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Section I.  Computational Details 
	
  
a) TDPT Calculations 
In the quasistatic (zero-frequency) limit, eq. 2 in the manuscript for the friction tensor 
becomes: 
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where f(ei) is the population of the ei KS state according to Fermi-Dirac statistics. 
In this work we represent the electronic structure in a local atomic orbital basis. Hereby 
we expand molecular states by linear combination of basis functions:	
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wherein the basis functions are formally defined as Bloch-like generalized basis 
functions. As in the original derivation by Head-Gordon and Tully [1] we can thereby re-
express the nonadiabatic coupling elements through the generalized eigenvalue problem 
as:	
  

𝜓!"
𝜕
𝜕𝑅𝜓!!!

   ≈
𝐶!!!

𝜕
𝜕𝑅𝐻  !

!" − 𝑒!
𝜕
𝜕𝑅 𝑆  !

!" 𝐶!"!!

𝑒!"! − 𝑒!"
, 

 
where 𝐻  !

!" = 𝜑!! 𝐻! 𝜑!!"  and   𝑆  !
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The delta function is approximated with a finite width (see main text) Gaussian function 
centered around the Fermi level. 
 
b) LDFA Calculations 
In order to compare the TDPT results with LDFA, we used the formulation of the rate 
described in eq (8) of Ref. 2:	
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where rs is the Wigner-Seitz radius associated with the electron density𝜌: 𝑟!   =
!

!!"
! ,	
  

𝛿! = 𝛿! 𝑟!  are the tabulated phase shifts associated with the angular momentum quantum 
number l at a particular radius rs. We used the density created by the clean Pd(100) 
surface at the corresponding Cartesian positions of the hydrogen atom (LDFA-IAA 
method). The tabulated phase shifts are taken from Ref. 3 and interpolated to arrive at the 
value at a desired rs. 
 
c) Delta function approximation  
Equation (2) in the main text includes the Dirac delta function, which is in the present 
work approximated as a Gaussian function. The width of the Gaussian is an empirical 
parameter, which in the reported results was chosen to be 0.6 eV. This finite width 
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transforms a discrete state spectrum into a continuous Density-of-States (DOS). This is a 
standard approach in Brillouin zone sampling, as first introduced by Methfessel and 
Paxton [4]. The width, however, does not significantly impact the lifetime: changing the 
Gaussian width from 0.2 to 1.0 eV leads to lifetime variations of about 15% at the chosen 
Monkhorst-Pack [5] k-point grid of 20x20x1.    
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Section II. Cartesian friction tensor of H on Pd(100) surface 

  
In order to demonstrate the correlation of the symmetry of the friction tensor with the 
symmetry of the PES, we plotted each Cartesian component of the friction tensor along 
the minimum energy path (See Fig. 2, main manuscript).  

 
Figure S1. Cartesian components of the friction tensor (1/ps) as a function of the reaction 
coordinate along the minimum energy path (in Angstrom distance from the x-axis origin 
of the unit cell) described in Fig. 2 of the main manuscript. 
 
In Figure S1 we show all matrix elements of the Cartesian friction tensor. We can see that 
the friction tensor is completely diagonal in the high-symmetry points (hollow: first and 
last points and bridge: middle point at 2.75 Å). As the hydrogen atom leaves the hollow 
site, the off diagonal xz component of the tensor starts growing. It reaches zero again at 
the saddle point. The non-diagonal xz component is negative during the motion uphill to 
the saddle point and is positive while moving downhill to another minimum.  
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Section III. Simulation of the CO internal stretch dynamics on the 
Pd(100) surface 

 
We used the Langevin dynamics equation (eq. 1, main manuscript) to simulate the 
dynamics of the internal stretch of the CO molecule adsorbed at the equilibrium top site. 
For this one dimensional problem, we interpolated the potential energy surface and the 
internal stretch normal mode component of the friction tensor (shown as lifetime in Fig 
S2 A) over 121 points for the CO bond length within ± 0.15 Å from the equilibrium value 
(1.164 Å). Forces, positions, and velocities were propagated according to the Leapfrog 
algorithm. We only consider energy loss due to the electronic friction term and neglect 
the random fluctuating term.	
  
 

	
  
Figure S2. Langevin dynamics for the CO internal stretch: (A) interpolated potential 
energy surface (right y-axis) and the internal stretch normal mode component (left y-axis) 
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of the friction tensor (ps) and (B) logarithm of the total energy (in eV) as a function of 
simulation time (in fs) for different initial stretch displacements.	
  
 
We then monitored the dissipation of the total energy of the oscillator as a function of 
time for various values of initial stretch of the CO bond. The lifetimes were then 
calculated through the slope of the logarithm of the total energy under the assumption of 
exponential energy decay. The resulting lifetimes varied about 10% with the extent of 
bond stretch ranging between 0.06-0.10 Å. The vibrational energy of the CO internal 
stretch calculated from the harmonic approximation is 0.25 eV, which corresponds to the 
lifetime of 3.92 ps (Figure S2, B). This value is in good agreement with the static value 
calculated using TDPT (4.07 ps). 	
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