Supporting Information ## D1-S169A substitution of photosystem II reveals a novel S2-state structure Ipsita Ghosh^{1,#}, Gourab Banerjee^{1,#}, Krystle Reiss¹, Christopher J. Kim², Richard J. Debus^{2,*}, Victor S. Batista^{1,*} and Gary W. Brudvig^{1,*} ^aDepartment of Chemistry, Yale University, New Haven, Connecticut 06520-8107, U.S.A. ^bDepartment of Biochemistry, University of California, Riverside, California 92521, U.S.A. *These authors contributed equally. ### **Supplemental Material** Supplementary Figures S1-S4 **Supplementary Note 1** **Figure S1.** S₂-minus-S₁ state EPR spectra of D1-S169A PSII core complexes. The black arrows indicate the peaks chosen for quantifying the S₂ state for studying the decay kinetics Figure S2. S_2 -minus- S_1 state EPR spectra of wild-type PSII core complexes illuminated at 200 K (t = 0 s) and then incubated at 261 K in the dark. The EPR spectra were collected at different time points, t = 60 s, 90 s and 120 s, as labelled. **Figure S3.** Effect of ammonia treatment on the steady-state O_2 -evolution activity of D1-S169A PSII (100% activity = 400 μ mol O_2 (mg Chl)⁻¹ h⁻¹). The effect of ammonia was studied in the presence of 100 mM NH₄Cl. The average and the standard error of 3 readings are reported. **Figure S4.** Effect of bicarbonate treatment on the steady-state O₂-evolution activity of D1-S169A PSII. The effect of bicarbonate was studied in the presence of 8.4 mM NaHCO₃. The average and the standard error of 3 readings are reported. ### **Supplementary Note 1** Assignment of the spin state for the S_2^X structure of S169A PSII Although the Wx-bound S_2 state seems to resemble the closed cubane structure of high-spin S_2 isomer, its electronic structure actually mirrors that of the open cubane, low-spin isomer. When attempting to assign the sextet (Mn1^{IV} Mn2^{IV} Mn3^{IV} Mn4^{III}) electronic state to the Wx-bound structure, the spin states are extremely unstable. Despite atom-specific charge/multiplicity assignments, the quartet on Mn2^{IV} crashes down to a doublet and the energy jumps up over 23 kcal/mol compared to the low-spin state. Conversely, the assignment of the doublet (Mn1^{III} $Mn2^{IV}$ $Mn3^{IV}$ $Mn4^{IV}$) electronic structure is readily stabilized and maintained throughout optimization. Theoretical energetics estimates for S_1 to S_2 transition We performed two pairs of single point calculations using the S_1 and S_2 (g=2) electronic states with both the WT S_2 , g=2 structure and the novel S169A S_2 ^x structure. (Here, superscripts indicate structure and subscripts indicate the electronic state.) The S_1 to S_2 transition in the WT S_2 , g=2 structure was 0.5 kcal/mol uphill, making the S_1 state slightly more energetically favorable. With the S169A S_2 ^x structure, the difference was 5.4 kcal/mol in favor of the S_2 state. Likely a significant rearrangement of atoms would be required for the S_1 electronic structure to be the more favorable state in the S169A mutant, whereas in WT, the optimized S_1 and S_2 , g=2 structures are nearly identical, with only a slight change in Mn-Mn distance. This indicates that this novel structure could hinder the decay of the S_2 state in the S169A mutant. #### References [1] Z. Li, R.L. Burnap, Mutations of basic arginine residue 334 in the D1 protein of photosystem II lead to unusual S_2 state properties in *Synechocystis* sp. PCC 6803, Photosynth. Res., 72 (2002) 191-201.