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A B S T R A C T

In photosystem II (PSII), photosynthetic water oxidation occurs at the O2-evolving complex (OEC), a tetra-
manganese-calcium cluster that cycles through light-induced redox intermediates (S0–S4) to produce oxygen
from two substrate water molecules. The OEC is surrounded by a hydrogen-bonded network of amino-acid
residues that plays a crucial role in proton transfer and substrate water delivery. Previously, we found that D1-
S169 was crucial for water oxidation and its mutation to alanine perturbed the hydrogen-bonding network. In
this study, we demonstrate that the activation energy for the S2 to S1 transition of D1-S169A PSII is higher than
wild-type PSII with a ~1.7–2.7× slower rate of charge recombination with QA

− relative to wild-type PSII.
Arrhenius analysis of the decay kinetics shows an Ea of 5.87 ± 1.15 kcal mol−1 for decay back to the S1 state,
compared to 0.80 ± 0.13 kcal mol−1 for the wild-type S2 state. In addition, we find that ammonia does not
affect the S2-state EPR signal, indicating that ammonia does not bind to the Mn cluster in D1-S169A PSII. Finally,
a QM/MM analysis indicates that an additional water molecule binds to the Mn4 ion in place of an oxo ligand O5
in the S2 state of D1-S169A PSII. The altered S2 state of D1-S169A PSII provides insight into the S2➔S3 state
transition.

1. Introduction

Green plants, cyanobacteria and algae photosynthesize to produce
oxygen which is essential for aerobic living organisms. Thus, elucida-
tion of the mechanistic details of water oxidation is critical for under-
standing one of the key biochemical process in nature, potentially
providing insights for design of artificial water-oxidation catalysts [1].
Photosynthetic water oxidation occurs in photosystem II (PSII), which
is a transmembrane protein complex comprised of core protein sub-
units, including D1, D2, CP43 and CP47 and other extrinsic subunits
[2–6]. Water oxidation is triggered by photo-induced charge separation
between P680, a quartet of chlorophyll molecules and two nearby
pheophytin molecules. Charge separation leads to oxidation of a tyr-
osine, D1-Y161 referred to as TyrZ, inducing the cyclic water-oxidation
process at the oxygen-evolving complex (OEC) of PSII (Fig. 1) [2–6].
The OEC contains a Mn4CaO5 cluster that undergoes single-step oxi-
dations forming the four S-states (S0–S3) (Fig. 1B) [7]. The OEC, TyrZ,
and P680 are referred together as the donor side of the PSII. Each S-state
turnover is accompanied by the sequential reduction of two quinone
electron acceptors, QA and QB. QB accepts two electrons and two

protons in response to two successive charge separations to form a
plastoquinol molecule that is exchanged with an oxidized quinone from
the plastoquinone pool [2–6]. This exchange is the rate-limiting step in
the water-oxidation cycle leading to O2 evolution during the S3 ➔ S0

transition [8].
The efficiency of the S-state cycle is also regulated by the choreo-

graphed removal of protons from PSII into the lumen to maintain the
proton motive force. The OEC is surrounded by a hydrogen-bonded
network of amino-acid residues, waters and inorganic ions that provide
conducive proton-transfer pathways. These hydrogen-bonded networks
also participate in substrate water delivery and removal of evolved
oxygen, and maintain the redox potential of the cluster [6]. Hence, to
understand the mechanism of water oxidation, it is important to deci-
pher the role of these amino-acid residues in the S-state transitions.

In recent years, the structures of the individual Sn states have been
established by static and serial femtosecond X-ray crystallography, ex-
tended X-ray absorption fine structure (EXAFS) spectroscopy, electron
paramagnetic resonance (EPR) studies and quantum mechanical studies
[13–17]. The S2 state is generated by continuous illumination of PSII in
the S1 state at 130–200 K or by a single turnover flash at room
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temperature. Multiple lines of evidence suggest the presence of spin
isomerism in the S2 state resulting in either a S = 5/2 structure, where
Mn1 is oxidized from Mn(III) to Mn(IV), or a S = 1/2 structure, where
Mn4 is oxidized to the +4-oxidation state. These isomeric forms are
characterized by a g = 4.1 EPR signal and a 18–22 multiline EPR signal
centered at g = 2, respectively [18]. Both of these signals are observed
in spinach PSII whereas in cyanobacterial PSII only the multiline signal
is observed except under special circumstances. The intensity of these
EPR signals are sensitive to illumination conditions and demonstrate
alterations in the presence of single-point mutations of amino-acid re-
sidues or small molecules [19]. The formation of the S3 state is asso-
ciated with the binding of a water molecule, proton removal and re-
arrangement of the hydrogen-bonding network [3,5,8,20]. X-ray free-
electron laser (XFEL) and EPR studies have provided detailed structural
information on the S3 state, where all four Mn are in the +4-oxidation
state [3]; however, the mechanism of its formation is highly debated.
One key issue is characterization of the water molecule that binds to the
cluster during the S2 to S3 transition, which is essential for a detailed
understanding of OeO bond formation during the S3 to S0 transition.

The abundance of water molecules surrounding the OEC creates
difficulty in tracking the substrate waters. Substrate exchange kinetic
studies on the Sr-substituted OEC and inorganic model complexes
provide information that has helped to identify the possible substrate
water molecules [21,22]. Further, the effects of small molecule water
analogues like ammonia and methanol have been studied to understand
substrate water binding [23–30]. Single point mutation of amino-acid
residues surrounding the OEC, including D1-D61A, D1-V185A, D1-
Q165A, D1-N87A, D2-K317A and D1-S169A, have been analyzed by
using flash-induced oxygen-evolution and FT-IR studies to reveal their
role in the binding of substrate waters, proton transport and OeO bond
formation [31–37].

In this study, we focus on the D1-S169A mutation of the PSII. Fig. 2
illustrates the hydrogen-bonding network surrounding the D1-S169
residue. Previously, we have shown that the D1-S169A mutation de-
creases the efficiency of the S-state cycle and slows oxygen formation.
Further, we observed an altered multiline EPR signal for the S2 state of

D1-S169A PSII. Based on FT-IR studies, we proposed that these per-
turbations may arise from a hindrance in either the proton-transfer
pathway or the substrate water-delivery pathway, or possbily both
[31]. Here, we studied the altered S2 state observed in D1-S169A PSII in
greater detail. EPR studies probing the energetic landscape of the S2➔S1

decay process provide insight into the activation energy and structure
of the OEC in D1-S169A PSII. We also studied the effect of ammonia on
the EPR spectra of the S2 state. These studies have been further sup-
ported by a 2500 atom QM/MM-optimized model of the S2 state that
provides insight into the functional importance of D1-S169 residue and
the mechanism of the S2➔ S3 transition.

2. Materials and methods

2.1. Isolation of PSII from wild type and mutant strains of Synechocystis
PCC 6803

The His-tagged wild-type and D1-S169A cells, were constructed as
described previously [31]. Single colonies were selected for their ability
to grow on solid media containing 5 μg/mL kanamycin monosulfate and
20 μg/mL gentamycin sulfate [38]. The cells were propagated in three
10 L carboys as described previously [35] and bubbled with 5% CO2 in
air. The PSII extraction and purification were performed under dim
light conditions at 4 °C using a Ni-NTA super flow affinity resin
(Qiagen, Valencia, CA) as described previously [39]. The purified PSII
core complexes were concentrated to ~1 mg of Chl/mL and stored in a
buffer solution containing 1.2 M betaine, 10% (v/v) glycerol, 50 mM
MES-NaOH (pH 6.0), 20 mM CaCl2, 5 mM MgCl2, 50 mM histidine,
1 mM EDTA, and 0.03% (w/v) n-dodecyl β-D-maltoside at −80 °C. The
oxygen evolution from the PSII core complexes isolated from wild-type
Synechocystis sp. PCC 6803 is generally ~2000 μmol O2 (mg of
Chl)−1 h−1.

2.2. Polarographic oxygen-evolution measurements

Flash-induced O2 yields of His-tagged wild-type and D1-S169A PSII

Fig. 1. A) The electron donor and acceptor sides of photosystem II. The donor side contains the Mn4CaO5 complex (OEC), where the Mn ions are marked in purple, O
in red and Ca in green. The other two components of the donor side include TyrZ (a tyrosine molecule in the D1 subunit of PSII, D1-Y161) and P680, which is a group
of chlorophyll a and pheophytin a molecules that function as the primary electron donor. The acceptor side contains a pheophytin molecule (Pheo) which accepts
electrons from P680. The electrons are transferred from Pheo− to the primary quinone electron acceptor QA and then to the secondary quinone electron acceptor, QB.
The Fe2+ and HCO3

− ions on the acceptor side assist in electron transfer from QA to QB [6,9–11]. The TyrD molecule, D2-Y160 (a tyrosine molecule in the D2 subunit
of PSII) plays an important role in the oxidation of the S0 state to the S1 state [12]. The residues are marked in distinct colors for clarity and follow from the 3WU2
structure [13]. B) Schematic representation showing the S-state cycle. This period-four cycle illustrated here involves light-induced single-step oxidation of the
intermediates called the S-states (S0, S1, S2, S3) along with proton egress and substrate water entry during specific transitions. The S3 to S0 transition goes through a
transient S4 state leading to the formation of O2 as shown in the figure.
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core complexes were measured using a bare platinum electrode [40].
The samples were suspended in buffer containing 1 M sucrose, 10 mM
CaCl2, 200 mM NaCl, and 50 mM MES-NaOH (pH 6.50) as described
previously [40]. 500 μM DCBQ and 1 mM K3FeCN6 were added as
electron acceptors. One flash was provided to generate the S2 state,
followed by a variable delay time. Twenty flashes with an interval
spacing of 1 s were then applied and the resulting O2-yield oscillations
were used for analysis of the decay kinetics [40]. The decay kinetics of
the S2 to S1 state were analyzed by computing the relative population of
the S2 state at the beginning of the 20-flash sequence using the VZAD
model using the BOBYQA nonlinear optimization algorithm [41]. The
decay kinetics were determined by fitting the data with an exponential
decay equation: y = y0 exp(−k x), where y0 is the initial S2 state po-
pulation, and k is the decay rate constant, respectively.

2.3. Optical measurements

Transient absorbance changes of QA
•– at 325 nm (ΔA325) were

measured with a modified CARY-14 spectrophotometer (On-Line
Instrument Systems, Inc., Bogart, GA) operated in single-beam mode
[42,43]. The photomultiplier tube was protected with a Corion Solar
Blind filter. Actinic flashes (532 nm, ~ 7 ns fwhm; 25–28 mJ/flash)
were provided by a frequency-doubled Q-switched Nd:YAG laser [Sur-
elite I (Continuum, Santa Clara, CA)]. For measurements, PSII core
complexes were diluted (12 μg of Chl into 0.6 mL final volume) into a
buffer solution containing 1.2 M betaine, 10% (v/v) glycerol, 50 mM
MES-NaOH (pH 6.0), 20 mM CaCl2, 5 mM MgCl2, and 0.03% (w/v) n-
dodecyl β-D-maltoside; then DCMU (dissolved in DMSO) was added to
25 μM. The sample temperature was 4 °C. Samples were incubated in
darkness for 3.5 min, then subjected to two pre-flashes and nine data
acquisition flashes spaced 3.5 min apart. The pre-flashes were applied
to ensure the oxidation of YD prior to data acquisition. The data of
multiple samples were averaged.

2.4. Electron paramagnetic resonance studies

EPR samples were concentrated to ~50 μL using Amicon centrifugal
cells. The concentrated samples were washed 3–4 times in a buffer

containing 50 mM MES-NaOH (pH 6.0), 1 M sucrose, 20 mM CaCl2,
5 mM MgCl2, 1 mM EDTA, 0.5 mM 2-phenyl-1,4-benzoquinone (PPBQ)
and concentrated to 1 mg of Chl/mL. The measurements were per-
formed using a Bruker ELEXSYS E500 spectrometer equipped with a
SHQ resonator and an Oxford ESR-900 continuous flow cryostat at
7.5 K. The EPR parameters used for recording the spectra are as follows:
microwave frequency, 9.38 GHz; modulation frequency, 100 kHz;
modulation amplitude, 19.95 G; microwave power, 5 mW; sweep time,
84 s; conversion time, 41 ms; time constant, 82 ms. Each spectrum is
the average of two scans. The dark scan of the EPR samples, con-
centrated to 1 mg of Chl/mL, corresponding to the S1 state was initially
recorded. Then, the S2 state was generated by illuminating the sample
with a Xe lamp in a 200 K acetone/dry ice bath for 5 min and the
spectrum was recorded.

2.4.1. Ammonia binding
Ammonia binding was studied in a buffer containing 1 M sucrose,

45 mM HEPES (pH 7.5), 11 mM Ca(OH)2, 0.5 mM EDTA, 0.5 mM PPBQ
and 100 mM NH4Cl. The S2 state was generated by illuminating dark-
adapted PSII samples at 200 K for 5 min. To investigate ammonia
binding to the S2 state of the OEC, PSII samples were annealed at 258 K
in an ethylene glycol-dry ice bath for approximately 1 min and then
frozen in liquid nitrogen.

2.4.2. S2QA
− decay kinetic studies

Studies of the kinetics of S2QA
− recombination were carried out

with samples containing 0.5 mM DCMU (added from a stock solution of
100 mM in DMSO). The PSII samples were illuminated at 200 K in a
dry-ice acetone bath to generate the S2 state, then incubated in a con-
stant temperature bath containing varying concentrations of equili-
brated ethanol/ethylene glycol in the dark for different time intervals.
The intensity of the S2-state multiline EPR signal was then recorded.
During incubation, the temperature was continuously monitored using
a thermocouple. EPR spectral subtractions and the curve fittings were
done using Origin Pro (Fig. S1). The decay kinetics of the S2-state
multiline EPR signal were analyzed by fitting the data with the equa-
tion: y = y0 exp(−k x).

Fig. 2. Photosystem II dimer is shown as a surface structure. Resides in the four major subunits: D1, D2, CP43 and CP47 in one of the monomers are colored. The inset
depicts key amino-acid residues in the hydrogen-bonding network around the OEC, chloride and waters. The C atoms are marked in pink, O atoms in red, Mn in
purple, N in blue, Ca in orange and Cl− in green. The figure follows from 3WU2 structure [13].
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2.5. QM/MM calculations

The QM/MM computational model of the oxygen-evolving complex
(OEC) was constructed as described in previous work [15,44]. Residues
in the model included those with Cα within 15 Å of the OEC. The two
chloride anions and all water molecules whose oxygen atoms fall within
this boundary were also included. Cut residues were capped with
neutral backbone fragments (ACE/NME) whose position was dictated
by the location the neighboring residues.

Residues included in the model are listed as follows, with capping
residues only including the backbone atoms and are indicated by
(parenthesis):

D1 (chain A): (57)-58-67-(68), (81)-82-91-(92), (107)-108-112-
(113), (155)-156-192-(193), (289)-290-298-(299), (323)-324-344:C-
terminus; CP43 (chain C): (290)-291-(292), (305)-306-314-(315),
(334)-335-337-(338), (341)-342-(343), (350)-351-358-(359), (398)-
399-402-(403), (408)-409-413-(414); D2 (chain D): (311)-312-321-
(322), (347)-348-352:C-terminus.

The model was optimized as a two-layer QM/MM model using the
ONIOM [45] method in the Gaussian16 [46] software suite. The QM
layer contained the OEC, surrounding residues (D1-S/A169, D1-D170,
D1-E189, D1-H332, D1-E333, D1-D342, CP43-E354, the C-terminus of
D1-A344, D1-H337, CP43-R357, and D1-D61), and eleven water mo-
lecules. Clipped sidechains were modeled as described previously [47].
The QM layer was calculated at the B3LYP [48,49] level of theory, with
the LanL2DZ [50,51] basis set and pseudopotential used for Mn and Ca
atoms and 6-31G(d) [52] for all others. The lower MM layer was cal-
culated using the AMBER [53] force field. All atoms were allowed to
relax, excluding the capping residues and the chloride and oxygen
atoms of waters in the MM layer.

3. Results

3.1. Characterization of the S2 state in D1-S169A PSII

The cw-EPR spectrum of the S2 state of D1-S169A PSII exhibits a
multiline signal where the average hyperfine line spacing of the mul-
tiline signal is reduced from ~87.5 G in wild-type PSII to ~72 G, which
suggests subtle alterations to the structure of the OEC [31], as seen
previously in D1-H332E PSII [42], D1-D61A PSII [28], ammonia-
treated [27–30], Ca-depleted [54,55] and Sr/Ca substituted wild-type
PSII [39,56–58]. To further probe the alteration of the S2 state, we
studied the decay kinetics of the S2 state to the S1 state using polaro-
graphic oxygen measurements and time-resolved optical absorption
spectroscopy.

The S2 state decays to the S1 state in darkness via charge re-
combination with electrons from the acceptor-side of the PSII
[40,56,59,60]. However, the decay kinetics depend on the stability of
the S2 state and the coordination state of the Mn cluster. The S2-state
decay measured polarographically in PSII core complexes exhibited
monophasic kinetics and was fit with a single-phase exponential decay
function. This decay reflects the back reaction of the S2 intermediate to
the S1 state.

We observed that the D1-S169A PSII core complexes exhibited
a ~ 2.7-fold slower rate of decay to the S1 state as compared to the
wild-type PSII core complexes (Table 1, Fig. 3).

The S2 state decay measured optically was determined at 325 nm
from the kinetics of QA

•– decay after a single flash applied in the pre-
sence of DCMU [42,43,61]. No more than 10% of PSII reaction centers
in purified wild-type PSII core complexes from Synechocystis sp. PCC
6803 have their QB site functionally occupied by native plastoquinone
[75]. Nevertheless, DCMU was included to prevent the oxidation of QA

•–

by any native plastoquinone that might occupy the QB site. A con-
centration of 25 μM DCMU was chosen because this concentration
eliminates steady-state O2 evolution by wild-type PSII core complexes
in the presence of 400 μM DCBQ and 1 mM K3FeCN6; that is, the rate of

O2 evolution measured in the presence of 25 μM DCMU, 400 μM DCBQ,
and 1 mM K3FeCN6 is the same as the background rate in wild-type PSII
core complexes having no exogenous electron acceptors present.

Charge recombination between QA
•– and YZ

• is too rapid (< 0.2 s) to
be observed at the timescale employed in our measurements. Conse-
quently, the kinetics shown in Fig. 4 reflect charge recombination be-
tween QA

•– and the S2 state [42,43]. Previously, we determined that
60–67% of D1-S169A PSII core complexes contain functional Mn4Ca
clusters [31]. The flash-induced formation of slowly-decaying QA

•– in
D1-S169A is about 61% compared to wild-type. This amplitude corre-
lates well with the fraction of D1-S169A PSII centers containing Mn4Ca
clusters [31]. The decay curves were fit with two exponentially-de-
caying phases plus a constant. These fits (Table 2) demonstrate that
QA

•– recombines with the S2 state 1.7–2.0 times more slowly in D1-
S169A PSII core complexes compared with wild-type, consistent with
the polarographic measurements (within error) and further showing
that the D1-S169A substitution stabilizes the S2 state. Note that no
electron acceptors were present in the optical measurements to com-
plete with the S2 state for the oxidation of QA

•–.
Next, to understand the energetic landscape of the decay of the S2

state of D1-S169A PSII core complexes, we investigated the S2 to S1

state transition using EPR spectroscopy at a number of temperatures.
We illuminated the dark-incubated DCMU-treated PSII core complexes
at 200 K to generate the S2QA

− state (Scheme 1). The same sample was
then incubated at different temperatures ranging from 209 K–261 K to
monitor the decay of the S2-state g = 2 multiline EPR signal (Fig. 5a
and b, Fig. S2).

The decay rates for the incubation temperatures were calculated
and the Arrhenius equation was then used to calculate the activation
energy for conversion of the S2 state into the S1 state (Fig. 6). The
calculated activation energy for conversion of the S2 state to the S1 state
in wild-type Synechocystis PSII core complexes is
0.80 ± 0.13 kcal mol−1. In contrast, the activation energy for con-
version of the S2 state to the S1 state in D1-S169A PSII core complex is
5.87 ± 1.15 kcal mol−1 (Fig. 6). This confirmed that the S2 ➔ S1

transition in D1-S169A PSII has a higher activation energy than wild-
type Synechocystis PSII. Fig. 7 is a schematic representation of the en-
ergetic landscape for the S2 to S1 state transition in wild-type and D1-
S169A PSII demonstrating a higher energy of activation for the S2 to S1

state transition in the mutated PSII.
In our previous paper, we demonstrated by using FTIR spectroscopy

that in D1-S169A PSII core-complexes there are significant alterations
in the hydrogen-bonding network around the OEC. However, it is un-
likely that the ~7× increase in activation energy of the S2 ➔ S1 tran-
sition state in D1-S169A PSII arises primarily due to changes in the
hydrogen-bonding network associated with a single point mutation.
Previously, it was shown that the reduction potential of the S2 state in
ammonia-treated PSII [40] was at least 2.7 kcal mol−1 lower than the
reduction potential of the S2 state in untreated wild-type PSII, and it
was proposed to be due to the binding of ammonia to Mn4. Hence, we
propose that the higher activation energy for S2 ➔ S1 transition in D1-
S169A PSII core complexes arises from a change in the coordination
environment of Mn4. These studies thereby further support the

Table 1
Decay Kinetics of PSII core-complexes measured
polarographically: comparison of S2-to-S1 decay
kinetics in wild-type and D1-S169A PSII core
complexes, where k−1 represents the decay
rate. Data from Fig. 3 were fit with a single-
component exponential decay model (See
Materials and Methods).

k−1 (s)

Wild-type 33 ± 7
D1-S169A 91 ± 33
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conclusion that the S2 state in D1-S169A PSII is structurally distinct
from the S2 state in wild-type PSII, as reflected by the altered S2-state
multiline EPR signal, a reduced rate of S2 to S1 state decay and higher
activation energy for the S2➔ S1 transition. To gain deeper insights into
the altered S2 state, we studied the effect of ammonia treatment on D1-
S169A PSII core complexes.

3.2. Effect of ammonia treatment on D1-S169A PSII

We analyzed the binding of ammonia to the S2 state of D1-S169A
using cw-EPR spectroscopy. After illumination at 200 K and annealing
at 258 K, the altered multiline signal observed in D1-S169A [31] was
not altered further (Fig. 8). This observation demonstrates that am-
monia does not bind to the OEC in D1-S169A PSII core complexes under
our experimental conditions. However, we do observe a reduction in
the steady-state activity of D1-S169A PSII in the presence of ammonia
(Fig. S3). It has been demonstrated that the binding of ammonia to the
primary site (Mn4 of the OEC) does not affect the water-oxidation re-
action, whereas binding to the secondary-sites does affect the water-
oxidation process and reduces the steady-state activity [62–64]. Hence,
in D1-S169A PSII, ammonia may bind to the secondary sites of PSII.

3.3. QM/MM calculations on the S2 state of D1-S169A

We carried out QM/MM calculations on D1-S169A PSII to study the
effect of the D1-S169A substitution on the structure of the OEC. QM/
MM calculations show that an additional water can bind as a terminal
ligand to the Mn4 ion in place of the oxo ligand O5 in the optimized S2-
state structure of D1-S169A PSII (Fig. 9). We refer to this new S2-state
structure as S2

x. The D1-S169 residue in wild-type PSII is hydrogen
bonded to Wx through its side chain. The disruption of the hydrogen
bond upon substitution of S169 with A169 increases the Lewis basicity
of Wx which then is hypothesized to bind as an additional ligand to the
Mn4 ion in place of O5, leading to the observed QM/MM optimized
structure. Further QM/MM studies were carried out to confirm that the
proposed S2

x structure is in the low-spin state. This structure is thus
consistent with the modified multiline signal centered at g = 2 ob-
served in the EPR spectrum for the S169A PSII (Supplementary Note 1).
Additionally, theoretical energetic estimates also suggests the possibi-
lity of hindered decay for the novel S2

x state in D1-S169A PSII (Sup-
plementary Note 1). This is one of the proposed models that is

Fig. 3. Comparison of the S2 decay curves in: A) wild-type and B) D1-S169A PSII core complexes at 15 °C. The decay curves are fit with an exponential decay equation
(See Materials and Methods) and the fit parameters are included in Table 1.

Fig. 4. Formation and decay of QA
•– after a single flash applied to wild-type

(black) and D1-S169A (red) PSII core complexes as measured at 325 nm. For the
lower panel, normalization was achieved by multiplying the D1-S169A data by
a factor of 1.64. Experimental conditions: 20 μg Chl/mL in 1.2 M betaine, 10%
(v/v) glycerol, 50 mM MES-NaOH (pH 6.0), 20 mM CaCl2, 5 mM MgCl2, 0.03%
n-dodecyl-β-D-maltoside, 25 μM DCMU, 1% DMSO, 4 °C. The wild-type data
represent the average of 72 traces (8 samples). The D1-S169A data represent
the average of 144 traces (17 samples).

Table 2
QA

•– decay kinetics in PSII core complexes measured at 325 nm: Comparison of
S2-to-S1 decay kinetics in wild-type and D1-S169A PSII core complexes, where
k1

−1 and k2
−1 represent the decay rates. Data from Fig. 4 were fit with a bi-

phasic exponential decay model.

k1 k2 constant

% k1
−1 (s) % k2

−1 (s) %

Wild-type 13 ± 1 7.5 ± 1.0 82 ± 1 38 ± 1 7 ± 1
D1-S169A 13 ± 2 13 ± 2 81 ± 1 76 ± 3 6 ± 1
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consistent with the experimental evidence presented in the current
study. However, there is strong interconnectivity between the large and
the narrow channel, as has been described earlier. Thus, the current
proposition does not preclude the delivery of the additional water
bonded to Mn4 from the large channel (O1 channel) [65].

4. Discussion

PSII isolated from D1-S169A cells exhibit diminished S-state cycling,
perturbations to the FT-IR difference spectra and a slowing of the rate of
oxygen release [31]. These features suggest that the D1-S169 residue
plays a crucial role in the water-oxidation reaction. Hence, it is im-
portant to further elucidate the function of this residue. Elsewhere, we
have reported the pH dependence of the steady-state activity and the
kinetic solvent isotope effect in both wild-type and D1-S169A PSII. The
observed KSIE value of D1-S169A PSII around the optimal pH is
1.61 ± 0.04, which is in good agreement with that of wild-type PSII
(1.48 ± 0.07) [66]. This value reflects the effect of H/D exchange on
the rate-determining step. Previous studies reveal that an alteration in
the proton-transfer mechanism results in a change of the KSIE values by
~1.0 unit [66]. Hence, the similarity in the KSIE values of wild-type
and D1-S169A PSII indicates that the proton-transfer mechanism is not
significantly affected by the A169 substitution. Further, the proton in-
ventory curves at pL 6.5 are also similar in both wild-type and D1-
S169A PSII [66]. Bicarbonate is known to recover the damaged activity
in D2-K317A mutated PSII, which is known to affect the proton-transfer
pathway [67]. However, bicarbonate fails to rescue the damaged PSII in
D1-S169A (Fig. S4). These studies provide strong evidence that the
proton-transfer process in D1-S169A PSII is not significantly perturbed
despite the mutation-induced alterations to the H-bond networks [31].
How then to explain the damped S-state cycling, slowed oxygen release,
and the higher activation energy of the S2 to S1 state transition in D1-
S169A PSII core complexes?

The low-spin isomer of the S2 state is characterized by an EPR
spectrum that shows 20–22 characteristic hyperfine lines centered at
g = 2. In D1-S169A PSII, the hyperfine spacing of this multiline signal
is decreased, but is not decreased further by the addition of ammonia,
even after annealing at 258 K. In contrast, the similarly decreased hy-
perfine spacing of the S2-state multiline EPR signal in D1-D61A PSII is
decreased further by ammonia and no annealing step is needed [28].
On the basis of pulsed 55Mn ENDOR studies, the similar alterations to
the S2-state multline EPR signal observed previously in ammonia-
treated [27–30], Ca-depleted [54,55] and Sr/Ca substituted wild-type
PSII [39,56–58] have been attributed to subtle changes in the en-
vironment of the S2 state's single Mn(III) ion, caused in turn by modest
alterations to the magnetic couplings between the individual Mn ions
[55,58,68–70]. The similar alterations to the S2-state multiline EPR
signal caused by the D1-D61A mutation were attributed to similar al-
terations to the magnetic couplings caused by perturbation of hydrogen
bonds by the D1-D61A mutation [28]. As pointed out previously [31],
the alterations to the S2-state multline EPR signal caused by the D1-
S169A mutation may have the same origin. Because ammonia alters the
multline signal in D1-D61A PSII without need for an annealing step, it
was suggested that the energetic barrier for binding ammonia to Mn4 is
decreased by the perturbations of hydrogen bonds caused by the D1-
D61A mutation [28]. One possibility is that the perturbations to the
same network of hydrogen bonds caused by the D1-S169A mutation

Scheme 1. Generation of the S2 state followed by its decay kinetics during dark incubation.

Fig. 5. Kinetics of decay of S2QA
− to S1QA in PSII core complexes isolated from

D1-S169A cells. (a) The S2-state g = 2.0 EPR signal is formed upon illumination
at 200 K, as shown in the light − dark spectrum (top red trace). During in-
cubation in darkness at the representative temperature of 259 K in the presence
of DCMU, the S2-state g = 2.0 EPR signal in D1-S169A PSII decreases slower
than the S2-state g = 2.0 EPR signal of wild-type PSII (Fig. S2). (b) Normalized
peak-to-peak height of the S2-state g = 2 EPR signal vs. incubation time at
different temperatures.
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increases the energetic barrier for binding ammonia to Mn4. Another
possibility is suggested by our QM/MM S2

x state structure of D1-S169A
PSII that shows the presence of an additional water ligand to Mn4 in
place of the O5 oxo ligand. These structural changes may both alter the
S2-state multiline EPR signal and increase the activation barrier for
binding ammonia to Mn4 due to the presence of a coordinatively sa-
turated Mn4. In addition, the binding of an additional water molecule
to Mn4 in place of O5 may increase the activation energy for the S2 to S1

transition and thereby slow the decay of the S2
x state. The additional

stability of the S2
x state observed here is in good agreement with the

decrease in redox potential (S2/S1) observed for S169A cells [71]. This
additional water may arise from the narrow channel, as D1-S169 is
hydrogen bonded to the waters in this channel. However, the strong
inter-connected hydrogen-bonding network between the channels can
also lead to the bonding of a large-channel water to the Mn4 of the OEC
[72,73]. Another possible explanation of the increased stability of the
S2

x state is suggested by a recent multi-conformer continuum electro-
statics (MCCE) study of the relative stabilties of the two isomers of the
S2 state [74]. On the basis of these calculations, the transition from the
S1 state to the low-spin isomer of the S2 state (the form that exhibits the
multiline EPR signal) proceeds with partial deprotonation of W2, with
the fractional proton ending up on D1-D61, D1-E329, and possiblity
elsewhere in the extensive network of hydrogen bonds that surround
the Mn4CaO5 cluster. Alterations to these networks caused by the
S169A mutation (or by the binding of ammonia) might alter the equi-
librium between the S2YZ and S1YZ

• states, to stabilize the S2 state,

thereby slowing the S2-decay kinetics. Finally, because our studies show
that the S2

x state is thermodynamically less favorable (due to a higher
activation energy) to decay back to the S1 state compared to the native
S2 state, this state is more favorably poised to proceed to the S3 state via
transfer of a water to Mn1 after the formation of the S2

x state [72].
Hence, this novel S2 state (S2

x) of D1-S169A may mimic the inter-
mediate state formed during the S2 to S3 transition and provide new
insights into the mechanism of substrate-water delivery to the OEC.

5. Conclusions

Our analysis of D1-S169A PSII highlights that the S2 state in the
mutated PSII is structurally altered, thermodynamically more stable
and remains unperturbed upon ammonia treatment. Additional ex-
periments probing the S2

x-state structure using pulsed EPR experiments
will help in identifying the detailed structural changes of the S2 state.
Finally, it will be interesting to probe the S3-state formation in D1-
S169A PSII to elucidate the effects of this mutation on the mechanistic
details of the S2 to S3 transition.

Abbreviations

Chl chlorophyll
D1 D1 polypeptide of PSII
D2 D2 polypeptide of PSII
DCBQ 2,6-dichloro-p-benzoquinone

Fig. 6. Arrhenius analysis of the decay kinetics of S2QA
− to S1QA. a) wild-type Synechocystis PSII, Ea = 0.80 ± 0.13 kcal mol−1. b) D1-S169A PSII,

Ea = 5.87 ± 1.15 kcal mol−1.

Fig. 7. Energetics scheme for the decay of the S2QA
− state to the S1QA state. A) wild-type Synechocystis PSII. B) D1-S169A PSII. The double dagger symbol denotes a

transition state.
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Fig. 8. Left panel: Comparison of the difference EPR spectra of the ammonia-treated D1-S169A PSII core complexes. The red trace corresponds to the difference
between the S2 and S1 states. The blue trace corresponds to the difference between the annealed-S2 and S1 states. The S2 state was generated by illuminating the PSII
sample at 200 K. The annealed-S2 state was generated by warming the PSII sample to 258 K for 1 min in the dark, after generating the S2 state. Right panel:
Comparison of the EPR spectra of the S2 state of wild-type PSII core complexes (green), wild-type PSII core complexes treated with ammonia (blue) and D1-S169A
PSII core complexes (red) (Adapted from [28]).

Fig. 9. The QM/MM optimized S1

structure and S2
x structure of D1-S169A

PSII. In the S1 structure, we observe
that D1-S169A is not hydrogen bonded
to Wx. In S2

x structure, we observe that
Wx is deprotonated and is bound to
Mn4. When D61 accepts the proton
from Wx, it shifts to form a new hy-
drogen bond with E333. The Mn ions
are marked in purple, O in red, and Ca
in orange.
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