recast as

RO =4 ;) 5 A[C) B e Al). 00

in terms of the time derivative of a Kubo-transform correlation
function involving a commutator.
Alternatively, using the Double Kubo identity (see Appendix E)

(;)z[é [4.5] p/ d)to/ dly T A(=inko)B(~imdy)

—(;) fd)to[ B](~ito), (D7)

the response can be equivalently expressed as

RO (1) :,82;7(602) « (1)) « A1)
+;;() (C(t) o [B(1), A(t)]),  (DS)

where the second term is a time derivative of a KT correlation func-
tion [although different from the one presented in Eq. (D6)] and the
first term represents the time derivatives of a (symmetrized) Double
Kubo transformed time correlation function.

Equations (D5), (D6), and (D8) represent three equivalent ways
of expressing the quantum second-order response functions. We
remark that these correlations are mapped into the ring-polymer
phase-space representation as the “sine-sine,” “sine-cosine,” and
“cosine-cosine” TCF, respectively.

3. Third-order

To third-order (n = 3), the response function is given by

R (1) = (%)3([[[1’5(1‘3),C(tz)],B(tl)],A(to)]), (D9)

a time-correlation function involving a triple commutator.

There are three alternative ways of recasting the third-order
response function in terms of Kubo-like correlation functions. For
example, using the Kubo identity [Eq. (D3)], Eq. (D9) can be
recast as

RO (1) - ﬂ() A[D(1), ()] B(t)] s A1), (D10)

in terms of the time derivative of a Kubo-transform correlation
function involving a double commutator.

Alternatively, using the Double Kubo identity [Eq. (D7)] the
response can be equivalently expressed as

ARTICLE scitation.org/journalljcp

R(3)(t) _ [;Z(é) dt(jdtl ([D(t_?,),é(tl)] o B(t)) OA(l‘o)>

(1) (D). C)] o [Be) A 1)

where the first term involves time derivatives of a DKT involving
a commutator and the second term represents a KT correlation
function involving two commutators.

Finally, using the Triple Kubo identity (see Appendix E)

(5) 168 [4. I
f o fo P iy ToA(=ifo)B(=ii, ) C(=ifhy)
(s

A

c]( i)

Blc-m)

(D12)

o
) d/\o fo ﬂdAlfﬁ{A(—ihAO)[

B,
(—zmo)[ C](—ih/h) + C(=ihdo) [

( )p/ ao[[A B €] (-inko),

the response can be equivalently expressed as

RO (1) = 2 (D(1z) » C(1) ® B(11) » A(t0))

dto dt dt,
D(t3) o [C(t2), B(11)] » A(0))

(3 )i
(i

) (D(ts) o [C(22), ACt)] « B(1))
2f 1 d 3 n A
+/3(h)dt 7, (D(t) « [B(01). Ato) ] « E(82)
B(1) ) o[ (B A®]]). ©13)

Equations (D9)-(D11) and (D13) represent four equivalent
ways of expressing the quantum third-order response functions. We
remark that these correlations are mapped into the ring-polymer
phase-space representation as different combinations of “sine” and
“cosine” TCF [for example, a “sine-sine-sine” TCF for Eq. (D9) or a
“sine-sine-cosine” TCF for Eq. (D10)].

APPENDIX E: GENERALIZED KUBO IDENTITIES

In this appendix, we generalized the Kubo identity™ to higher
orders. For simplicity in the derivation, we will use the notation

Oy = O(=iih) = & O™, (ED)

to denote the dependence on imaginary time of an arbitrary
operator O.

1. (Single) Kubo identity
We introduce the operator F4 (1), defined as

A .
Ea() = /O o Ay, (E2)

where a superdot on an operator denotes a time derivative, so
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A= }:1[ B,4]. (E3)

The integral over imaginary time in Eq. (E2) can be performed
by noting that

A

1
&‘Q_‘

A= (5) (E4)
resulting in
Fa(h) = ()[A Al (ES)

), it thus follows that

£ap) = (5 )[4.e™] (E6)

Employing the definition of F4 [Eq. (E2)], one obtains the (Single)
Kubo Identity,*

From Eq. (E5

(el ke

2. Double Kubo identity
We introduce the operator Fap(1), defined as

A A A A A A
Eas(1) = fo dho [0 dy Tedy By, (E8)

where fﬁ is an imaginary time-ordering operator that orders the
product of operators so their imaginary time arguments increase
from right to left [Eq. (C5)].

Taking the derivative with respect to A in Eq. (E¢
that

8), it follows

dfas())

a = AA,\FB(/\) + é}tpA(/\), (E9)

where we have used the time-ordering property of Tﬁ to order the
product of operators and the definition of Fo(1) [Eq. (E2)].

Using the explicit expression Eq. (E5) for the operators Fo(1),
it is straightforward to show that

Fap(B) = f dA dFAB(A)
(O dA[AABA B - (7 )[Ea®B + Fa()A]
(E10)
Recognizing that
i dra. s N A n

and, therefore, that

B PN PR i \ra » A n N A N N
[) d/\[BAA}» +B;\A,\] = (é)[BﬂAﬂ—BA] :BﬁFA(ﬁ) +Fp(B)A,
(E12)
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where we have used Eq. (E5) to arrive at the last equality, Eq. (E10)
can be written as

Ea® = (1) [ a[ans] - (1) a8 B ) @13)
Recognizing that
e [Fa(B)B - BeEa(B)] = —(%)[B, [4, e I @

and using the definition of Fap [Eq. (
after reordering that

() plaes e [l [ 1ok,
. (é)eﬁH A "a[An]

This represents the Double Kubo Identity, a generalization of
the Single Kubo identity to double commutators.

E8)], it follows from Eq. (E13)

(E15)

3. Triple Kubo identity
We introduce the operator Fagc (1), defined as

A A A L.
Fasc(h) = fo dho fo \ fo d, Tsy, By, G, (E16)

where fﬁ the imaginary time-ordering operator.
Taking the derivative with respect to A in Eq. (E16), it follows
that

dﬁABc(A)

i (E17)

= AAFBc(A) + élﬁAc(A) + éAFAB(A),

where we have used the time-ordering property of Tﬁ to order the
product of operators and the definition of F,.y (1) [Eq. (E8)].

Using the explicit expression Eq. (E13) for the operators
Foor (L), it is straightforward to show that

Eapc B) = f do L:ABC (ho)

( )/ d)to/ i { A [Br, G ]

+ B,{OI:A)H,C,\ ]+ CAOI:A/\NBI\ ]}
( ) d/\o A,\O FB(A())C C,\DFB(/\())]

+ B/\o[ (Ao)c C,\DFA(A())]

+ G [Fa(Mo)B - By Fa (/\0)]}. (E18)

The expression in Eq. (E18) is expressed in terms of iterative
double integrals of the form

B Ao N oAy
f Ao f 0,0},
0 0

(E19)
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where, for example, O = A and O’ = [B, C]. Equivalent expressions can be obtained in terms of symmetrized double integrals of the form

B B A
f Ao f A\ T30y, 0}, (E20)
0 0

by noting that

B B A n oy B ) A ar B B AT A
f dho f A\ Ty0y, 0}, = / o / 0,0}, + f o / a0, 0,
0 0 0 0 0 o
B Ao N Ay B h A7 A B Ao N Ay B N
- f dho f 0,05 + f ah f A0 Oy, = f o f a0, 0 + f a0, Fo(Ay). (E21)
0 0 0 0 0 0 0

We have split the integral over A; and used the time-ordering property of the fﬂ to obtain the first equality. At the second equality, we have

interchanged the order of integration for the second term. The final equality follows from the definition of the operator Fo in Eq. (E2).
Applying Eq. (E21) to Eq. (E18) to express all iterative double integrals in terms of symmetrized double integrals, one obtains

Fanc(®) = (1) [ o [Tante{dn B 6] B[]+ [AnB ]} - (1) [ dafA[Bs00)C - G Fao)]
+ By, [Fa(ho)C = G Ba (o) ] + Cag[Ba (o) B = By, Ea (o) ] + [Bays G, [Ba(ho) + [Ans G |En(ho) + [Ans B, [Fc(ho) }
(D) [Fan [Fantyld e ] [ 6] s 6]y - (1) aof[[dw ] 6]
~ [Gubrdn, + Cubuds, + Gy [y + B Ay |G+ [y + G JB + [G1B, + €, )4)
N (é)z[m (B)BC + Es(BYAC + Ec(B)AB], (E22)

where we have used the explicit expression for Fo(Ao) [Eq. (E5)] to obtain the last equality.
The previous expression can be simplified by using the operator identities

i\ d A A A
( )dA [01,0},] = 01,04, + 0,04, (E23)
and
i\ d r A s~ A AL A A A oA A Al A
(é)TO [04,05,04,] = 01,03,05, + 01,03,03, + 0,0}, Ok, (E24)

resulting in

fasc®) = (1) [P [Farnts{dn [ 6]+ B 6]+ G s )} - (D) [ ao{[[n 8] 0]
- (3ol « (3 auinen (3 londle (7) g Lontud)
N (%)Z[FA(/a)BC + Ea(BYAC + Ec(B)AB]
() [ ffantifafb o] s e i) - () [ an{[nn] e}
N (%)2 [£4(B)BC - Bafa(B)C + CobisEa(B) — Caba(B)B] (E25)

where we have performed the integrals involving the ﬁ‘lv terms at the last equality.
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Recognizing that

[FA(/;)BA BgEa(B)C + CsBpFa(P) — CsFa(B)B]
- (R)le[n[ae]]

and using the definition of Fapc [Eq. (E16)], it follows from Eq. (E25)
after reordering that

N3 e T T
()T
e*ﬁfl fﬁdlofﬁdAlfﬁdAZ TﬁAAD
0 0 0
- ot )
+ éao [AM’CM] + (élo I:A)H,B)u]}
) (%)ze_pﬁ ‘/Oﬁd)to[[AAo’B/\O]’CAAO]'

Equation (E27) represents the Triple Kubo Identity, a generalization
of the Kubo identity to triple commutators.

(E26)

(E27)
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